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An example of decision making

- Does predictive models guide decision making?
- When should the System change algorithm from A to B?
- |Is the new algorithm B better?

- Say algorithm that provides promotion or discount link to a
different customers
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An example of decision making

- Measure success rate (SR) 3= I

Old Algorithm (A) | New Algorithm (B) g

50/1000 (5%) 54/1000 (5.4%)

New algorithm increases overall success rate, so it is better?

_ Old Algorithm (A) | New Algorithm (B)

10/400 (2.5%) 4/200 (2%)
ISl 40/600 (6.6%)  50/300 (6.2%)
50/1000 (5%) 54/1000 (5.4%)

Which is better?



Decision Making with Causality

- Causal Effect Estimation 1s necessary for decision making!

Will running
an ad-
campaign
Increase
sales?

Causal effect estimation plays an
important role on decision making!




A practical definition

Definition: T causes Y if and only if
changing T leads to a change in Y,
keep everything else constant.

Causal effect is defined as the magnitude by which Y is
changed by a unit change in T.

Two key points: changing T, keeping everything else constant

*Interventionist definition [http://plato.stanford.edu/entries/causation-mani/]



http://plato.stanford.edu/entries/causation-mani/

Treatment Effect Estimation

- Treatment Variable: T =1orT =0
- Potential Outcome: Y(T = 1) and Y(T = 0)
- Individual Treatment Effect (ITE)

ITE(Q)) =Y (T; = 1) — Y;(T; = 0)
- Average Treatment Effect (ATE):
ATE = E[Y(T=1) —Y(T = 0)]

Counterfactual problem: Y(T =1) or Y(T =0)



Randomized Experiments are the “Gold Standard”

- Drawbacks of randomized experiments:
- Cost
- Unethical

Two key points: changing T, keeping everything else constant



Causal Inference with Observational Data

- Definition of ATE: ATE = E[Y(T=1) —-Y(T = 0)]
- |In observational data, we have units with different T:
E[Y(T =1)] or E[Y(T =0)]

- Can we estimate ATE by directly comparing the average
outcome between groups with T=1 and T=07

- NO, because confounders X might not be constant

- Two key points:

- Changing T (T=1 and T=0)
- Keeping everything else (Confounder X) constant



Causal Inference with Observational Data

- Counterfactual problem: Y(T =1) or Y(T =0)
- |In observational data, we have units with different T:
E[Y(T =1)] or E[Y(T =0)]

- Can we estimate ATE by directly comparing the average
outcome between groups with T=1 and T=07

- NO, because confounders X might not be constant

- Two key points:

Balancing Confounders’ Distribution

UUUUUU




Related Work

- Matching Methods
» Exactly Matching, Coarse Matching

- Poor performance in high dimensional settings

 Propensity Score based Methods
- Propensity score e(X) = p(T = 1]X)
- Matching, Weighting, Doubly Robust

- Treat all observed variables as confounders,
and 1gnore the non-confounders

- Mainly designed for binary treatment
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(a) Previous Causal Framework.



Related Work

-Representation Learning based Methods

- Similar representation between treatment groups.

- Accurate prediction on factual/counterfactual outcome
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and R is a model complexity term.

- Confounder differentiation, binary treatment, might 1ignore confounders

Shalit U, Johansson F D, Sontag D. Estimating individual treatment effect: generalization bounds and algorithms. ICML 2017.



New challenges in Big Data era

- Automatically separate confounders

- Not all observed variables are confounders

- Data-Driven Variables Decomposition (D?VD, DeR-CFR)
-Remove unobserved confounding bias

- Not all confounders are observed

- Automatic Instrumental Variable Decomposition (AutolV, GIV)
- Continuous/Complex treatment effect estimation

- Treatment variables are not always binary
- Generative Adversarial De-confounding (GAD, CRNet)



New challenges in Big Data era

-Remove unobserved confounding bias
- Not all confounders are observed
- Automatic Instrumental Variable Decomposition (AutolV, GIV)



Instrumental Variable Regression

,ﬂh

Conditions of IV (instrumental variable)
* Relevance: P(T|Z) # P(T)

* Exclusion: P(Y|Z,T,U) + P(Y|T,U)
* Unconfounded: Z L U
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Stage 1: regressing T on Z T
2SLS: v

Z
Stage 2: regressing Y on T T

fX)=-01-T?-04-T f(X)=005-T>+01-T?-08-T

ENOAY e g " | i patapP(ry) | Assuming the additive
U~N(O1) Vi = Vel — separability of noise U
. " o and

Y= FT) U L | — Limited to linear setting




Non-linear Instrumental Variable Regression

Non-linear IV regression (DeeplV, KernellV et.al) Stage 1 regression brings
Stage 1: regressingTonZ and X T = g(Z,X) confounding bias in stage 2
Stage 2: regressingY on Tand X ¥ = (T, X)

Confounder Balancing + |V Regression




Confounder Balanced Instrumental Variable Regression

CB-1V (Confounder Balanced IV regression):

Stagel (Treatment regression): regressing T on Z and X T = Jd(Z,X)
Confounder balancing: learning a balanced confounder representation ¢(X) such that T L & (X)

Stage 2 (Outcome regression): regressing Y on T and d(X) Y = f (T, b (X))

Wu A, Kuang K, Li B, et al. Instrumental Variable Regression with Confounder Balancing, ICML 2022



Confounder Balanced Instrumental Variable Regression

Table 2: The bias (mean = std) of ATE estimation on real-world data (Data-m z-m x -mg)

Within-Sample

— Meihod THDP-2-6-0 THDP-2-4-2 Twins-3-8-0 Twins-3-3-3
- T DeepIV-LLOG | 28736 £ 0.0577 2.6227 £0.0651 0.0135 £ 0.0215 0.0237 £0.01T1
[V regression DeeplV-GMM | 3.7760 + 0.0316  3.7396 + 0.0402  0.0194 + 0.0047  0.0221 + 0.0041
based methods OneSIV 17249 + 0.3752 17411 +0.3422  0.0083 £+ 0.0191  0.0080 + 0.0167
DFIV 3.5543 + 0.0891 3.6218 £ 0.1038  0.0268 = 0.0005  0.0265 + 0.0003
: DIL 32018 £ 0.0406 3.1001 £ 0.0374 0.0624 = 0.0586 0.0847 £ 0.0049
Confounder balancing DirectRep | 0.0675 = 0.0562  0.4600 + 0.0711 0.0167 £ 0.0171  0.0193 £ 0.0251
based methods CFR 0.0854 £ 0.0579 0.4826 + 0.0642 0.0115 = 0.0167 0.0223 £ 0.0176
DRCFR 0.0553 £ 0.0644  0.4336 & 0.0692  0.0114 = 0.0221  0.0118 & 0.0174

CB-1V

0.0117 = 0.3882

0.1601 £ 0.2499

0.0067 = 0.0271

0.0014 = 0.0249

Out-of-Sample

Wu A, Kuang K, Li B, et al. Instrumental Variable Regression with Confounder Balancing, ICML 2022

Method IHDP-2-6-0 IHDP-2-4-2 Twins-5-8-0 Twins-5-5-3
]_[)eepr-LOG 2.8760 = 0.0553  2.6226 £ 0.0692  0.0140 = 0.0208  0.0238 £ 0.0111
Require a well predefined valid IV
DRCFR 0.0450 = 0.0953  0.4321 £ 0.0673  0.0113 £0.0219 0.0118 £0.0174
CB-IV 0.0150 = 0.3927  0.1578 = 0.2540  0.0065 £ 0.0270  0.0015 = 0.0247




No-predefined |V: Confounded IVs

Confounded IVs:

» Violation on Unconfounded Instrument: Z; correlates to E conditioning on X
» Often happens in real cases and leads to failure of all IV methods.

Our setting:
> {Z;}%, represents candidates for IV
> A subset of {Z;};, are valid, while others are confounded IVs @)

Our Goal:
» Estimating Individual Causal Effect

Haotian Wang, Wenjing Yang, Longqi Yang, Anpeng Wu, Liyang Xu, Jing Ren, Fei Wu, Kun Kuang.
Estimating Individualized Causal Effect with Confounded Instruments. KDD 2022



CVAE-IV: Constructing substitute for unobserved confounders

Conditional Independence Criteria:

« Generating E’' suchthat Y 1 (Z,,7,,
« E' captures the info of confounders from E rather than recovers E
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CVAE-IV: Constructing substitute for confounders

- Conditional Independence Criteria: « Constructing the IVs using Cholesky
approximation:

- Generating E' suchthat Y 1 (Z4,Z7,, ... ... Zm) | E'\ T, X

. E' captures E rather than recovers E . !{sé?irﬁflc Gaussian eliminates the dependence among

 Estimating covariance matrix of {Z;}™, using Cholesky
=1

- Constructing the conditional variational autoencoder model (CVAE) decomposition

_ ! 7 oW Is e Y7 !
- Variational inference: Lchot = 10g|35{(E")| + (Z - p(E")) 2z(E") (Z-p(E)),
 Reconstruction of {Z;}/%,
logp(Y,Z | T,X)
> Ellogpo (1 Z| EVTX)] - Drec (45(E' | Y ZXT) [l p (' LX), £ hor =23 (logL(E')i ) +(Z - u(E")) LENL(E) (Z- u(E))

i=1

- Separating construction of outcome from that of IVs: : :
g g « Constructing the IVs using Cholesky
approximation:

log pg(Y.Z | E', T,X) =log pg(Y | E', T,X) +log pp(Z | E', T, X),
1
Erec = IUEPE(Y | Er’ T’X) : F"Y_YE(EI’ T,X)”%
Y



E————— T
No-predefined |V: Confounded Vs

Scenario Function Dim DirectNN 2SLS-Ploy KernellV DeeplV CEVAE ModelV Ours
Lncar oW 9.001 55.437 8.565 1.977  0.050 3.120  0.028

High  2.069 56.476 0.220 2061 10283 4426  0.858

S, : Abe Low 1.874 44144 6.893 3,426 8.481 1083 0.607
High  L671 11731 7.008 1.675 0.021 2085 0.018

Low 1414 52.872 8.521 1163 6560 2423 0.490

Square —h 1.602 11731 0.088 1.545 7.030 2018 0.701

, Low 1.788 45.087 8.022 1.010 7.621 3314 0.706

&) (22 (%) Linear  — 2.152 56.484 0215 1.788 8.100 2.040  0.601

S, : L Abe Low 1.505 34014 5.864 1.224 7178 2064  0.562
Py High  0.336 12,181 4.030 0.835 8.015 2134 0.301

square OV 1.168 41.108 5.740 1.064 10385 1565  0.125

High 1650 51.120 6.030 1.568 0.015 2031 0.257

, Low 1.650 41.009 6.617 2.023 7.234 3.638  0.485

Lnear  — i 1821 11374 7.656 1720 7.203 1134 0.608

s, : %0 Abe Low 9.005 44.471 1.867 1.148 0780 1916 0.680
> High 1500 41.132 6.330 1.484 7.203 1972 0.504
@ﬁ:@ Square  _O% 1111 41.199 7.826 1.010 8.362 1580 0516

High  2.179 41015 6.407 1.442 8.825 1700  0.041

Haotian Wang, Wenjing Yang, Longqi Yang, Anpeng Wu, Liyang Xu, Jing Ren, Fei Wu, Kun Kuang.
Estimating Individualized Causal Effect with Confounded Instruments. KDD 2022



AutolV: Counterfactual Learning with Unobserved
Confounders via Automatically generating Vs

2 @ Jg ®
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Conditions of IV
* Relevance: P(T|Z) # P(T) <:| Mutual Information
* Exclusion: P(Y|Z,T,C) # P(Y|T, C) Representation Learning

 Unconfounded: Z 1L C . . .
But exclusion might not be satisfied

Yuan J, Wu A, Kuang K, et al. Auto |V: Counterfactual Prediction via Automatic Instrumental
Variable Decomposition[J]. TKDD, 2022.



AutolV: Counterfactual Learning with Unobserved
Confounders via Automatically generating Vs

Function & Data 2SLS(van) 2SLS(poly) 2SLS(NN) DeeplV KernellV DeepGMM

step

linear

poly2d

poly3d

abs

True response function Estimated response function with RandIV

Estimated response function with TruelV Estimated response function with AutoIV

Figure 2: Response function prediction in low-dimensional scenarios.

Yuan J, Wu A, Kuang K, et al. Auto |V: Counterfactual Prediction via Automatic Instrumental
Variable Decomposition[J]. TKDD, 2022.



IV's in Causal Inference and Machine Learning

Instrumental Variables in Causal Inference and

Machine Learning: A Survey
Anpeng Wu, Kun Kuang*, Ruoxuan Xiong, Fei Wu, Senior Member, IEEE

Abstract—Causal inference, which refers to the process of drawing a conclusion about a causal connection based on the conditions of
the occurrence of an effect, is crucial for stable learning and decision making by understanding the mechanism underlying the data.
How to precisely and unbisedly estimate the treatment effect from observational data with unobserved confounders is becoming an
appealing research direction in both causal inference and machine learning communities. Instrumental Variables (IV) plays a critical
role to draw causal inference from the settings where the treatment of interest cannot be randomly assigned and even with unobserved
confounders. In recent years, IV methods have attracted considerable attention in the literature of both causal inference and machine
learning, and various 1V-based methods have sprung up. This paper serves as the first effort to systematically and comprehensively
introduce and discuss the IV methods and their applications in both causal inference and machine learning. Firstly, we provide the
formal definition of IVs and discuss the identification problem of 1V regression methods under different assumptions. Secondly, we
categorize the existing work on |V methods into three groups according to the focus on the proposed method, including two-stage least
squares based |V methods, control function based 1V methods and evaluation on |Vs. For each category, the main advances of both
traditional statistical methods and machine learning enhanced methods are presented and discussed. Then, we introduce a variety of
applications of IV methods in real world scenarios and summarize the available datasets and algorithms. Finally, we summary the
whole literature, discuss the open problems and suggest promising future research directions for IV method and its application. We
also develop a toolkit of IVs methods reviewed in this survey at https:/github.com/causal-machine-learning-lab/mliv.

( Survey structure )

)

)( 1. Introduction )

.

(2. Basic of Instrumental
. Variable

3. Identification

(a4 Two-Stage Least
< Squares

2.1. Definition and
Notations

2.2. Instruments and
Main Challenges

2.3. General Solutions
for Treatment Effect

3.1. Parametric
Identification

3.2. Non-parametric
Identification

3.3. More General
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Assumptions

4.1. 2SLS and Wald
Estimator
4.2. Machine
Learning Estimator
4.3. Limitation and
Future Work

v

v

-
5. Control Function )

( 6. Evaluating
| Instrumental Variables

7. Avallable Datasets
and Codes/Packages

-
-P[ 5.1. Linear-based ]
-)[5.2. Nonlinear-based]
5.3. Limitation and
Future Work
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-b[ 6.3. IV Synthesis

~

J

Anpeng Wu, Kun Kuang, Ruoxuan Xiong, Fei Wu, Instrumental Variables in Causal

Inference and Machine Learning, working paper.

( 8. Applications )
( 9. Conclusion )




IV's in Causal Inference and Machine Learning

mliv

from mliv.dataset.demand import gen_data 3
from mliv.utils import CausalDataset

gen_data()

data = CausalDataset('./Data/Demand/0.5_1.© ©.0_10000/1/")

from mliv.inference import Vanilla2sSLS
from mliv.inference import Poly2SLS
from mliv.inference import NN2SLS

from mliv.inference import OneSIV

from mliv.inference import KernelIV
from mliv.inference import DualIV

from mliv.inference import DFL

from mliv.inference import AGMM

from mliv.inference import DeepGMM
from mliv.inference import DFIV

from mliv.inference import DeepIV # Tensorflow & keras

for mod in [OneSIV,KernelIV,DualIV,DFL,AGMM,DeepGMM,DFIV,Vanilla2sLS,Poly2SLS,NN2SLS]:
model = mod()
model.config['num'] = 160
model.config[ 'epochs'] = 1@
model.fit(data)

print(mod)

Anpeng Wu, Kun Kuang, Ruoxuan Xiong, Fei Wu, Instrumental Variables in Causal
Inference and Machine Learning, working paper.



®m Draw Causation from Big Data

Causal Inference

m Sources of Correlation

Causation  Confounding Sample Selection . i
6&) @ m Causal Representation/Learning

Stable Spurious Correlation: Spurious Correlation: : : Stable & Explainable Fair & Actionable
Actionable T is correlated with Y T is correlated with Y Causality Regularized ;

Explainable ignoring X iven S . .
P gnoring 9 Machine Learning

Thank You!

Kun Kuang
kunkuang@zju.edu.cn
Homepage: https://kunkuang.github.io/
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