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Predictive systems are impacting our life
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• A day in our life with predictive analytics



Even in risk-sensitive areas
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Human’s risk-sensitive sense brings new challenges to today’s AI



Explainability
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Most machine learning models are black-box models



• Correlation is not explainable
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Explainability



• Correlation is not explainable
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Explainability
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Correlation does not imply causation!

Ice Cream 
Sales

Summer

Sunglasses 
Sold

Spurious Correlation !

Explainability



Stability
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Most ML methods are developed under IID hypothesis



Stability
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Yes

Maybe

No



Stability
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• Cancer survival rate prediction

Training Data

Predictive Model

Testing Data

City Hospital

University HospitalHigher income, higher survival rate.

City Hospital

Survival rate is not so correlated with income.



Stability
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Correlation v.s. Causality



Actionability
• Does predictive models guide decision making?
• System changes algorithm from A to B at some point.
• Is the new algorithm B better?
• Say algorithm that provides promotion or discount link to a 
different customers
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Actionability
• Measure success rate (SR)
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Old Algorithm (A) New Algorithm (B) 

50/1000 (5%) 54/1000 (5.4%) 

New algorithm increases overall success rate, so it is better?

Old Algorithm (A) New Algorithm (B)  
Low-income Users 10/400 (2.5%) 4/200 (2%) 
High-income Users 40/600 (6.6%) 50/800 (6.2%) 
Overall 50/1000 (5%) 54/1000 (5.4%) 

Which is better?



Actionability
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Accepted

Income

Financial 
product offerAcceptedFinancial 

product offer

Higher success rate due to 
algorithm

Higher success rate due to 
confounding bias

Decision making is a counterfactual problem, not a predictive problem!



Fairness
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The source of these problems: Correlation
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X

T Y

X T Y

Correlation Framework

T�skin color
X�income
Y�crime rate

income—crime rate: Strong correlation
skin color—crime rate: Strong correlation

income—crime rate: Strong causation
skin color—crime rate: Weak causation

Causal Framework



• Three sources of correlation:
• Causation

• Causal mechanism
• Stable and Robust

• Confounding
• Ignoring X
• Spurious Correlation

• Sample Selection
• Conditional on S
• Spurious Correlation

Correlation V.S. Causation
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T Y
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Income

Financial 
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Sample 
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• Three sources of correlation:
• Causation

• Causal mechanism
• Stable and Robust

• Confounding
• Ignoring X
• Spurious Correlation

• Sample Selection
• Conditional on S
• Spurious Correlation

Correlation V.S. Causation
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T Y

T Y

X

T Y

S

Accepted

Income

Financial 
product offer

DogGrass

Sample 
Selection

Ice Cream 
SalesSummer

Can we recover causation from 

correlation?



Why should we care about causality?

•Recover causation for interpretability
•Help to guide decision making
•Make stable and robust prediction in the future
•Prevent algorithmic bias
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OUTLINE
PART I. Introduction to Causal Inference

PART II. Methods for Causal Inference

PART III. Causally Regularized Machine Learning

PART IV. Benchmark and Open Datasets

PART V. Conclusion and Discussion
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Cause and Effect
• Cause: The REASON why something happened
• Effect: The RESULT of what happened

• Questions of cause and effect:
• Medicine: drug trials, effect of a drug
• Social science: effect of a policy
• Marketing: effect of a marketing strategy
• …

• What is causality?

21



What is causality?
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What is causality?
• A big scholarly debate, from Aristotle to Russell
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The Three Layer Causal Hierarchy
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Level Typical Activity Typical Question Examples
1. Association

! " #)
Seeing What is?

How would seeing %
change my belief in 
&?

What does a symptom tell me about 
a disease?
What does a survey tell us about the 
election results?

2. Intervention
! " '( # , *)

Doing, 
Intervening

What if?
What if I do %?

What if I take aspirin, will my 
headache be cured?
What if we ban cigarettes?

3. Counterfactuals
! "+ #,, ", )

Imagining, 
Retrospection

Why?
Was it % that caused 
&?
What if I had acted 
differently?

Was it the aspirin that stopped my 
headache?
Would Kennedy be alive had Oswald 
not shot him?
What I had not been smoking the 
past 2 years?

Pearl J. Theoretical impediments to machine learning with seven sparks from the causal revolution[J]. arXiv preprint arXiv:1801.04016, 2018.

Observational Questions

Action Questions

Counterfactuals Questions



A practical definition
Definition: T causes Y if and only if 

changing T leads to a change in Y,
keep everything else constant.

Causal effect is defined as the magnitude by which Y is 
changed by a unit change in T.

Called the “interventionist” interpretation of causality.
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http://plato.stanford.edu/entries/causation-mani/

http://plato.stanford.edu/entries/causation-mani/


Causal Effect Estimation
• Treatment Variable: ! = 1 or ! = 0
• Potential Outcome: %(! = 1) and %(! = 0)
• Average Causal Effect of Treatment (ATE):

• Counterfactual Problem:
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(!) = )[% ! = 1 − % ! = 0 ]

% ! = 1 or % ! = 0



Counterfactual Problem
• Two key points for causal effect 
estimation
• Changing T
• Keeping everything else constant

• For each person, observe only one: 
either !"#$or !"#%

• For different group (T=1 and T=0), 
something else are not constant
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Person T &'#( &'#)
P1 1 0.4 ?
P2 0 ? 0.6
P3 1 0.3 ?
P4 0 ? 0.1
P5 1 0.5 ?
P6 0 ? 0.5
P7 0 ? 0.1



Potential Outcome Framework
• Confounders X: everything else

• Why keep everything else constant:
• Confounders X influences both T and Y
• Y’s change could be induced by change 
of T or since X changed both T and Y?

• In different group, keep confounders 
the same!
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Ideal Solution: Counterfactual World
• Reason about a world that does not exist
• Everything is the same on real and counterfactual worlds, 
but the treatment

29

! " = 1 ! " = 0



Randomized Experiments are the “Gold Standard”

• Drawbacks of randomized experiments:
• Cost
• Unethical

30



Randomized Experiments are the “Gold Standard”

• Drawbacks of randomized experiments:
• Cost
• Unethical

31

What can we do when an experiment is 

not possible?

Observational Studies!



Recap: Causal Effect and Potential Outcome
• Two key points for causal effect estimation

• Changing T
• Keeping everything else (X) constant

• Counterfactual Problem

• Ideal Solution: Counterfactual World
• “Gold Standard”: Randomized Experiments
• We will discuss other solutions in Section 2.
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! " = 1 or ! " = 0



OUTLINE
PART I. Introduction to Causal Inference

PART II. Methods for Causal Inference

PART III. Causally Regularized Machine Learning

PART IV. Benchmark and Open Datasets

PART V. Conclusion and Discussion
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Causal Inference with Observational Data
• Average Treatment Effect (ATE) represents the mean 
(average) difference between the potential outcome of 
units under treated (T=1) and control (T=0) status.

• Treated (T=1): taking a particular medication
• Control (T=0): not taking any medications
• ATE: the causal effect of the particular medication
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Causal Inference with Observational Data
• Counterfactual Problem:

• Can we estimate ATE by directly comparing the average 
outcome between treated and control groups?
• Yes with randomized experiments (X are the same)
• No with observational data (X might be different)

• Two key points:
• Changing T (T=1 and T=0)
• Keeping everything else (Confounder X) constant

35

! " = 1 or ! " = 0



Causal Inference with Observational Data
• Counterfactual Problem:

• Can we estimate ATE by directly comparing the average 
outcome between treated and control groups?
• Yes with randomized experiments (X are the same)
• No with observational data (X might be different)

• Two key points:
• Changing T (T=1 and T=0)
• Keeping everything else (Confounder X) constant
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Balancing Confounders’ Distribution



Methods for Causal Inference
• Matching
• Propensity Score Based Methods

• Propensity Score Matching
• Inverse of Propensity Weighting (IPW)
• Doubly Robust
• Data-Driven Variable Decomposition (D2VD)

• Directly Confounder Balancing
• Entropy Balancing
• Approximate Residual Balancing
• Differentiated Confounder Balancing (DCB)

37



Assumptions of Causal Inference
• A1: Stable Unit Treatment Value (SUTV): The effect of treatment on 
a unit is independent of the treatment assignment of other units

! "# $#, $&, '# = ! "# $#, '#
• A2: Unconfounderness: The distribution of treatment is independent 
of potential outcome when given the observed variables

$ ⊥ " 0 , " 1 | '
No unmeasured confounders

• A3: Overlap: Each unit has nonzero probability to receive either 
treatment status when given the observed variables

0 < ! $ = 1 ' = . < 1
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Methods for Causal Inference
• Matching
• Propensity Score Based Methods

• Propensity Score Matching
• Inverse of Propensity Weighting (IPW)
• Doubly Robust
• Data-Driven Variable Decomposition (D2VD)

• Directly Confounder Balancing
• Entropy Balancing
• Approximate Residual Balancing
• Differentiated Confounder Balancing
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Matching

40

! = 0 ! = 1



Matching

41



Matching
• Identify pairs of treated (T=1) and control (T=0) 
units whose confounders X are similar or even 
identical to each other

• Paired units provide the everything else 
(Confounders) approximate constant

• Average the difference in outcomes with in pairs 
to calculate the average causal effect

• Smaller !: less bias, but higher variance

42
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Matching
• Exactly Matching:

• Use this in low-dimensional settings

• But in high-dimensional settings, there 
will be few exact matches
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Methods for Causal Inference
• Matching
• Propensity Score Based Methods

• Propensity Score Matching
• Inverse of Propensity Weighting (IPW)
• Doubly Robust
• Data-Driven Variable Decomposition (D2VD)

• Directly Confounder Balancing
• Entropy Balancing
• Approximate Residual Balancing
• Differentiated Confounder Balancing
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Propensity Score Based Methods
• Propensity score !(#) is the probability of a unit to be treated

• Then, Rubin shows that the propensity score is sufficient to 
control or summarized the information of confounders

• Propensity score are rarely observed, need to be estimated
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! # = &(' = 1|#)
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Propensity Score Matching
• Estimating propensity score:

• Supervised learning: predicting a known 
label T based on observed covariates X.

• Conventionally, use logistic regression

• Matching pairs by distance between 
propensity score:

• High dimensional challenge:
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transferred from matching to PS estimation



Methods for Causal Inference
• Matching
• Propensity Score Based Methods

• Propensity Score Matching
• Inverse of Propensity Weighting (IPW)
• Doubly Robust
• Data-Driven Variable Decomposition (D2VD)

• Directly Confounder Balancing
• Entropy Balancing
• Approximate Residual Balancing
• Differentiated Confounder Balancing
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Inverse of Propensity Weighting (IPW)
• Why weighting with inverse of propensity score is helpful?

• Propensity score induces the distribution bias on confounders X
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Unit !(#) % − !(#) #units #units
(T=1)

#units
(T=0)

A 0.7 0.3 10 7 3
B 0.6 0.4 50 30 20
C 0.2 0.8 40 8 32

' ( = *(+ = 1|()

Reweighting by inverse of propensity score:

Unit #units
(T=1)

#units
(T=0)

A
B
C

./ =
+/
'/
+ 1 − +/1 − '/

Confounders 
are the same!

10 10
50 50
40 40

Distribution Bias



Inverse of Propensity Weighting (IPW)
• Estimating ATE by IPW [1]:

• Interpretation: IPW creates a pseudo-population where the 
confounders are the same between treated and control groups.

• Why does this work? Consider 
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!" =
$"
%"
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Inverse of Propensity Weighting (IPW)
• If:                     , the true propensity score

• Similarly:
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! = # ∗ !% + % − # ∗ !(

# ⊥ !%, !( | ,

- , = .(#|,)
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Inverse of Propensity Weighting (IPW)
• If:                     , the true propensity score, the IPW 
estimator is unbiased

• Wildly used in many applications

• But requires the propensity score model is correct
• High variance when ! is close to 0 or 1
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Methods for Causal Inference
• Matching
• Propensity Score Based Methods

• Propensity Score Matching
• Inverse of Propensity Weighting (IPW)
• Doubly Robust
• Data-Driven Variable Decomposition (D2VD)

• Directly Confounder Balancing
• Entropy Balancing
• Approximate Residual Balancing
• Differentiated Confounder Balancing
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Doubly Robust
• Recap:
• Simple outcome regression:

• Unbiased if the regression models are correct
• IPW estimator:

• Unbiased if the propensity score model is correct

• Doubly Robust [2]: combine both approaches
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Doubly Robust
• Estimating ATE with Doubly Robust estimator:

• Unbiased if either propensity score or regression model is correct
• This property is referred to as double robustness
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Doubly Robust
• Theoretical Proof:
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Doubly Robust
• Estimating ATE with Doubly Robust estimator:

• Unbiased if propensity score or regression model is correct
• This property is referred to as double robustness

• But may be very biased if both models are incorrect
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Propensity Score based Methods

•Recap:
• Propensity Score Matching
• Inverse of Propensity Weighting
• Doubly Robust

•Need to estimate propensity score
• Treat all observed variables as confounders
• In Big Data Era, High dimensional data
• But, not all variables are confounders

57



Propensity Score based Methods

•Recap:
• Propensity Score Matching
• Inverse of Propensity Weighting
• Doubly Robust

•Need to estimate propensity score
• Treat all observed variables as confounders
• In Big Data Era, High dimensional data
• But, not all variables are confounders

58

How to automatically separate 

the confounders?



Methods for Causal Inference
• Matching
• Propensity Score Based Methods

• Propensity Score Matching
• Inverse of Propensity Weighting (IPW)
• Doubly Robust
• Data-Driven Variable Decomposition (D2VD)

• Directly Confounder Balancing
• Entropy Balancing
• Approximate Residual Balancing
• Differentiated Confounder Balancing (DCB)
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Inverse of Propensity Weighting (IPW)
• Treat all observed variables U as 
confounders X

• Propensity Score Estimation:

• Adjusted Outcome:

• IPW ATE Estimator:



Data-Driven Variable Decomposition (D2VD)
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• Separateness Assumption:
• All observed variables U can be decomposed into 

three sets: Confounders X, Adjustment Variables Z, 
and Irrelevant variables I (Omitted).

• Propensity Score Estimation:

• Adjusted Outcome:

• Our D2VD ATE Estimator:



Data-Driven Variable Decomposition (D2VD)
• Confounders Separation & ATE Estimation.
• With our D2VD estimator:

• By minimizing following objective function:

• We can estimate the ATE as:
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Data-Driven Variable Decomposition (D2VD)

63

• Adjustment variables: 
• Confounders:
• Treatment Effect:

!, #, $

Where

Where

Replace X, Z with U



Data-Driven Variable Decomposition (D2VD)

64

Bias Analysis: 
Our D2VD algorithm is unbiased to estimate causal effect

Variance Analysis: 
The asymptotic variance of Our D2VD algorithm  is smaller



Data-Driven Variable Decomposition (D2VD)

•OUR: Data-Driven Variable Decomposition (D2VD)

•Baselines
•Directly Estimator (dir): ignores confounding bias
•IPW Estimator (IPW): treats all variables as confounders
•Doubly Robust Estimator (DR): IPW+regression
•Non-Separation Estimator (D2VD-): no variables separation
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Data-Driven Variable Decomposition (D2VD)
• Dataset generation:

• Sample size m={1000,5000}
• Dimension of observed variables n={50,100,200}
• Observed variables:

• Treatment: logistic and misspecified

• Outcome:

66



Data-Driven Variable Decomposition (D2VD)

• Dataset generation:
• Sample size m={1000,5000}
• Dimension of observed variables n={50,100,200}

• Observed variables:

• Treatment: logistic and misspecified

• Outcome:

67

The true treatment effect in synthetic data is 1.



Data-Driven Variable Decomposition (D2VD)
• Experimental Results on Synthetic Data:
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Data-Driven Variable Decomposition (D2VD)

• Experimental Results on Synthetic Data:

69

1. The direct estimator is failed under all settings.
2. IPW and DR estimators are good when T=Tlogit, but poor when T=Tmissp.
3. D2VD(-) has no variables separation, get similar results with DR estimator.
4. D2VD can improve accuracy and reduce variance for ATE estimation.



Data-Driven Variable Decomposition (D2VD)
• Experimental Results on Synthetic Data:

70

TPR: true positive rate
TNR: true negative rate

Our D2VD algorithm 
can precisely separate 
the confounders and 
adjustment variables.



Experiments on Real World Data
• Dataset Description:

• Online advertising campaign (LONGCHAMP)
• Users Feedback: 14,891 LIKE; 93,108 DISLIKE
• 56 Features for each user

• Age, gender, #friends, device, user setting on WeChat

• Experimental Setting:
• Outcome Y: users feedback
• Treatment T: one feature
• Observed Variables U: other features

71

2015

Y = 1, if LIKE
Y = 0, if DISLIKE



Experiments Results
• ATE Estimation.

72

1. Our D2VD estimator evaluate the ATE more accuracy.
2. Our D2VD estimator can reduce the variance of estimated ATE.
3. Younger Ladies are with higher probability to like the LONGCHAMP ads.



Experiments Results
• Variables Decomposition.

73

1. The confounders are many other ways for adding friends on WeChat.
2. The adjustment variables have significant effect on outcome.
3. Our D2VD algorithm can precisely separate the confounders and 
adjustment variables.



Summary: Propensity Score based Methods
• Propensity Score Matching (PSM):

• Units matching by their propensity score

• Inverse of Propensity Weighting (IPW):
• Units reweighted by inverse of propensity score

• Doubly Robust (DR):
• Combing IPW and regression

• Data-Driven Variable Decomposition (D2VD):
• Automatically separate the confounders and adjustment variables
• Confounder: estimate propensity score for IPW
• Adjustment variables: regression on outcome for reducing variance
• Improving accuracy and reducing variance on treatment effect estimation

• But, these methods need propensity score model is correct

74

Treat all observed
variables as confounder,
ignoring non-confounders

! " = $(& = 1|")



Methods for Causal Inference
• Matching
• Propensity Score Based Methods

• Propensity Score Matching
• Inverse of Propensity Weighting (IPW)
• Doubly Robust
• Data-Driven Variable Decomposition (D2VD)

• Directly Confounder Balancing
• Entropy Balancing
• Approximate Residual Balancing
• Differentiated Confounder Balancing (DCB)
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Causal Inference with Observational Data
• Average Treatment Effect (ATE):

• Average Treatment effect on the Treated (ATT):

• Two key points:
• Changing T (T=1 and T=0)
• Keeping everything else (Confounder X) constant

76
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Causal Inference with Observational Data
• Average Treatment Effect (ATE):

• Average Treatment effect on the Treated (ATT):

• Two key points:
• Changing T (T=1 and T=0)
• Keeping everything else (Confounder X) constant

77
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Balancing Confounders’ Distribution



Directly Confounder Balancing
• Recap: Propensity score based methods

• Sample reweighting for confounder balancing
• But, need propensity score model is correct
• Weights would be very large if propensity score is close to 0 or 1

• Can we directly learn sample weight that can balance 
confounders’ distribution between treated and control?

78

!" =
$"
%"
+ 1 − $"1 − %"

Yes!



Directly Confounder Balancing
• Motivation: The collection of all the moments of variables 
uniquely determine their distributions.

• Methods: Learning sample weights by directly balancing 
confounders’ moments as follows

79

The first moments of X 
on the Control Group

The first moments of X 
on the Treated Group

With moments, the sample weights can be learned 
without any model specification.



Directly Confounder Balancing
• Motivation: The collection of all the moments of variables 
uniquely determine their distributions.

• Methods: Learning sample weights by directly balancing 
confounders’ moments as follows

• Estimating ATT by: 

80

The first moments of X 
on the Control Group

The first moments of X 
on the Treated Group



Entropy Balancing

• Maximum the entropy of sample weights W
• Directly confounder balancing by sample weights W
• But, treat all variables as confounders and balance 
them equally

81



Approximate Residual Balancing
• 1. compute approximate balancing weights W as

• 2. Fit !" in the linear model using a lasso or elastic net,

• 3. Estimate the ATT as

• Double Robustness:  Exact confounder balancing or regression is correct.
• But, treats all variables as confounders and balance them equally

82



Directly Confounder Balancing
• Recap:

• Entropy Balancing, Approximate Residual Balancing etc.
• Moments uniquely determine variables’ distribution
• Learning sample weights by balancing confounders’ moments

• But, treat all variables as confounders, and balance them equally
• Different confounders make different confounding bias

83

The first moments of X 
on the Control Group

The first moments of X 
on the Treated Group



Directly Confounder Balancing
• Recap:

• Entropy Balancing, Approximate Residual Balancing etc.
• Moments uniquely determine variables’ distribution
• Learning sample weights by balancing confounders’ moments

• But, treat all variables as confounders, and balance them equally
• Different confounders make different confounding bias

84

The first moments of X 
on the Control Group

The first moments of X 
on the Treated Group

How to differentiated confounders and 

their bias?



Methods for Causal Inference
• Matching
• Propensity Score Based Methods

• Propensity Score Matching
• Inverse of Propensity Weighting (IPW)
• Doubly Robust
• Data-Driven Variable Decomposition (D2VD)

• Directly Confounder Balancing
• Entropy Balancing
• Approximate Residual Balancing
• Differentiated Confounder Balancing (DCB)
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Differentiated Confounder Balancing

•Ideas: simultaneously learn confounder weights ! and 
sample weighs ".

•Confounder weights determine which variable is 
confounder and its contribution on confounding bias.

•Sample weights are designed for confounder balancing.

86

How to learn the these weights?



Confounder Weights Learning
• General relationship among !, ", and #:

87

Confounding biasConfounder weights

If $% = 0, then (% is not confounder, no need to balance.
Different confounders have different confounding weights.



Confounder Weights Learning
Propositions: 

• In observational studies, not all observed variables are confounders, and 
different confounders make unequal confounding bias on ATT with their 
own weights.

• The confounder weights can be learned by regressing potential outcome 
! 0 on augmented variables #.
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Sample Weights Learning

89

Confounders’ moments 
on the Control Group

Confounders’ moments 
on the Treated Group

With moments, the sample weights can be learned 
without any model specification.

• Any variable’s distribution can be uniquely determined by the collection 
of all its moments.

• Learning the sample weights ! by directly confounder balancing with 
confounders’ moments.



Differentiated Confounder Balancing
• Objective Function

90

The ENT[3] and ARB[4] algorithms are special case of our DCB 
algorithm by setting the confounder weights as unit vector.

Our DCB algorithm is more generalize for 
treatment effect estimation.



Differentiated Confounder Balancing
• Algorithm

• Training Complexity: ! "#
• ": sample size,    #: dimensions of variables

91

In each iteration, we first 
update $ by fixing %, and 
then update % by fixing $



Experiments

•Experimental Tasks:
ØRobustness Test (high-dimensional and noisy)
ØAccuracy Test (real world dataset)
ØPredictive Power Test (real ad application)
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Experiments
• Baselines:
• Directly Estimator: comparing average outcome between treated and control units.
• IPW Estimator [1]: reweighting via inverse of propensity score
• Doubly Robust Estimator [2]: IPW + regression method
• Entropy Balancing Estimator [3]: directly confounder balancing with entropy loss
• Approximate Residual Balancing [4]: confounder balancing + regression

• Evaluation Metric:

93



Experiments - Robustness Test
• Dataset

ØSample size: ! = {2000, 5000}
ØVariables’ dimensions: ) = {50,100}
ØObserved Variables: 

ØTreatment: from logistic function +,-./0 and misspecified function +1/223

• Confounding rate 45: the ratio of confounders to all observed variables.
• Confounding strength 65: the bias strength of confounders

ØOutcome: from linear function 7,/89:; and nonlinear function 78-8,/8
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Experiments - Robustness Test

• Directly estimator fails in all settings, since it ignores confounding bias.
• IPW and DR estimators make huge error when facing high dimensional 

variables or the model specifications are incorrect.
• ENT and ARB estimators have poor performance since they balance all 

variables equally.
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More results see our paper!



Experiments - Robustness Test

96

Our DCB estimator achieves significant improvements over 
the baselines in different settings.

More results see our paper!

Our DCB estimator is very robust!



Experiments - Robustness Test

97

The MAE of our DCB estimator is consistent 
stable and small.

• Sample Size
• Dimension of variables
• Confounding rate
• Confounding strength



Experiments - Robustness Test

98

Our DCB algorithm is very robust for 
treatment effect estimation.



Experiments - Accuracy Test
• LaLonde Dataset [5]: Would the job training program increase people’s earnings 

in the year of 1978?
• Randomized experiments: provide ground truth of treatment effect
• Observational studies: check the performance of all estimators

• Experimental Setting: 
• V-RAW: variables set of 10 raw observed variables, including employment, 

education, age ethnicity and married status.
• V-INTERACTION: variables set of raw variables, their pairwise one way 

interaction and their squared terms.
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Experiments - Accuracy Test

100

Results of ATT estimation

Our DCB estimator is more accurate than the baselines.

Our DCB estimator achieve a better confounder 
balancing under V-INTERACTION setting.



Experiments - Predictive Power
• Dataset Description:

• Online advertising campaign (LONGCHAMP)
• Users Feedback: 14,891 LIKE; 93,108 DISLIKE
• 56 Features for each user

• Age, gender, #friends, device, user setting on WeChat

• Experimental Setting:
• Outcome Y: users feedback
• Treatment T: one feature
• Observed Variables X: other features

102

2015

Y = 1, if LIKE
Y = 0, if DISLIKE

Select the top k features with high causal effect for prediction



Experiments - Predictive Power

• Two correlation-based feature 
selection baselines:
• MRel [6]: maximum relevance
• mRMR [7]: Maximum relevance 

and minimum redundancy.

103

ØOur DCB estimator achieves the best prediction accuracy.
ØCorrelation based methods perform worse than causal methods.



Summary: Directly Confounder Balancing
• Motivation: Moments can uniquely determine distribution
• Entropy Balancing

• Confounder balancing with maximizing entropy of sample weights
• Approximate Residual Balancing

• Combine confounder balancing and regression for doubly robust
• Treat all variables as confounders, and balance them equally
• But different confounders make different bias
• Differentiated Confounder Balancing (DCB)

• Theoretical proof on the necessary of differentiation on confounders
• Improving the accuracy and robust on treatment effect estimation
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Summary: Methods for Causal Inference

• Matching
• Propensity Score Based Methods

• Propensity Score Matching

• Inverse of Propensity Weighting (IPW)
• Doubly Robust

• Data-Driven Variable Decomposition (D2VD)

• Directly Confounder Balancing
• Entropy Balancing
• Approximate Residual Balancing

• Differentiated Confounder Balancing (DCB)
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Not all observed variables 
are confounders

Different confounders 
make different bias

Treat all observed 
variables as confounder

Balance all confounder 
equally

Limited to low-dimensional settings
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PART III. Causally Regularized Machine Learning

PART IV. Benchmark and Open Datasets

PART V. Conclusion and Discussion
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Causal Inference for Stable Prediction
• CAN and CANNOT of predictive models
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Yes

Maybe

No



Why they fail?
• The fault of Data

• IID hypothesis (violated often)
• Sample selection bias result in distribution shift
• More serious in small-sample learning
• We CANNOT control the generation of testing data
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Training Distribution

Model

Test Distribution



Why they fail?
• The fault of Model

• Correlation based model
• Three sources of correlation: Causation, Confounding, and Selection Bias

(Invariant Causation and Spurious Correlation)
• Idea: Causally Regularized Stable Learning
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Training Distribution

Model

Test Distribution



• Stable Prediction
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Stable Prediction

ModelDistribution 1

Distribution 1

Distribution 2

Distribution 3

Distribution n

…

Accuracy 1

Accuracy 2

Accuracy 3

Accuracy n

…

I.I.D. Learning

Transfer Learning

VAR (Acc) Stable 
Prediction

Training

Testing

Stable Prediction across Unknown Testing Data



• Prediction / Classification
• !: vector of features; " = 0,1
• Environment: joint distribution of X and Y, denoted as ' !"

• Suppose ! = {), *}, and " = , ) + .
• ): set of stable (causal) features
• *: set of non-causal features
• '("|)) is stable, but '("|*) is not stable

• Why would a predictive model not be stable?
• Dependence issue, " is not independent with * (Spurious Correlation)
• Environment shift issue, ' !" 23456567 ≠ ' !" 29:2567

Why would a predictive model not be stable?
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Why would a predictive model not be stable?
• Dependence issue

• ! = {$, &}, and ( = ) $ + +
• Diagram (b) & (c):

• ( is not independent with &
• Diagram (a): ( ⊥ &

• Selection bias, leading to ( is not independent with &
• Some - ⊆ / would be learned as important predictors

• Environment shift issue
• 0 !( = 0 ( ! 0 ! = 0 ( $ 0(!) (assume P(Y|S) is stable)
• Selection bias à 0 ! 34567678 ≠ 0 ! 3:;3678
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( is not independent with &
<=>> /?>@ABABC, D?>@ABABC
≠ <=>>(/?EF?ABC, D?EF?ABC)



Related Work – address env. shift problem
•Covariate shift
•Kernel mean matching [1], maximum entropy [2], robust bias-aware [3]
• Importance weights: mimic the distribution of testing data to training data

•These methods require prior knowledge of testing data
•These methods ignore the dependence issue
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Related Work
• Invariant Component Learning
• Invariant prediction [4], domain generalization [5]
•Assume !(#|%) is stable across environments
• Finding a subset/representation of features %′, such that !(#|%′) is

invariant across all observed multiple environments

• Their performance depends on the diversity of their training data
• They could still have dependence issue on (′, if !(#|(′) is also invariant

across observed environments
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Challenges
•Dependence challenge
• ! is not independent with "
• Some # ⊆ % would be learned as important predictors

•Environment shift challenge
• The joint distribution &((!) is different across environments.
• *+,, %-,./0/01, 3-,./0/01 ≠ *+,,(%-56-/01, 3-56-/01)
• Can be addressed if " ⊥ ! on training environment

•Unknown testing environments challenge
•No prior knowledge on future testing data.
• Can be addressed if " ⊥ ! on training environment
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Challenges
•Dependence challenge
• ! is not independent with "
• Some # ⊆ % would be learned as important predictors

•Environment shift challenge
• The joint distribution &((!) is different across environments.
• *+,, %-,./0/01, 3-,./0/01 ≠ *+,,(%-56-/01, 3-56-/01)
• Can be addressed if " ⊥ ! on training environment

•Unknown testing environments challenge
•No prior knowledge on future testing data.
• Can be addressed if " ⊥ ! on training environment
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Key Challenge: How to make % ⊥ 3



•Outcome generating mechanism
•! = # $ + &, ' = {$, *}

•Difference between S and V
•$ has causal effect on !, 
• but * has no causal effect on !.

•Our idea: Recover causation between ' and !, such that
* ⊥ !, and only $ is correlated with !
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Linking to Causality



Towards stable prediction
• Discard spurious correlation and embrace causality.
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X

T Y

Typical Causal Framework

X T Y

Typical Correlation Framework
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Causal Inference by Exactly Matching
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X

T Y

Typical Causal Framework

���
��� �� ��� ��
�	��

Given a feature T

Find out the sample pairs that one contains
T while the other don’t, but they are similar

in all other features.

Calculate the difference of Y distribution in
treated and controlled groups. (correlation

between T and Y)

The requirement is too strong and we can hardly find satisfied groups 
of samples.



Causal Inference by Confounder Balancing
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X

T Y

Typical Causal Framework

Too many parameters. For N samples and K features, we need to 
learn K*N parameters. Not learning-friendly.

���
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�	��

Given a feature T

Assign different weights to samples so that
the samples with T and the samples without

T have similar distributions in X

Calculate the difference of Y distribution in
treated and controlled groups. (correlation

between T and Y)



Global Balancing: bridging causality and prediction
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X

T Y

Typical Causal Framework

Reduce the parameter number from K*N to N.

���
��� �� ��� ��
�	��

Given ANY feature T

Assign global sample weights to samples so
that the samples with T and the samples
without T have similar distributions in X

Calculate the difference of Y distribution in
treated and controlled groups. (correlation

between T and Y)



Causal Regularizer and Theoretical Guarantee
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• Causal Regularizer (Approximate global balancing)
• Making any two variables in X become independent by learning a global 

sample weights !:

à

0



Causally Regularized Logistic Regression

125

• Global Balancing Regression (GBR) Algorithm

• Causality Coefficients: explainable and stable
• Linear model

Sample re-weighted
logistic loss Causal Regularizer Causality

Coefficients



Challenges from the Wild Big Data Era
• High dimensional predictors

• Hundred and thousand variables
• Dimension reduction

• Non-linear predictions
• Non-linear relationship between 
predictors and outcome variable

• Non-linear function

• Deep Auto-Encoder 
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From Shallow to Deep - DGBR
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• Deep Global Balancing Regression Algorithm



Theoretical Analysis
•The components of X could be mutually independent in the
reweighted data.

• Our GBR algorithm can make ! ⊥ #
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1 

2 



Theoretical Analysis
•The components of X could be mutually independent in the
reweighted data.

• Our GBR algorithm can make ! ⊥ #
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1 

2 

Propositions 1&2 suggest that our GBR algorithm can make
a stable prediction across unknown environments



Theoretical Analysis
•Our DGBR algorithm can preserve all properties of the GBR
algorithm while making the overlap property easier to satisfy
and reducing the variance of balancing weights.

•Our DGBR algorithm can enable more accurate estimation of
P(Y|S).

•More details could be found in our paper.
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Experiments

•Baselines:
•Logistic Regression (LR)
•Deep Logistic Regression (DLR): LR + Deep Auto Encoder

•Evaluation Metric:
•RMSE, Average_Error, Stability_Error
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Experiments on Synthetic Data

132

• Data generating
•! = {$, &} is binary.
•( = ℎ(+ $ + -) is also binary.

• Environments generating
• Changing /01 by sample selection with the bias rate: 2
• Varying 3(4|6):

• if & = (, then 7 89:9;<9= = >, otherwise 7 89:9;<9= = 1 − r.
• Different 2 means different environments
• Note that: 2 > C. E implies FG22(6, 4) is positive



Experiments on Synthetic Data
•Setting ! ⊥ #
• Trained on one environment $ = &. (), and

tested on all environments $ = {&. +, … , &. .}
•Different r means different environment
• $ > &. ) implies 12$$(4, 5) is positive
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• Traditional LR and DLR failed
•GBR (dark blue) is more stable than LR 
•DGBR (Red) is more stable than DLR
•DGBR is more stable and precise than GBR



Experiments on Synthetic Data
•More settings: varying n, p, and r
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Vary sample size n



Experiments on Synthetic Data
•More settings: varying n, p, and r
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Vary variables’ dimension p



Experiments on Synthetic Data
•More settings: varying n, p, and r

136

Vary bias rate r on training environment



Experiments on Synthetic Data
•More settings: setting SàV (S is the cause of V)      

setting VàS (V is the cause of S)
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The RMSE of DGBR is consistently stable and small across
environments under all settings.



Experiments on online advertising
• Dataset Description:

• Online advertising campaign (LONGCHAMP)
• Users Feedback: 14,891 LIKE; 93,108 DISLIKE
• 56 Features for each user

• Age, gender, #friends, device, user setting on WeChat

• Experimental Setting:
• Outcome Y: users feedback
• Setting: generating environment with users’ age.
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2015

Y = 1, if LIKE
Y = 0, if DISLIKE



Experiments on online advertising
•Environments generating:

• Separate the whole dataset into 4 environments by users’ age, including
!"# ∈ [20,30), !"# ∈ [30,40), !"# ∈ [40,50), and !"# ∈ [50,100).
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Experiments on image classification
• ��:�)�	 ���� ���
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Experiments on image classification



Experiments on image classification
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Summary: Causally Regularized Stable Learning
• Today’s Machine Learning: 

• Correlation Based
• Correlation: causation, confounding, selection bias (Spurious Correlation)
• To know the hows but not the whys
• �����������

• Causally Regularized Stable Learning
• Causal regularizer
• Recover causation from correlation
• Causation based stable learning
• Improving interpretability and stability on prediction
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User Interactive systems
• Examples:
−Search engines
−Ads-placement systems
−Videos recommender systems

• Policy: recommended algorithm
• Logs of user behavior for policy 
evaluation
−Evaluate the system performance
−Improve the policy in the system
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Interactive System Schema
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User

Algorithm
Policy !"

Contex
t X

Action # = !"(&)

Utility: ( !"
Average feedback

Feedback )(&, #)



Search engine
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• Context !:
• Query

• Action " = $%(!):
• Top-k ranking results

• Feedback ((!, "):
• Click or not



Ads-placement systems
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•Context !:
•Users’ features

•Action " = $%(!):
•Ads placed

•Feedback ((!, "):
• Click or not
• Buy or not



Video Recommender System

149

• Context !:
• User features

• Action " = $%(!):
• Videos recommend

• Feedback ((!, "):
• Click or not
• Watching time



Offline Policy Evaluation

•Log Data from !": samples indexed by 1,2,⋯ , '

• Properties
• Contexts () are drawn i.i.d from unknown Pr(()
• Actions .) are decided by the existing policy !": ( → .
• Feedback 1) are from unknown feedback function 1: (×. → 3
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4 = ( (6, .6, 16 , (7, .7, 17 ,⋯ , ((8, .8, 18))

context feedbackaction

How to evaluate a new policy ! ?



Policy Evaluation: Online A/B Testing
• A/B Testing:

• Deploy a new policy in the interactive systems
• Draw                  , select                    , and get

• Drawbacks:
• Long turn-around time
• Costly, number of A/B Testing limited
• May be detrimental to the user experience

• Big Data Era
• Lots of logged data
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How to evaluate a new policy ! offline with logged data ?



Offline Policy Evaluation
•Given the logged data from a past (existing) policy !":

•Goal: to estimate the utility of a new policy !:

• Utility: the average feedback of policy over the population
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# = ( &', )', *' , &+, )+, *+ ,⋯ , (&-, )-, *-))



Challenges of Offline Policy Evaluation
• Distribution shift induced by the past policy !"

• Y is assigned based on X through !"(Y|X)

• Action discrepancy induced by the new policy 
!((|)): Y is assigned through !((|))
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Focus on the action group with high value of *(+ = -|.)

: No context X will be assigned to Y=k 
under !, hence distribution shift from 
action Y=k does not affect results



Related Work
• Direct method (DM) directly estimate the feedback function           
by utilizing the logged data to predict the feedbacks of actions 
chosen by the new policy    .

• Direct method is unbiased if the feedback model is correct.

• But we hardly know the real underlying feedback function, and 
it ignores the distribution shift induced by the past policy.
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Related Work
• Inverse propensity score (IPS) estimator use the propensity score 
(the probability of the chosen action             ) to reweight sample:

• IPS is unbiased if propensity score model is correct.

• But we have no prior knowledge on propensity score model
• High variance if propensity score is close to 0 and 1
• Ignoring the action discrepancy induced by new policy !
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Related Work
• Doubly Robust (DR) estimator combined IPS estimator and 
direct method:

• DR estimator is unbiased if either propensity score model or feedback 
model is correct

• But one cannot guarantee the specified model is correct
• Moreover, it still ignores the action discrepancy induced by new policy !
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Summary on Related Work
• Distribution shift induced by the past policy !"

• Y is assigned based on !"(Y|X)

• Action discrepancy induced by the new policy 
!((|))
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Focus on the action group with high *(+ = -|.)

: No X will be assigned with Y=k 
under !, hence distribution shift from 
action Y=k does not affect results

Related Work

Remain Challenges

Models dependency 



Context Balancing
• Context Balancing: a non-parametric method based on directly covariate 

balancing to correct the distribution shift induced by the past policy
• Learning sample weights W in each action group ! as follows:

• With sample weights                                             , CB estimator is
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Remove the model dependency
But ignore action discrepancy



Focused Context Balancing (FCB) estimator
• Context Balancing: learning sample weights by directly 
variables balancing

• Focused Context Balancing: focusing on the action group with 
high probability when learning sample weights:
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Theoretical Analysis
• Taylor's expansion of feedback function on the context:

where 
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Distribution shift induced by past policy
Action discrepancy from new policy



Focused Context Balancing algorithm
• Objective Function:

• Policy Evaluation:
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Experiment
• Baselines:
• Direct Method: regressing on an estimated feedback function to evaluate the effect of new policy.
• R-IPS: IPS estimator + roughly estimated propensity score not associated with context.
• E-IPS: IPS estimator with estimated propensity score
• T-IPS: IPS estimator with the true propensity score
• SN-IPS: IPS estimator with estimated propensity score + Normalized sample weights
• Doubly Robust: IPS estimator with estimated propensity score + Direct Method
• CB: covariate balancing to learn sample weights + ignoring distribution shift induced by new policy.

• Evaluation Metric:
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Experiment - Simulations
• Dataset

• Sample size:
• Context dimension:
• Observed context:
• Policy to be evaluated: from sigmoid function

• Logged policy: from inverse proportional function, constant function and linear function

• Feedback function: from linear and non-linear function
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Experiments on Synthetic Data
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• Part of simulation results:

Estimated propensity score is better than true propensity score.
True propensity score is closer to 0 or 1, leading to high variance.



Experiments on Synthetic Data
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• Part of simulation results:

CB estimator performs not very well.
Because it ignores the action discrepancy from the new policy



Experiments on Synthetic Data
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• Part of simulation results:

With considering the action discrepancy, Our FCB estimator can
consistently improve the performance of policy evaluation.



Experiment - Classifier evaluation
• A classifier can be defined as a policy based on a given dataset

• Features of samples~ context
• Predicted label of samples ~ action predicted by the classifier
• Feedback function:                        (      (     is the true label)
• The policy evaluation is equivalent to the evaluation of the classifier accuracy 

• Datasets: several multiclass classification bench-mark from UCI-repository.
• The new policy to be evaluated

• Logistic regression model trained on the training set

• The past policy: 
• A simple function based on one feature variable
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Experiments - Classifier evaluation

168

By simultaneously considering the distribution shift
and action discrepancy, Our FCB algorithm performs 

the best for offline policy evaluation.



Summary: Causal Inference for Offline Policy Evaluation

• Challenges of offline policy evaluation: 
• Distribution shift induced by the past policy
• Action discrepancy induced by the new policy
• Model dependency

• Focused Context Balancing
• To remove the model dependency
• Simultaneously consider distribution shift and action discrepancy
• Significantly improve the accuracy on policy evaluation
• Supporting for decision making, which policy is the best to deploy
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Related work



Summary: Causally Regularized Machine Learning

•We have highly accurate predictions, but they are
not enough for:
• Interpretable prediction
• Stable/Robust prediction in the future
• Decision making
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Summary: Causally Regularized Machine Learning
• Causal Inference with Observational Data

• Recover causation from observed correlation
• Estimating causal effect for improving interpretability

• Causal Inference for Stable Prediction
• Disrupt spurious correlation, embrace causation
• Interpretable and Stable prediction in the future

• Causal Inference for Offline Policy Evaluation
• Evaluating a new policy based on the log data from a past policy
• Support decision making with the effect of new policies
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TOWARDS NON-I.I.D. IMAGE CLASSIFICATION:
A DATASET AND BASELINES

Training Testing

Correlation V.S. Causation



Non-I.I.D. Image Classification
• Non I.I.D. Image Classification

• Two tasks
• Targeted Non-I.I.D. Image Classification

• Have prior knowledge on testing data
• e.g. transfer learning, domain adaptation

• General Non-I.I.D. Image Classification
• Testing is unknown, no prior
• more practical & realistic 
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unknown
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#$%&'( #$/0$



Existence of Non-I.I.Dness
• One metric (NI) for Non-I.I.Dness

• Existence of Non-I.I.Dness on Dataset consisted of 10 subclasses from ImageNet
• For each class

• Training data
• Testing data
• CNN for prediction
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ubiquitous

strong correlation 

Distribution shift

For normalization



Related Datasets
• DatasetA & DatasetB & DatasetC

• NI is ubiquitous, but small on these datasets
• NI is Uncontrollable, not friendly for Non IID setting
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Small NI    

A dataset for Non-I.I.D. image classification is demanded.

ImageNet

PASCAL 
VOC MSCOCO

Uncontrollable NI

Average NI: 2.7



NICO - Non-I.I.D. Image Dataset with Contexts
• NICO Datasets:
• Object label: e.g. dog
• Contextual labels (Contexts)

• the background or scene of a object, e.g. grass/water
• Structure of NICO
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Animal Vehicle

Dog …

…

Train

Grass on bridge…

…

2 Superclasses

10 Classes

10 Contexts

per

per Diverse & 
Meaningful

Overlapping



NICO - Non-I.I.D. Image Dataset with Contexts
• Data size of each class in NICO

• Sample size: thousands for each class
• Each superclass: 10,000 images
• Sufficient for some basic neural networks (CNN)

• Samples with contexts in NICO

179



Controlling NI on NICO Dataset

•Minimum Bias (comparing with ImageNet)
•Proportional Bias (controllable)

• Number of samples in each context
•Compositional Bias (controllable)

• Number of contexts that observed
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Minimum Bias
• In this setting, the way of random sampling leads to minimum distribution shift between 

training and testing distributions in dataset, which simulates a nearly i.i.d. scenario.

• 8000 samples for training and 2000 sample for testing in each superclass (ConvNet)
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Average NI Testing Accuracy
Animal 3.85 49.6%
Vehicle 3.20 63.0%

Images in our NICO
are with rich contextual 

information

more challenging for
image classification

Average NI on ImageNet: 2.7

Our NICO data is more Non-iid, more challenging



Proportional Bias
• Given a class, when sampling positive samples, we use all contexts for both training and 

testing, but the percentage of each context is different between training and testing dataset. 
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4

4.1

4.2

4.3

4.4

4.5

1:1 2:1 3:1 4:1 5:1 6:1

NI

Dominant Ratio in Training Data

Testing 
1 : 1  

Dominate
Context (55%)

(5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%)

We can control NI by varying dominate ratio



Compositional Bias
• Given a class, the observed contexts are different between training and testing data.
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Moderate setting
(Overlap) 

Radical setting
(No Overlap & 
Dominant ratio) 

4.44

4.0

4.2

4.4

4.6

4.8

5.0

1:1 2:1 3:1 4:1 5:1

NI

Dominant Ratio in Training data

4.34

4.0

4.1

4.2

4.3

4.4

7 6 5 4 3

NI

Number of  Contexts in Training Data 

Training:
Testing:

Training:

Testing:

Testing 
1 : 1  



NICO - Non-I.I.D. Image Dataset with Contexts
• Summary on Non-iidness on our dataset
• Range of NI value for each method
• Large and controllable NI
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Global Balancing Method

Controllable NILarge NI

small NI

large NI

Targeted/General Non-I.I.D. 
Image Classification 



ConvNet with Batch Balancing (CNBB)
• Confounder Balancing in the literature of Causal Inference
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! " # = 1 = ! " # = −1

1 or -1

' ( # = 1 − ' ( # = −1

" ⊥ #

CNBB = Confounder balancing + ConvNet



ConvNet with Batch Balancing (CNBB)
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global confounder balancing 
for all features 

approaching to binary variables 
for reducing info loss 

learning causal effects &
causal features jointly

! > 0 ≈ %& = 1
! < 0 ≈ %& = −1



Experiments
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• We design four experiments according to the supported Non-I.I.D. settings of NICO:
• Minimum bias (Exp 1)

• Nearly I.I.D. in NICO (average improvement 0.33%)
• Proportional bias (Exp2)

• Different dominate ratio
• fix dominant ratio of training to 5:1
• vary dominant ratio of testing from 1:5 to 4:1

• Compositional bias (Exp3)
• Different observed contexts
• Testing: with all contexts
• Training: vary observed contexts from 3 to 7

• Combined Proportional &  Compositional bias (Exp4)
• No overlap on the observed contexts
• Different dominate ratio
• fix dominant ratio of testing to 1:1
• vary dominant ratio of training from 1:1 to 5:1

always 
superior  



Summary on Experimental Results
• The range of NI with respect to the average improvement of performance to CNN

191

more 
bias

more
effect



Analysis
• Insight of Batch Balancing Mechanism
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less valid samples less balancing degree



Summary: NICO for Non-iid Image Classification
•NICO: Non-iid image classification dataset

• Non-iid Index (NI) to describe the distribution shift
• Three ways to control NI in NICO Dataset
• Benchmark for Non-iid image classification

• The performance of benchmark is not so exciting, more
work need to do.

• How to use causal knowledge for Non-iid prediction
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Conclusion
• Correlation-based machine learning are not enough for

• Interpretable learning
• Decision making
• Stable/Robust prediction in the future

• Correlation: causation, confounding, selection bias
• Causation: Invariant and Stable across environments
• Confounding / Selection bias: Spurious correlation, changeable

• Causally Regularized Machine Learning: 
• Causal regularizer
• Recover causation from correlation
• Causation-based machine learning
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Conclusion
• Causally Regularized Machine Learning: Causation-based

• Causal Inference for Interpretable learning
• Policy Evaluation for Decision making
• Causally Regularized Stable Prediction in the future

•NICO: Non-iid image classification dataset
• Non-iid Index (NI) to describe the distribution shift
• Three ways to control NI in NICO Dataset
• Benchmark for Non-iid image classification
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Future Work and Discussion
•Correlation

197

• Causation

X

T Y

X T Y

Correlation Framework

Causal Framework

Recover causation from the observed correlation!



Future Work and Discussion
•With Causality, we can do:

• Recover causation for interpretability
• Help to guide decision making (actionable)
• Make stable and robust prediction in the future
• Prevent algorithmic bias (Fairness)

•Discard spurious correlation and embrace causality
•Do interpretable, actionable, stable, fairness prediction
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Future Work and Discussion
• Potential Outcome Framework
• Rubin
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• Structural Causal Model (SCM)
• Pearl

X

T Y

Potential Outcome 
Framework SCM

Many untestable assumptions Strong prior knowledge
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