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An example of decision making

* Does predictive models guide decision making?
* System changes algorithm from A to B at some point.
* Is the new algorithm B better?

* Say algorithm that provides promotion or discount link to different
customers

Algorithm A Algorithm B



An example of decision making

* Measure success rate (SR) oy
Old Algorithm (A) | New Algorithm (B) g !

50/1000 (5%) 54/1000 (5.4%)

New algorithm increases overall success rate, so it is better?

_ Old Algorithm (A) | New Algorithm (B)

10/400 (2.5%) 4/200 (2%)
5 br B0 RIS 40/600 (6.6%) 50/800 (6.2%)
50/1000 (5%) 54/1000 (5.4%)

Which is better? 3



Decision Making with Causality

* Causal Effect Estimation 1s necessary for decision making!
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Causal effect estimation plays an
important role on decision making!




A practical definition

Definition: T causes Y if and only 1f
changing T leads to a change in Y,
keep everything else constant.

Causal effect 1s defined as the magnitude by which Y is changed
by a unit change in T.

Two key points: changing T, keeping everything else constant

*Interventionist definition [http://plato.stanford.edu/entries/causation-mani/]



http://plato.stanford.edu/entries/causation-mani/

Problem of Treatment Effect Estimation

* Treatment Variable: T = 1orT = 0
* Potential Outcome: Y(T = 1) and Y(T = 0)
* Individual Treatment Effect (ITE)

ITE(Q)) =Y(T; =1) - Y;(T; = 0)
* Average Treatment Effect (ATE):
ATE = E[Y(T = 1) — Y(T = 0))

Counterfactual problem: Y(T =1) or Y(T = 0)



Randomized Experiments are the “Gold Standard”

* Drawbacks of randomized experiments:
* Cost
* Unethical

* Two key points: changing T, keeping everything ¢lse constant



Causal Inference with Observational Data

* Definition of ATE: ATE = E[Y(T =1) =Y (T = 0)]
* In observational data, we have units with different T:
E[Y(T =1)] and E[Y(T = 0)]

* Can we estimate ATE by directly comparing the average
outcome between groups with T=1 and T=0?

* No, because confounders X might not be constant

* Two key points:
* Changing T (T=1 and T=0)
* Keeping everything else (Confounder X) constant




Causal Inference with Observational Data

* Definition of ATE: ATE = E[Y(T =1) =Y (T = 0)]
* In observational data, we have units with different T:
E[Y(T =1)] and E[Y(T = 0)]

* Can we estimate ATE by directly comparing the average
outcome between groups with T=1 and T=0?

* No, because confounders X might not be constant

* Two key points:
* Changing T (T=1 and T=0)

Balancing Confounders’ Distribution




Related Work

* Matching Methods
* Exactly Matching, Coarse Matching
* Poor performance in high dimensional settings

* Propensity Score based Methods
* Propensity score e(X) = p(T = 1|X)
* Matching, Weighting, Doubly Robust

* Treat all observed variables as confounders,
and 1gnore the non-confounders

* Mainly designed for binary treatment
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(a) Previous Causal Frgomework.



Related Work

* Representation Learning based Methods
* Similar representation between treatment groups.
* Accurate prediction on factual/counterfactual outcome
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and R is a model complexity term.

* Confounder differentiation, binary treatment, might 1ignore confounders

Shalit U, Johansson F D, Sontag D. Estimating individual treatment effect: generalization bounds and algorithms. ICML 2017



Standard Assumptions for Causal Inference

e Al: Stable Unit Treatment Value (SUTVA): The effect of treatment
on a unit 1s independent of the treatment assignment of other units

P(Yi‘Ti;Tj;Xi) = P(Y;|T;, X;)

* A2: Unconfounderness: The distribution of treatment 1s independent
of potential outcome when given the observed variables

T L (Y(0),Y(D))| X

* A3: Overlap: Each unit has nonzero probability to receive
either treatment status when given the observed variables

O0<P(T=1X=x)<1



New Challenges in Complex Environments

* Challenge 1: High dimensional variables, but NOT all
variables are confounders.

* Challenge 2: Unobserved confounders, NOT all
confounders are observed. IV based method 1s a great
approach for the problem, but limited to linear and
requires pre-defined IV.

* Challenge 3: Complex Treatments without SUTVA
assumption



Challenge 1: High dimensional variables

* With SUTVA, Unconfounderness, and Overlap Assumptions

* In complex environment, we may collect high-dimensional
variables, including confounders and noisy variables

 But NOT all observed/collected variables are confounders, and
including non-confounders might bring new bias

* How to automatically select the confounders for causal inference?

14



Learning Decomposed Representation for Counterfactual Inference

---------------------------------------------------
+ .
-

Variable Variable

Variables : Decomposition

- All variables can be
separated into 3 parts: [V,
Confounders, Adjustment
variables.

» Including IV will bring
bias for causal inference.

. .
. +
------------------------------------------------------

- Including adjustment
variables can help to
reduce the variance.

Treatment Effect
Estimation

Treatment Effect
Estimation

Kuang K, Cui P, Li B, et al. Treatment effect estimation with data-driven variable decomposition [C]. AAAI, 2017
Kuang K, Cui P, et al. Data-Driven Variable Decomposition for Treatment Effect Estimation, TKDE, 2020

Wu A, Yuan J, Kuang K, et al. Learning decomposed representations for treatment effect estimation[J]. TKDE, 2022.



Learning Decomposed Representation for Counterfactual Inference

- Three decomposed representation networks
- 1(X), C(X), A(X)
- Three decomposition and balancing regularizers
- Confounder identification: A(X) L T,I(X) LY |T
- Confounder balancing: w-C(X) L T
- Two regression networks
-Y(T =1), Y(T =0)
- Orthogonal Regularizer for Decomposition

-----------------------

r------
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Wu A, Yuan J, Kuang K, et al. Learning decomposed representations for treatment effect
estimation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022.



Learning Decomposed Representation for Counterfactual Inference
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(b) DeR-CFR in Syn 16 16 16 3000

Wu A, Yuan J, Kuang K, et al. Learning decomposed representations for treatment effect
estimation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022.




Learning Decomposed Representation for Counterfactual Inference

Table 1: The results on IHDP.

Table 2: Ablation studies of DeR-CFER.

PEHE

Within-sample

Out-of-sample

0.444 +/- 0.020

0.529 +/- 0.068

0.478 +/- 0.033

0.542 +/- 0.033

0.482 +/-0.039

0.565 +/- 0.075

0.479 +/- 0.030

0.560 +/- 0.071

IHDP
Mean +/- Std Within-sample Out-of-sample

Methods PEHE EATE PEHE EATE
CFR-MMD | 0.702 +/- 0.037 | 0.284 +/-0.036 | 0.795 +/- 0.078 | 0.309 +/- 0.039
CFR-WASS | 0.702 +/- 0.034 | 0.306 +/- 0.040 | 0.798 +/- 0.088 | 0.325 +/- 0.045
CFR-ISW 0.598 +/- 0.028 | 0.210+/-0.028 | 0.715 +/-0.102 | 0.218 +/- 0.031
SITE 0.609 +/- 0.061 | 0.259 +/-0.091 | 1.335 +/-0.698 | 0.341 +/-0.116
DR-CFR 0.657 +/- 0.028 | 0.240 +/-0.032 | 0.789 +/- 0.091 | 0.261 +/- 0.036
DeR-CFR 0.444 +/- 0.020 | 0.130 +/- 0.020 | 0.529 +/- 0.068 | 0.147 +/- 0.022

Ly Ly Lep Lo
N A
v oY
v o/
v

v v

0.635 +/- 0.035

0.858 +/- 0.133

Wu A, Yuan J, Kuang K, et al. Learning decomposed representations for treatment effect
estimation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022.



Learning Decomposed Representation for Counterfactual Inference

Designed for pre-treatment/outcome variables.
How about with post-treatment/outcome variables?

Wu A, Yuan J, Kuang K, et al. Learning decomposed representations for treatment effect
estimation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022.



Adjustment Feature Selection

Covariate U i | Covariate U i . CovariateU |

(a) Brute-force. (b) Separation. . (c) Ours.

Additional Assumption: NO mediator
Theoretical Results: Optimal features are the confounders and outcome-
related covariates

low to select the optimal features?
Haotian Wang, Kun Kuang, et.al. Treatment Effect Estimation with Adjustment Feature Selection, KDD, 2023.



Adjustment Feature Selection

* Semi-parametric Inference

* Definition: The statistical model M 1s indexed by

OO0 Parameter of Interest y(P): finite dimension (e.g., ATE)
0 Nuisance parameter: infinite dimension

O Asymptotic Linear: \/ﬁ(T(n) — y(P)) = \/%Z?ﬂ D;(V) + 0,(1)
v Influence Function: D (V)

v Estimator: T(n) (e.g., Estimator of ATE)

O Efficient Influence Function D¢/ (V) should achieve the Cramer-Rao
Lower Bound (CRLB)

e Efficient Influence Function of ATE estimation:

DD (V) = = (Y = my(V) + my =" (V) = m§=" (V) — y (P)

OWhere T (V): propensity score, my(Y): regression model




Adjustment Feature Selection

* Asymptotic Normality:
v E[DTT (V)] =0
v Vy(P) = y(P)) = N(0,Var[Def(V))])

* Our Goal: Identify the adjustment sets V that achieves minimal
asymptotic variance Var[D®T (V)]

* Optimality of V: Var[D®%(V)] is minimized if and only if V = {X, Z}
» Objective Function: ROAF (V) = Var[DeH(V)]

2
 Empirical Estimator: ROAF(v) = % n (I(ti_l)_l(ti_o) (y; — mt (vi)))

b (Vi)

Haotian Wang, Kun Kuang, et.al. Treatment Effect Estimation with Adjustment Feature Selection, KDD, 2023.



Adjustment Feature Selection

* How to select the optimal features V={X,Z}? It’s a combinatorial
optimization problem !

* Reinforcement Learning for Optimization:
* Taking the variable selection as an end-to-end differentiable process

* Using masks to select variables
Reward ROAF(UOM,T,Y)

--------------------------------- 1“ Mask M
;" Actor o)
: O
| O
Covariate U |—> Transformer 5 MLP (.) Reward |
! Encoder 1 Decoder — Calculator
Treatment T
OutcomeY [
Treatment T Covariate U
Outcome Y '

Haotian Wang, Kun Kuang, et.al. Treatment Effect Estimation with Adjustment Feature Selection, KDD, 2023.



Adjustment Feature Selection

* Datasets: Linear Synthetic, Non-linear Synthetic, IHDP, Twins
* Metric: [M=Mol 0 MAE error: eprg = |ATE — ATE|

] Feature selection accuracy: Acc =

Settings In_sample Prediction Out_of_sample Prediction
Feature Dimension 20 40 80 20 40 80

Dataset Fs Ace R err Direct 469+0.62 7.09+0.68 892+0.76 5.23+0.41 6.28+141 9.28+1.32
— — . PW 0.99+4.50 1.27+3.13 4.36+2.37 1.33+1.92 2224539 4.51+3.33
5-20-1  95.0%  0.02 Statistical AIPW 132£1.95 0991027 2352083 021£1.19 0552047 3.88+1.23
5-40-1 92.5% 0.04 TMLE 0.42+0.11  0.59+0.07 0.62+0.02 0.50+0.12 0.66+0.18  0.81+0.20
S-80-1 90.0% 0.11 DragonNet | 0.19+0.19 0.20+0.14 0.57+0.38 0.99+0.16 0.84+0.70  0.87+1.02
S20-n  95.0% 0.06 Machine GANITE | 0.80+0.01 0.87+0.01 0.99+0.01 0.99+0.01 1.08+0.01 1.10+0.01
DNOUT | 0.47+0.01 0.62+0.04 0.92+0.09 0.50+0.02 0.61+£0.05 0.95+0.09
5-40-n  95.0% 0.10 BART 092+0.20 2.03+0.27 2.89+0.98 0.92+0.20 2.25+0.16  2.98+1.10
S-80-n 90.0% 0.13 ATPW L | 059+0.10 0.66+0.05 0.89+0.10 0.54+0.29  0.74+0.13 0.96+0.22
THDP 92 0% 011 DVD 0.95+0.03 0.83+0.01 0.76+0.01 1.06+0.08 0.64+0.01 1.05+0.73
. Decomposed | —rp R 170882008 1182016 2.08£060 1282008 1692073 1522051

Twins 04 7% 0.13 : : : : : : : : : : : :
TEDVAE | 037+0.01 0.43+0.02 0.55+0.03 0.38+0.03 0.49+0.04 0.60+0.02
NICE 1.08+0.32 1.24+0.60 1.81+0.22 1.10+0.37 1.23#041 1.93+0.35
Ours OAFP L | 0.03+0.13 0.12+0.10 0.23+0.13 0.24+0.22 0.20+0.13 0.32+0.34
OAFP N | 0.01+0.10 0.09+0.07 0.13+0.11 0.15+0.09 0.16+0.07 0.14+0.08

Haotian Wang, Kun Kuang, et.al. Treatment Effect Estimation with Adjustment Feature Selection, KDD, 2023.



Challenge 2: Unobserved confounders

OStandard Assumptions for Causal Inference:

* A2: Unconfounderness: The distribution of treatment 1s independent of
potential outcome when given the observed variables

T L (Y(0),Y(D))| X

* In complex environments, NOT all confounder can be observed,
1.e., the unconfounderness assumption 1s not satisfied.

* How to remove the bias from those unobserved confounders?

25



Instrumental Variable Regression

,ﬂh

Conditions of IV (instrumental variable)
* Relevance: P(T|Z) # P(T)

* Exclusion: P(Y|Z,T,U) + P(Y|T,U)
* Unconfounded: Z L U

I
~ &

Stage 1: regressing T on Z T
2SLS: , . ~
Stage 2: regressing Y on T Y

(
(

)

Z
T)

f(TY=-01-T?-04-T f(T)=0.05-T3*+01-T?2—-08-T

L) - r ¥ | i DataP(T,Y) N

U~N(01) Y| == vl ; Requiring pre-defined Vs,

T=740 = n| fw Limited to linear setting
). e L

Y = f (T) + U e 54_.1-_';';:;;;..:




Non-linear Instrumental Variable Regression

Non-linear IV regression (DeeplV, KernellV et.al) Stage 1 regression brings
Stage 1:regressingTonZ and X T = g(Z,X) confounding bias in stage 2
Stage 2: regressingY on Tand X ¥ = (T, X)

Confounder Balancing + |V Regression




Confounder Balanced Instrumental Variable Regression

CB-1V (Confounder Balanced IV regression):

Stagel (Treatment regression): regressing T on Z and X T = Jd(Z,X)
Confounder balancing: learning a balanced confounder representation ¢(X) such that T L & (X)

Stage 2 (Outcome regression): regressing Y on T and d(X) Y = f (T, b (X))

Wu A, Kuang K, Li B, et al. Instrumental Variable Regression with Confounder Balancing, ICML 2022



Confounder Balanced Instrumental Variable Regression

Table 2: The bias (mean = std) of ATE estimation on real-world data (Data-m z-mx-mgr)

IV based methods

Confounder balancing
based methods

Within-Sample

0.0117 = 0.3882

0.1601 = 0.2499

0.0067 £ 0.0271

____Method IHDP-2-6-0 IHDP-2-4-2 Twins-5-8-0 Twins-5-5-3
| DeepIlV-LOG | 2.8736 = 0.0577 2.6227 = 0.0651 0.0135 £ 0.0215 0.0237 £ 0.01T11
DeeplV-GMM | 3.7760 = 0.0316  3.7396 £ 0.0402 0.0194 £ 0.0047  0.0221 £ 0.0041
OneSIV 1.7249 £ 0.3752  1.7411 £0.3422  0.0083 £ 0.0191  0.0080 £ 0.0167
DFTV 3.5543 £ 0.0891  3.6218 £ 0.1038  0.0268 £ 0.0005  0.0265 £ 0.0003
DFL 3.2018 £0.0496  3.1991 £ 0.0374  0.0624 £ 0.0586  0.0847 £+ 0.0049
DirectRep 0.0675 £ 0.0562  0.4600 £ 0.0711 0.0167 £0.0171  0.0193 £ 0.0251
CFR 0.0854 £ 0.0579  0.4826 £ 0.0642 0.0115 £ 0.0167 0.0223 £ 0.0176
DRCFR 0.0553 £ 0.0644  0.4336 £ 0.0692  0.0114 £ 0.0221 _0.0118 £ 0.0174

0.0014 £ 0.0249

Out-of-Sample

Method

IHDP-2-6-0

IHDP-2-4-2

Twins-5-8-0

Twins-5-5-3

[ DeeplV-LOG

DeeplV-GMM
OneSIV
DFIV

2.8760 £+ 0.0553
3.7768 £ 0.0350
1.7287 £ 0.3725
3.5538 = 0.0904

2.6226 £+ 0.0692
3.7388 £ 0.0416
1.7351 £ 0.3430
3.6225 £ 0.1061

0.0140 £+ 0.0208
0.0193 £ 0.0047
0.0082 £+ 0.0191
0.0268 + 0.0005

0.0238 £ 0.0111
0.0221 £ 0.0040
0.0081 £ 0.0168
0.0265 £ 0.0003

DFL
DirectRep
CFR
DRCFR

3.2038 £ 0.0496
0.0608 = 0.0817
0.0785 = 0.0810
0.0450 £ 0.0953

CB-IV

0.0150 = 0.3927

3.1994 £ 0.0376
0.4571 £ 0.0759
0.4804 £ 0.0687
0.4321 £ 0.0673
0.1578 = 0.2540

0.0624 £ 0.0584
0.0162 £ 0.0175
0.0110 £ 0.0163
0.0113 £ 0.0219

0.0846 £ 0.0046
0.0194 £ 0.0253
0.0225 £ 0.0180
0.0118 £0.0174
0.0015 £ 0.0247

Requiring
pre-defined 1Vs

Wu A, Kuang K, Li B, et al. Instrumental Variable Regression with Confounder Balancing, ICML 2022




AutolV: Counterfactual Learning with Unobserved
Confounders via Automatically generating Vs

2 @ Jg ®

f AutoI\

I
\

Conditions of IV
* Relevance: P(T|Z) # P(T) <:| Mutual Information
* Exclusion: P(Y|Z,T,C) # P(Y|T, C) Representation Learning

 Unconfounded: Z 1L C . . .
But exclusion might not be satisfied

Yuan J, Wu A, Kuang K, et al. Auto |V: Counterfactual Prediction via Automatic Instrumental
Variable Decomposition[J]. TKDD, 2022.



AutolV: Counterfactual Learning with Unobserved
Confounders via Automatically generating IVs

Function & Data 2SLS(van) 2SLS(poly) 2SLS(NN) DeeplV KernellV DeepGMM

step

linear

poly2d

poly3d

abs

True response function Estimated response function with RandIV

Estimated response function with TruelV Estimated response function with AutoIV

Figure 2: Response function prediction in low-dimensional scenarios.

Yuan J, Wu A, Kuang K, et al. Auto |V: Counterfactual Prediction via Automatic Instrumental
Variable Decomposition[J]. TKDD, 2022.



Challenge 3: Complex Treatments

OStandard Assumptions for Causal Inference:

* Al: Stable Unit Treatment Value (SUTVA): The effect of treatment on a
unit 1s independent of the treatment assignment of other units

P(Yl‘Tl' T]"Xi) — P(YllTl’Xl)

* In complex environments, for example, 1n social network, the
treatment might not satisfy the SUTVA assumption.

* How to precisely estimate the effect of complex treatments?



NetlV: Networked Instrumental Variable for Treatment
Eftect Estimation with Unobserved Confounders

: N() / :
: X : U
® o v |4
,,,ff”’f
— —
[ ® —
’ ' Z T Y
. . : xAV0)
Neighboring : Z
Information
X

Figure 1: Causal diagram of the proposed NetlV framework.
Figure 1: A motivating example to illustrate the setting of NetlV learns representation from neighboring information
heterogeneous interference in networks. to serve as the role of IV Z and confounder proxy V.

A part of neighboring information can serve as the role of IV, called NetIV.

Ziyu Zhao, Kun Kuang, Fei Wu, et.al. NetlV: Networked Instrumental Variable for Treatment
Effect Estimation with Unobserved Confounders, working paper. 36



NetlV: Networked Instrumental Variable for Treatment
Eftect Estimation with Unobserved Confounders

Non-linear IV regression (DeeplV, KernellV et.al)
Stage 1: regressingTonZand X T = g(Z,Xx)
Stage 2: regressingY on Tand X ¥ = f (T, X)

Proposed NetlV regression:

Stage 1: regressing T on {Z,V}and X T = JddZ, vV} X)
Stage 2: regressing ¥ on T and X Y =£f(T,X)

XM
e e
S N )

Stage 2 might bring bias of V if the model 1s mis-specified.

Ziyu Zhao, Kun Kuang, Fei Wu, et.al. NetlV: Instrumental Variable Regression for Treatment
Effect Estimation with Networked Observational Data, working paper. 37



Summary: Causal Inference in Complex Environments

* Challenge 1: High dimensional variables, but NOT all variables are
confounders.

v'DeR-CFR, OFA: confounders and adjustment features selection

* Challenge 2: Unobserved confounders, NOT all confounders are
observed. IV based method 1s a great approach for the problem, but
limited to linear and requires pre-defined IV.

v'CB-1V: from linear-IV regression to Non-linear I'V regression

v’ AutolV: generating a representation to serve as the role of IV

* Challenge 3: Complex Treatments without SUT VA assumption
v'NetlV: a part of neighboring information to serve as the role of IV



IVs in Causal Inference and Machine Learning

Instrumental Variables in Causal Inference and
Machine Learning: A Survey

Anpeng Wu, Kun Kuang, Ruoxuan Xiong, Fei Wu, Senior Member, IEEE

Abstract—Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about
the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at
work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect
both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature
in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to
systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine
learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different
assumptions. Second, we categorize the existing work on 1V methods into three streams according to the focus on the proposed
methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both
the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of
applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we
summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their
applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.

[ Survey structure J

]

)[ 1. Introduction

)

v \ 4 \ 4

" 2. Basic of Instrumental [ . . (4. Two-Stage Least
. 3. Identification

q Variable . Squares

2.1. Definition and
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2.2, Instruments and
Main Challenges

2.3. General Solutions
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.
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4.4, Limitation and
Future Work

v
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5. Control Function ]
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N Instrumental Variables )
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Fig. 2: Outline of the Survey.

Anpeng Wu, Kun Kuang, Ruoxuan Xiong, Fei Wu, Instrumental Variables in Causal
Inference and Machine Learning: A Survey[J]. arXiv preprint arXiv:2212.05778, 2022.
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IVs in Causal Inference and Machine Learning

mliv

from mliv.dataset.demand import gen_data 3
from mliv.utils import CausalDataset

gen_data()

data = CausalDataset('./Data/Demand/0.5_1.0_0.6_10000/1/")

from mliv.inference import Vanilla2sLs
from mliv.inference import Poly2SLS
from mliv.inference import NN2SLS

from mliv.inference import OneSIV

from mliv.inference import KernellV
from mliv.inference import DualIV

from mliv.inference import DFL

from mliv.inference import AGMM

from mliv.inference import DeepGMM
from mliv.inference import DFIV

from mliv.inference import DeepIV # Tensorflow & keras

for mod in [OneSIV,KernellV,DualIV,DFL,AGMM,DeepGMM,DFIV,Vanilla2sLS,Poly2SLS,NN2SLS]:
model = mod()
model.config['num'] = 180
model.config['epochs'] = 18
model.fit(data)

print(mod)
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Thank You!

Kun Kuang
kunkuang@zju.edu.cn
Homepage: https://kunkuang.github.io/
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