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Even In risk-sensitive areas
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Explainability

Most machine learning models are black-box models

Unexplainable Human in the loop
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Health Military Finance Industry
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Explainability

- Correlation is not explainable

People who drowned after falling out of a fishing boat
correlates with

Marriage rate in Kentucky

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
20 deaths 11 per 1,000
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-®- Kentucky marriages -#= Fishing boat deaths
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Explainability

- Correlation is not explainable

Total revenue generated by arcades
correlates with

Computer science doctorates awarded in the US

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
$2 billion 2000 degrees
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é 1500 degrees &
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$1 billion 500 degrees
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-8~ Computer science doctoratest- Arcade revenue
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Explainability
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Spurious Correlation !

Correlation does not imply causation!



Stability

Most ML methods are developed under |ID hypothesis

Test Distribution

Training Distribution




Stability

Yes

Maybe

No




Stability

- Cancer survival rate prediction

Testing Data

Training Data +

> el (O
OO —
OOd

\ Predictive Model

—HOSPITAL

City Hospital

Higher income, higher survival rate. University Hospital

Survival rate is not so correlated with income.
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Stability

Correlation v.s. Causality




Actionability

- Does predictive models guide decision making?
- System changes algorithm from A to B at some point.
- |Is the new algorithm B better?

- Say algorithm that provides promotion or discount link to a
different customers

Algorithm A Algorithm B



Actionability
- Measure success rate (SR) = I
=<l

50/1000 (5%) 54/1000 (5.4%)

New algorithm increases overall success rate, so it is better?

_ Old Algorithm (A) | New Algorithm (B)

10/400 (2.5%) 4/200 (2%)
5 BPli ST CRORS T 40/600 (6.6%) 50/800 (6.2%)
50/1000 (5%) 54/1000 (5.4%)

Which is better?
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Actionability

A
—
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Financial
product offer

Financial
product offer

Accepted Accepted

Higher success rate due to Higher success rate due to
algorithm confounding bias

Decision making is a counterfactual problem, not a predictive problem!
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The source of these problems: Correlation

Correlation Framework _ ] ]
income—crime rate: Strong correlation

%_,@ skin color—crime rate: Strong correlation

<L T: skin color

Causal Framework X: income

Y: crime rate

income—crime rate: Strong causation
skin color—crime rate: Weak causation



Correlation V.S. Causation

Three sources of correlation:
Causation @ @ oe Cream
Causal mechanism
Stable and Robust
Confounding
Ignoring X
Spurious Correlation L
Sample Selection

Conditional on S
Spurious Correlation Sample

Selection

Accepted




Correlation V.S. Causation

Three sources of correlation:

Causation < : ) @ lce Cream
Sales

Causal mechanism
Stable and Robust

Confounding

Accepted

Conditiona
Spurious Correlation

Selection



T
Why should we care about causality?

-Recover causation for interpretability

-Help to guide decision making

-Make stable and robust prediction in the future
-Prevent algorithmic bias
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OUTLINE

PART I. Introduction to Causal Inference
PART Il. Methods for Causal Inference

PART lll. Causally Regularized Machine Learning
PART IV. Benchmark and Open Datasets

PART V. Conclusion and Discussion



Cause and Effect

- Cause: The REASON why something happened
- Effect: The RESULT of what happened

- Questions of cause and effect:
- Medicine: drug trials, effect of a drug
- Social science: effect of a policy
- Marketing: effect of a marketing strategy

-What is causality?




What is causality?

T USED 10 THINK THEN I TOOK A | | SOUNDS LKE THE
CORRELATION MPUED STATISTICS CLASS. Cmss HELPED.
CAUSATION. Now I DON'T. WELL, MAYBE

0% 199018 g




What is causality?

- A big scholarly debate, from Aristotle to Russell
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The Three Layer Causal Hierarchy

Obser

Action

Level

Typical Activity

Typical Question

Examples

Count

orfactuals Questions

Y?
What if | had acted
differently?

1. Association Seeing What is? What does a symptom tell me about
P(y|x) How would seeing X  a disease?
vational Questions change my belief in What does a survey tell us about the
Y? election results?
2. Intervention Doing, What if? What if | take aspirin, will my
P(y|do(x),z) Intervening What if | do X? headache be cured?
Questions What if we ban cigarettes?
3. Counterfactuals  Imagining, Why? Was it the aspirin that stopped my
Py, | x', y") Retrospection Was it X that caused  headache?

Would Kennedy be alive had Oswald
not shot him?

What | had not been smoking the
past 2 years?

Pearl J. Theoretical impediments to machine learning with seven sparks from the causal revolution[J]. arXiv preprint arXiv:1801.04016, 2018.




A practical definition

Definition: T causes Y if and only if
changing T leads to a change in Y,
keep everything else constant.

Causal effect is defined as the magnitude by which Y is
changed by a unit change in T.

Called the “interventionist” interpretation of causality.

*Interventionist definition [http://plato.stanford.edu/entries/causation-mani/]



http://plato.stanford.edu/entries/causation-mani/

Causal Effect Estimation

- Treatment Variable: T =1orT =0
- Potential Outcome: Y(T = 1) and Y (T = 0)
- Average Causal Effect of Treatment (ATE):

ATE = E[Y(T=1) = Y(T = 0)]

- Counterfactual Problem:

Y(T=1) or Y(T=0)



Counterfactual Problem

Two key points for causal effect
Person T Y7, V7o estimat?/ofm

P1 1 04 ?
= ; - 06 Changing T

' : Keeping everything else constant
P3 1 0.3 ?

?
Pd 0 : 07'1 For each person, observe only one:
P5 1 0.5 - either Yt=10r Yt=0
P 0 7 0.5 For different group (T=1 and T=0),
P7 0 ? 0.1 something else are not constant




Potential Outcome Framework

- Confounders X: everything else

-Why keep everything else constant:
- Confounders X influences both T and Y

- Y’'s change could be induced by change
of T or since X changed both T and Y?

Confounders
X

Treatment

- In different group, keep confounders
the same!



|deal Solution: Counterfactual World

- Reason about a world that does not exist

- Everything is the same on real and counterfactual worlds,
but the treatment




Randomized Experiments are the "Gold Standard”

- Drawbacks of randomized experiments:
- Cost

- Unethical



Randomized Experiments are the "Gold Standard”

- Cost
- Unethical




Recap: Causal Effect and Potential Outcome

- Two key points for causal effect estimation
-Changing T

- Keeping everything else (X) constant

- Counterfactual Problem

Y(T=1) or Y(T =0)

- ldeal Solution: Counterfactual World
-“Gold Standard”: Randomized Experiments

- We will discuss other solutions in Section 2.

reatment Effect
Estimation



OUTLINE

PART I. Introduction to Causal Inference
PART Il. Methods for Causal Inference
PART lll. Causally Regularized Machine Learning
PART IV. Benchmark and Open Datasets

PART V. Conclusion and Discussion



Causal Inference with Observational Data

- Average Treatment Effect (ATE) represents the mean

(average) difference between the potential outcome of
units under treated (T=1) and control (T=0) status.

ATE = E[Y(T =1) — Y(T = 0)]

- Treated (T=1): taking a particular medication
- Control (T=0): not taking any medications
- ATE: the causal effect of the particular medication




Causal Inference with Observational Data

- Counterfactual Problem:
Y(T=1) or Y(T =0)
- Can we estimate ATE by directly comparing the average
outcome between treated and control groups?
- Yes with randomized experiments (X are the same)
- No with observational data (X might be different)
- Two key points:
- Changing T (T=1 and T=0)
- Keeping everything else (Confounder X) constant

reatment Effect
Estimation




Causal Inference with Observational Data

- Counterfactual Problem:

Y(T=1) or Y(T =0)
- Can we estimate ATE by directly comparing the average
outcome between treated and control groups?

- Yes with randomized experiments (X are the same)
- No with observational data (X might be different)

- Two key points:

reatment Effect
Estimation

Balancing Confounders’ Distribution




Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing (DCB)



Assumptions of Causal Inference

A1: Stable Unit Treatment Value (SUTV): The effect of treatment on
a unit is independent of the treatment assignment of other units

P(Y:|T;, T, X;) = P(Y;IT;, X))

A2: Unconfounderness: The distribution of treatment is independent
of potential outcome when given the observed variables

T L (Y(0),Y(D))l X
No unmeasured confounders
A3: Overlap: Each unit has nonzero probability to receive either

treatment status when given the observed variables
O<P(T=1X=x)<1



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing



Matching




8358



Matching

|dentify pairs of treated (T=1) and control (T=0)
units whose confounders X are similar or even

identical to each other \2 - \‘D
Distance(Xi,Xj) <e€ > ) JJ

Paired units provide the everything else
(Confounders) approximate constant

Average the difference in outcomes with in pairs
to calculate the average causal effect

Smaller €: less bias, but higher variance



Matching
- Exactly Matching:

0, X=X ) ) ks
Distance(Xi,Xj) =Yoo, Xll- in- :Ej._.\fj

- Use this in low-dimensional settings Distance(X;, X;) < €

- But In high-dimensional settings, there
will be few exact matches



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing
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Propensity Score Based Methods

- Propensity score e(X) is the probability of a unit to be treated
e(X) = P(T =1|X)

- Then, Rubin shows that the propensity score is sufficient to
control or summarized the information of confounders

TLX|e(X) = TLuY(D),Y(0)]elX)

- Propensity score are rarely observed, need to be estimated



Propensity Score Matching
- Estimating propensity score: é(X) = P(T = 1|X)

- Supervised learning: predicting a known
label T based on observed covariates X.

- Conventionally, use logistic regression \2 - Q

- Matching pairs by distance between
propensity score:

Distance(X;, X;) = |é(X;) — é(X;)|

Distance(Xi,Xj) <€

- High dimensional challenge: transferred from matching to PS estimation



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing



Inverse of Propensity Weighting (IPW)

- Why weighting with inverse of propensity score is helpful?
- Propensity score induces the distribution bias on confounders X

e(X) = P(T = 1|X)
e
A 0.7 0.3 10

. . A 10 10 Confounders
B 06 0.4 50 B 50 50 are the same!

C 0.2 0.8 40

T, 1-—T;
Reweighting by inverse of propensity score: W; = o + .
l i




Inverse of Propensity Weighting (IPW)
- Estimating ATE by IPW [1]: W, = L 1-T

- Interpretation: IPW creates a pseudo-population where the
confounders are the same between treated and control groups.

n

° ’) - = 141
Why does this work”? Consider - E 2

1=1
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Inverse of Propensity Weighting (IPW)

If: e(X) =e(X), the true propensity score

o1 i o] ) vTereaonr,

{
= |E { G(X)E(T|Y1,X)} ~FE { G(X)E(T|X)} (2) TL(Yy,Yo)|X
s

(3(X)} _E(y) (3) e(X) = E(T|X)

- Similarly: { (11__5));;} = E(Yy) ATE = E[Y(1) —Y(0)]
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Inverse of Propensity Weighting (IPW)

-If: e(X) =e(X), the true propensity score, the IPW
estimator is unbiased

n T

1 1;Y; 1 (1 -1T3)Y;
ATE pw = — - — E(Y; -V
W Z e(X;) n Z 1 —e(X;) (Y1 = ¥o)

=1 1=1

- Wildly used in many applications

- But requires the propensity score model is correct
- High variance when e is close to O or 1



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing



Doubly Robust

‘Recap: ATE =E[Y(T=1)-Y(T =0)]
- Simple outcome regression:
m=FEY|T=1,X) and mo=E(Y|T =0,X)
- Unbiased if the regression models are correct

- IPW estimator:
- Unbiased if the propensity score model is correct

- Doubly Robust [2]: combine both approaches



mo = E(Y|T =0, X)
Doubly Robust my = E(Y|T =1, X)

- Estimating ATE with Doubly Robust estimator:

TY, (T - (X))
e(X5) e(X;)

] — .
ATEDR — EZ ml(XZ)}
i=1

I [(1-T)Y; AT —e(Xy)} .
— E;_l—é(Xz) | 1—é(XZ) mO(XZ):|

- Unbiased if either propensity score or regression model is correct
- This property is referred to as double robustness
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Doubly Robust

- Theoretical Proof:
1Y {T —e(Xy)}

e ooy )
- Elamy )
= BV L g()é((f)(i)} Y, — ml(X’i)}}
= E(MW)+E € ;(;(j;i)} {Y1 - ﬁu(Xi)}]




Doubly Robust my = E(Y|T =1, X)

- Estimating ATE with Doubly Robust estimator:

TY, (T - (X))
e(X5) e(X;)

] — .
ATEDR — EZ ml(XZ)}
i=1

I [(1-T)Y; AT —e(Xy)} .
— E;_l—é(){z) | 1—é(XZ) mO(Xz):|

- Unbiased if propensity score or regression model is correct
- This property is referred to as double robustness

- But may be very biased if both models are incorrect



Propensity Score based Methods

Recap:
Propensity Score Matching
Inverse of Propensity Weighting
Doubly Robust

Need to estimate propensity score
Treat all observed variables as confounders :
In Big Data Era, High dimensional data '
But, not all variables are confounders

(a) Previous Causal Framework.

---------------------




Propensity Score based Methods

Recap:
Propensity Score Matching
Inverse of Propensity \\ei

But, not all variables are confounders

(a) Previous Causal Framework.



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D?VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing (DCB)



Inverse of Propensity Weighting (IPW)

- Treat all observed variables U as
confounders X

» Propensity Score Estimation:
e(U) =p(T = 1|U) = p(T = 1|X) = e(X)
- Adjusted Outcome:

* __ Vobs . T'—e(U) _ yobs T'—e(X)
Y =Y cora-eon =¥ ' e®X) (1-eX)

- [PW ATE Estimator:
ATEpw = E(Y*)

(a) Previous Causal Framework.



Data-Driven Variable Decomposition (D%VD)

--------------------------------------------------
. =
. .

Variables

: Automated
Variables
: Decomposition

Treatnh Outcome

T Treatment Effect Y
\ Estimation

(b) Our Causal Framework.

- Separateness Assumption:

- All observed variables U can be decomposed into
three sets: Confounders X, Adjustment Variables Z,
and Irrelevant variables | (Omitted).

- Propensity Score Estimation:

e(X) = p(T = 1]X)

- Adjusted Outcome:

T — e(X)

vr= (YT -0®) i e

- Our D2VD ATE Estimator:

ATEpeyp = E(YH)
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Data-Driven Variable Decomposition (D%VD)

- Confounders Separation & ATE Estimation.
- With our D2VD estimator:

mDQVD =E(Y*") = B ((YObS — (@) e(X;F' (—16—()?(7())){

- By minimizing following objective function:
minimize ||[Y T — h(U)||*.

- We can estimate the ATE as:

A

ATEp2vp = E(h(U))




Data-Driven Variable Decomposition (D%VD)

[ minimize ||[Y T — h(U)||2 Where Y™ = (YObS B ¢(Z)> ' e(X)T- Z1e—()i)(X)) ]
] 1
G(X) — 1 —I—exp(—Xﬁ) ¢(Z) — ZOZ,
Replace X, zwithu  A(U) = Uy,
/minz’mz’ze (Y —Ua) @ W(B) —Uyl|3, Where W(f) := e(Uj)ﬂ.(_le_(gzU))\

s.t. Z log(1 +exp((1 —2T3)-U;B)) <,
=1

lalle <A 118l <6, Iyl < my|lle® B2 = 0.

. J

- Adjustment variables: Z = {U, : &; # 0}
- Confounders: X = {U; : 3; # 0}
- Treatment Effect: ATE p2yp = E(UA)

a,p,y




Data-Driven Variable Decomposition (D%VD)

Bias Analysis:
Our D2VD algorithm is unbiased to estimate causal effect
THEOREM 1. Under assumptions 1-4, we have
E(YT|X,Z)=E(Y(1) = Y(0)|X,Z2).

Variance Analysis:
The asymptotic variance of Our D2VD algorithm is smaller

THEOREM 2. The asymptotic variance of our adjusted estima-
A . . _/\
tor AT E qqj is no greater than IPW estimator AT E1pw :

2 2
Oadj < O1PW -




Data-Driven Variable Decomposition (D%VD)

-OUR: Data-Driven Variable Decomposition (D*VD)

-Baselines
* Directly Estimator (dir): 1ignores confounding bias
- [PW Estimator (IPW): treats all variables as confounders
*Doubly Robust Estimator (DR): IPW+regression

» Non-Separation Estimator (D*VD-): no variables separation
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Data-Driven Variable Decomposition (D%VD)

- Dataset generation:
- Sample size m={1000,5000}
- Dimension of observed variables n={50,100,200}

- Observed variables: v = (X,Z,1)

o o iid 4
. SERIREED. SOPY 4 PIREPE FO0PS § PIEPS P ~ N(01)~

e 4

- Treatment: logistic and misspecified

Tiogit ~ Bernoulli(1/(1 4 exp(—>_.*, x;))) and
Trnissp = Lif Y% x; > 0.5, Thissp = 0 otherwise.

» Qutcome:
Y =3 tne X wj + 300 2k pre + T+ N(0,2),
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Data-Driven Variable Decomposition (D%VD)

- Dataset generation:

The true treatment effect in synthetic data is 1.

- Observed variables: v = (X,Z,1)

o o 1id :
X1, s Xpgs Ly, 5Ly, 00 Ly, ~ -/\/'(01)q

- Treatment: logistic and misspecified
Tiogit ~ Bernoulli(1/(1 4 exp(—>_.*, x;))) and
Tonissp = Lif >0 x; > 0.5, Thissp = 0 otherwise.
- Outcome:

V=3 e Xj-wi + > 52 2k pr + T+ N(0,2),

2



Data-Driven Variable Decomposition (D%VD)

- Experimental Results on Synthetic Data:  Bias = |ATE — ATE]

n n =50 n = 100 n = 200
T/m Estimator Bias SD [ MAE | RMSE [[ Bias | SD | MAE | RMSE || Bias | SD | MAE | RMSE
ATE 4:, 0.418 | 0.409 | 0.479 | 0.582 || 0.302 | 0.490 | 0.472 | 0.571 | 0.405 | 0.628 | 0.574 | 0.720

fﬁu’\-v-l—lasso 0.078 | 0.310 | 0.252 | 0.317 0.097 | 0.356 | 0.295 | 0.366 0.073 | 0.328 | 0.267 | 0.320
T =Tiogit ATFEpRr + lasso | 0.060 | 0.181 | 0.152 | 0.189 || 0.067 | 0.190 | 0.155 | 0.199 0.081 | 0.181 | 0.169 | 0.190

m = 1000 ATE ey, | 0053 | 0.138 | 0.124 | 0.146 || 0.064 | 0.130 | 0.117 | 0.144 | 0.018 | 0.170 | 0.128 | 0.162
ATE 2y g 0.045 | 0.108 | 0.091 | 0.116 || 0.019 | 0.114 [ 0.093 | 0.115 [[ 0.067 | 0.144 | 0.130 | 0.152 ]
ATE 4, 0.418 | 0.170 | 0.418 | 0.451 || 0.659 | 0.181 | 0.659 | 0.681 || 0.523 | 0.412 | 0.555 | 0.653

ATE1pw + lasso | 0.036 | 0.201 | 0.163 | 0.202 || 0.034 | 0.222 | 0.194 | 0.213 0.032 | 0.341 | 0.274 | 0.325
T =Tiogit ATFEpr + lasso | 0.051 | 0.079 | 0.071 | 0.094 || 0.106 | 0.075 | 0.114 | 0.127 0.055 | 0.084 | 0.086 | 0.096

m = 5000 ATE ey ey | 0.112 | 0.080 | 0.118 | 0.137 || 0.114 | 0.102 | 0.121 | 0.150 || 0.164 | 0.076 | 0.164 | 0.179
ATE pay 0.033 | 0.072 | 0.061 | 0.078 || 0.023 | 0.073 | 0.061 | 0.073 || 0.042 | 0.068 | 0.062 | 0.076 |
ATE g, 0.664 | 0.387 | 0.670 | 0.766 || 0.273 | 0.445 | 0.436 | 0518 || 0.380 | 0.766 | 0.691 | 0.848

.@mw—i-lasso 0.266 | 0.279 | 0.319 | 0.384 || 0.298 | 0.295 | 0.328 | 0.417 0.191 | 0.482 | 0.403 | 0.514
T =Thicep | ATEpr +lasso | 0.138 | 0.187 | 0.174 | 0.231 0.253 | 0.197 | 0.269 | 0.320 || 0.050 | 0.218 | 0.170 | 0.222

m = 1000 flﬁ]}?v Di—) 0.269 | 0.162 | 0.270 | 0.313 |[ 0.129 | 0.162 | 0.170 | 0.206 || 0.175 | 0.207 | 0.236 [ 0.269
AT}*&)QV,) 0.066 | 0.113 | 0.102 | 0.129 || 0.019 | 0.119 | 0.101 | 0.120 || 0.059 | 0.177 | 0.149 | 0.184 )
ATE 4, 0.446 | 0.180 | 0.446 | 0.480 || 0.587 | 0.323 | 0.587 | 0.662 0.778 | 0.246 | 0.778 | 0.812

ATE pw +lasso | 0.148 | 0.133 | 0.161 | 0.198 || 0.172 | 0.167 | 0.199 | 0239 || 0.142 | 0.224 | 0.206 | 0.263
T ="Tpicep | ATEpr +lasso | 0.119 | 0.073 | 0.123 | 0.139 || 0.100 | 0.067 | 0.107 | 0.120 | 0.127 | 0.079 | 0.127 | 0.148
m = 5000 ATEpeyvpy, | 0112 | 0.070 | 0.119 | 0.132 || 0.058 | 0.067 | 0.069 | 0.086 | 0.068 | 0.055 | 0.073 | 0.086
ATE payp 0.033 | 0.055 | 0.052 | 0.063 || 0.039 | 0.068 | 0.066 | 0.075 || 0.032 | 0.047 | 0.049 | 0.055 |




1. The direct estimator is failed under all settings.

2. IPW and DR estimators are good when T=T,,4;;, but poor when T=T, .
3. D?VD(-) has no variables separation, get similar results with DR estimator.
4. D?VD can improve accuracy and reduce variance for ATE estimation.

n n = 50 n = 100 n = 200

T/m Estimator Bias | SD | MAE | RMSE || Bias [ SD | MAE | RMSE || Bias [ SD | MAE | RMSE

ATE g, 0.418 | 0.409 | 0.479 | 0.582 || 0.302 | 0.490 | 0.472 | 0.571 | 0.405 | 0.628 | 0.574 | 0.720

fﬁl}’w" + lasso | 0.078 | 0.310 | 0.252 | 0.317 0.097 | 0.356 | 0.295 | 0.366 0.073 | 0.328 | 0.267 | 0.320

T =Tiogit fﬁl}l? + lasso | 0.060 | 0.181 | 0.152 | 0.189 0.067 | 0.190 | 0.155 | 0.199 0.081 | 0.181 | 0.169 | 0.190

m = 1000 fﬁu’lv Di—) 0.053 | 0.138 | 0.124 | 0.146 || 0.064 | 0.130 | 0.117 | 0.144 | 0.018 | 0.170 | 0.128 | 0.162
,47&)2 v 0.045 | 0.108 | 0.091 [ 0.116 0.019 [ 0.114 | 0.093 | 0.115 0.067 [ 0.144 | 0.130 | 0.152 ]

ATE 4, 0.418 | 0.170 | 0.418 | 0.451 || 0.659 | 0.181 | 0.659 | 0.681 | 0.523 | 0.412 | 0.555 | 0.653

ATEpw + lasso | 0.036 | 0.201 | 0.163 | 0.202 || 0.034 | 0.222 | 0.194 | 0213 | 0.032 | 0.341 | 0.274 | 0.325

T =Tiogit fmun + lasso | 0.051 | 0.079 | 0.071 | 0.094 0.106 | 0.075 | 0.114 | 0.127 0.055 | 0.084 | 0.086 | 0.096

m = 5000 ATE poy ey | 0.112 | 0.080 | 0.118 | 0.137 || 0.114 | 0.102 | 0.121 | 0.150 || 0.164 | 0.076 | 0.164 | 0.179
ATFE 2y 0.033 | 0.072 | 0.061 | 0.078 || 0.023 | 0.073 | 0.061 | 0.073 || 0.042 | 0.068 | 0.062 | 0.076 |

- ATE g, 0.664 | 0.387 | 0.670 | 0.766 | 0.273 | 0.445 | 0.436 | 0.518 || 0.380 | 0.766 | 0.691 | 0.848

ATFEipw + lasso | 0.266 | 0.279 | 0.319 | 0.384 || 0.298 | 0.295 | 0.328 | 0.417 || 0.191 | 0.482 | 0.403 | 0.514
T = Toniasp ATEpn +lasso | 0.138 | 0.187 | 0.174 | 0.231 0.253 | 0.197 | 0.269 | 0.320 || 0.050 | 0.218 | 0.170 | 0.222

m = 1000 fﬁ\E‘DQV Di—) 0.269 | 0.162 | 0.270 | 0.313 || 0.129 | 0.162 | 0.170 | 0.206 || 0.175 | 0.207 | 0.236 | 0.269
AT’E&)Q VD 0.066 | 0.113 | 0.102 | 0.129 || 0.019 | 0.119 | 0.101 | 0.120 | 0.059 | 0.177 | 0.149 | 0.184 ]
ATE 4ir 0.446 | 0.180 | 0.446 | 0.480 || 0.587 | 0.323 | 0.587 | 0.662 0.778 | 0.246 | 0.778 | 0.812

ATE pw +lasso | 0.148 | 0.133 | 0.161 | 0.198 || 0.172 | 0.167 | 0.199 | 0239 || 0.142 | 0.224 | 0.206 | 0.263
T ="Tpicep | ATEpr +lasso | 0.119 | 0.073 | 0.123 | 0.139 || 0.100 | 0.067 | 0.107 | 0.120 | 0.127 | 0.079 | 0.127 | 0.148
m = 5000 ATEpeyvpy, | 0112 | 0.070 | 0.119 | 0.132 || 0.058 | 0.067 | 0.069 | 0.086 | 0.068 | 0.055 | 0.073 | 0.086
ATE p2vp 0.033 | 0.055 | 0.052 | 0.063 || 0.039 | 0.068 | 0.066 | 0.075 || 0.032 | 0.047 | 0.049 | 0.055 |




Data-Driven Variable Decomposition (D%VD)

- Experimental Results on Synthetic Data:

Table 3: Separation results of confounders X and adjustment

variables Z.. The closer to 1 for TPR and TNR is better.

TPR: true positive rate

T = Tloglt . .
Tl 100 ~——500 TNR: true negative rate
m TPR | TNR || TPR | TNR || TPR | TNR
1000 | X | 1000 [0.9T7 [[70.977 | 0.948 || 0.966 | 0.906
B Z | 1.000 | 0.973 || 1.000 | 0.983 || 1.000 | 0.984 :
o0 | X[ 1000 [ 0923 [ 1.000 [ 0.8587 || 0.994 | 0.989 Our D?VD algorithm
B Z | 1.000 | 0.975 || 1.000 | 0.987 || 1.000 | 0.994 :
——— can precisely separate
— missp
1000 | X [ 1000 [0:84471°0.997 ] 0.866 [ 0.867 [ 0.977 the confounders and
Z | 1.000 | 0.982 || 1.000 | 0.987 || 1.000 | 0.983 ) )
=000 | X | 1.000 [ 0843 ["1.000 [ 0.837 [[0.998 | 0.965 adjustment variables.
B Z | 1.000 | 0.986 || 1.000 | 0.990 || 1.000 | 0.994




Experiments on Real World Data

- Dataset Description: Q
- Online advertising campaign (LONGCHAMP) WeChat

- Users Feedback: 14,891 LIKE: 93,108 DISLIKE 2015

- 56 Features for each user
- Age, gender, #friends, device, user setting on WeChat

- Experimental Setting:
- Qutcome Y: users feedback  ¢=mm
- Treatment T: one feature
- Observed Variables U: other features

Y =1, if LIKE
Y =0, if DISLIKE



Experiments Results

- ATE Estimation.

No. Features (ATE p2yp (SD)\ ATE pw (SD) | ATEpr (SD) | ATEmatching
| No_friends (> 166) 0.295 (0.018) 0.240 (0.026) 0.297(0.021) 0.276
2 Age (> 33) -0.284 (0.014) -0.235 (0.029) -0.302(0.068) -0.263
3 Share Album to Strangers 0.229 (0.030) 0.236 (0.030) -0.034(0.021) n/a
4 With Online Payment 0.226 (0.019) 0.260 (0.029) 0.244(0.028) n/a
5 With High-Definition Head Portrait 0.218 (0.028) 0.203 (0.032) 0.237(0.046) n/a
6 With WeChat Album 0.191 (0.014) 0.237 (0.021) 0.097(0.050) n/a
7 With Delicacy Plugin 0.124 (0.038) -0.253 (0.037) 0.067(0.051) 0.099
8 Device (10S) 0.100 (0.024) 0.206 (0.012) 0.060(0.021) 0.085
9 Add friends by Drift Bottle -0.098 (0.012) ¥ 0.016(0.019) -0.115(0.015) -0.032
10 |Gender (Male) ¥ -0.073 (0. 017)94 -0.240 (0.029) 0.065(0.055) -0.097

1. Our D?VD estimator evaluate the ATE more accuracy.

2. Our D2VD estimator can reduce the variance of estimated ATE.

3. Younger Ladies are with higher probability to like the LONGCHAMP ads.




Experiments Results

- Variables Decomposition.

Table 4: Confounders and adjusted variables when we set
feature “Add friends by Shake™ as treatment.

ZConfoundgE) J_Adjustment Variables j>
Add friends by Drift Bottle No. friends
Add friends by People Nearby Age
Add friends by QQ Contacts With WeChat Album
Without Friends Confirmation Plugin | Device

1. The confounders are many other ways for adding friends on WeChat.
2. The adjustment variables have significant effect on outcome.

3. Our D2VD algorithm can precisely separate the confounders and
adjustment variables.




Summary: Propensity Score based Methods
e(X) = P(T = 1|X)

- Propensity Score Matching (PSM): —
- Units matching by their propensity score Treat all observed
- Inverse of Propensity Weighting (IPW): — variables as confounder.

- Units reweighted by inverse of propensity score

- Doubly Robust (DR):

- Combing IPW and regression

- Data-Driven Variable Decomposition (D?VD):
- Automatically separate the confounders and adjustment variables
- Confounder: estimate propensity score for IPW
- Adjustment variables: regression on outcome for reducing variance
- Improving accuracy and reducing variance on treatment effect estimation

- But, these methods need propensity score model is correct

ignoring non-confounders

’



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing (DCB)



Causal Inference with Observational Data

- Average Treatment Effect (ATE):
ATE = E[Y(T =1) = Y(T = 0)]
- Average Treatment effect on the Treated (ATT):
ATT = E[Y(D|T = 1] = E[Y(0)|T = 1]

Treatment

- Two key points:
- Changing T (T=1 and T=0)
- Keeping everything else (Confounder X) constant



Causal Inference with Observational Data

- Average Treatment Effect (ATE):
ATE = E[Y(T=1) = Y(T = 0)]

- Average Treatment effect on the Treated (ATT):
ATT = E[Y(D)|T = 1] = E[Y(0)|T = 1]

- Two key points:

Balancing Confounders’ Distribution




Directly Confounder Balancing

- Recap: Propensity score based methods T 1-T,
- Sample reweighting for confounder balancing Wi = e—i + 1—e,
- But, need propensity score model is correct
- Weights would be very large if propensity score is close to 0 or 1

- Can we directly learn sample weight that can balance
confounders’ distribution between treated and control?

Yes!



Directly Confounder Balancing

- Motivation: The collection of all the moments of variables
uniquely determine their distributions.

- Methods: Learning sample weights by directly balancing
confounders’ moments as follows

- W

The first moments of X ] [ The first moments of X ]
on the Treated Group on the Control Group

With moments, the sample weights can be learned
without any model specification.




Directly Confounder Balancing

- Motivation: The collection of all the moments of variables
uniquely determine their distributions.

- Methods: Learning sample weights by directly balancing
confounders’ moments as follows

- W

The first moments of X ] [ The first moments of X ]
on the Treated Group on the Control Group

- Estimating ATT by:  ATT — > iY(l)— > WY (0)



Entropy Balancing

j l
win W log(W)

st (IX, —XTW|2=0)
S Wi=1,W =0

- Maximum the entropy of sample weights W
- Directly confounder balancing by sample weights W

- But, treat all variables as confounders and balance
them equally



Approximate Residual Balancing

- 1. compute approximate balancing weights W as

- 2
W = argminy, {(1 — QW2 +[§ ' X, — ijH ]S.t. ST OWi=1and W, > o}

{i:T;=0}
- 2. Fit 5. in the linear model using a lasso or elastic net,

Be = argmin { So(v X B) A ()8l +a|5||1)}

{i:W;=0}

- 3. Estimate the ATT as

m:?t_ (Yt‘éc-i- Z Wi (YiObin'Bc))

{’LT,L:O}
- Double Robustness: Exact confounder balancing or regression is correct.
- But, treats all variables as confounders and balance them equally



Directly Confounder Balancing

- Recap:
- Entropy Balancing, Approximate Residual Balancing eftc.
- Moments uniquely determine variables’ distribution
- Learning sample weights by balancing confounders’ moments

The first moments of X The first moments of X
on the Treated Group on the Control Group

- But, treat all variables as confounders, and balance them equally
- Different confounders make different confounding bias



Directly Confounder Balancing

- Recap:
- Entropy Balancing, Approximate Residual Balgpns:
- Moments uniquely determine variaple~

The first moments of X
on the Control Group

- But, treat \variables as confounders, and balance them equally
- Different confounders make different confounding bias



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing (DCB)



E————— T
Differentiated Confounder Balancing

- Ideas: simultaneously learn confounder weights [ and
sample weighs W' .

min (ﬁT (X — XF;FVV))2

- Confounder weights determine which variable 1s
confounder and 1ts contribution on confounding bias.

-Sample weights are designed for confounder balancing.

How to learn the these weights?




Confounder Weights Learning
» General relationship among X, T, and Y

Y = f(X)4+T g(X)+ec mmp ATT=EGEX))

f(X) = a1 X -+ Z ainin -+ Z a,,;ijz-Xij 4+ .. 4+ Rn(X)

|
1
1
%] ijk I
I
1

[Confounder WY hts] [ Confounding bias ]
m = ATT + Ei:l Zi:Tizl %M%k - Zj:T,i:O W;M;.k) + ¢(e€).

If a;, = 0, then M, is not confounder, no need to balance.
Different confounders have different confounding weights.




Confounder Weights Learning

Propositions:

- In observational studies, not all observed variables are confounders, and

different confounders make unequal confounding bias on ATT with their
own weights.

- The confounder weights can be learned by regressing potential outcome
Y (0) on augmented variables M.

M=(X,X:X;, X;X; Xz, )



Sample Weights Learning M = (X, XX, XiX; Xp, ).

- Any variable’s distribution can be uniquely determined by the collection

of all 1ts moments.

- Learning the sample weights W by directly confounder balancing with

confounders’ moments.

min (BT M, |— (M W )2

T~

Confounders’ moments Confounders’ moments
on the Treated Group on the Control Group

|

With moments, the sample weights can be learned
without any model specification.




Differentiated Confounder Balancing

- Objective Function

st W5 <6, I8z <p |18l <v, "W =1 and W >0

The ENT[3] and ARB[4] algorithms are special case of our DCB
algorithm by setting the confounder weights as unit vector.

Our DCB algorithm is more generalize for
treatment effect estimation.




Differentiated Confounder Balancing
- Algorithm

Algorithm 1 Differentiated Confounder Balancing (DCB) JB) = (687 M, —MIW) + ulBl3 + vI8l: (12)
Input: Tradeoff parameters A > 0,0 > 0, u > 0, v > 0, Aug- +A Ej:szo(l +W;) - (Y; — M, - B)?
mented Variables Matrix on treat units M;, Augmented Vari-
ables Matrix on control units M. and Outcome Y. S - 5 )
Output: Confounder Weights 3 and Sample Weights W Jw) = (B (M- M. W)) +6[[W[2 (13)
1: Initialize Confounder Weights 3(*) and Sample Weights W (*) +A Zj:szo(l + W;) - (Y; — M; - B)?,

2: Calculate the current value of 7(W, 3)© = (W 30)
with Equation (11)
3: Initialize the iteration variable ¢ <— 0
4: I_re[Tesz __________________ |
Sp teitl , s | : In each iteration, we first
6: Update 3'* by solving 7 (8'*~")) in Equation (12) | ;
: ' — fi
7.1 Update W® by solving 7 (W *~Y)) in Equation (13) ! update ﬁ by 1XIng W, and

st. 1"W =1 and W = 0.

. t) — (t) g(t) | .
81 Caleulaie J(W, 5)7 = J(W, 677) - | then update W by fixing S
o: luntil 7 (W, 3)™) converges or max iteration is reached :
io: refurn g, WS - T T T T T T m e

- Training Complexity: O (np)

- n: sample size, p: dimensions of variables



e
Experiments

- Experimental Tasks:

»Robustness Test (high-dimensional and noisy)
»Accuracy Test (real world dataset)
»Predictive Power Test (real ad application)



Experiments

- Baselines:

- Directly Estimator: comparing average outcome between treated and control units.
- IPW Estimator [1]: reweighting via inverse of propensity score

- Doubly Robust Estimator [2]: IPW + regression method

- Entropy Balancing Estimator [3]: directly confounder balancing with entropy loss

- Approximate Residual Balancing [4]: confounder balancing + regression

- Evaluation Metric:

Bias = |+« ,I::l ATT), — ATT|
SD = \/%Zle(mk_% {c{:lmk)z
MAE = LK |ATT) — ATT|
RMSE = \/ LK (ATT) — ATT)?



Experiments - Robustness Test

 Dataset
»Sample size: n = {2000,5000}
» Variables” dimensions: p = {50,100}
»Observed Variables: X = (X1,X2," " ,Xp)
X1,X2, - ,Xp e N(0,1),
»Treatment: from logistic function Ty, 4;; and misspecified function Typssp
Tiogit ~ Bernoulli(1/(1 4 exp(—>_r"¢ sc-xi + N(0,1)))), and
Tmissp = Lif D> 0" sc-ai + N(0,1) > 0, Thnissp = 0 otherwise
« Confounding rate 7,.: the ratio of confounders to all observed variables.
« Confounding strength s.: the bias strength of confounders

»Qutcome: from linear function Y};;,04, and nonlinear function Y, n1in
Yiinear = T+ Y5_1{I(mod(j,2) = 0) - (3 +T) - x;} + N(0,3),
Yoontin = T+ 35_ {I(mod(j,2) = 0) - (5 + T) - x;} + N(0,3)
+ 20 {I(mod(5,10) = 1) - § - (25 + ;- j41)},



Experiments - Robustness Test

More results see our paper!

n/p n = 2000, p = 50 n = 2000, p = 100
Te Estimator | Bias (SD) | MAE | RMSE || Bias (SD) | MAE | RMSE
—
ATT gip | 51,06 (3.725) | 51.06 | 51.19 || 143.0 (9.389) | 143.0 | 143.3

ATT 1 pw | 29.99 (4.048) | 29.99 | 30.26 || 98.24 (8.462) | 98.24 | 98.6
re =08 _ATTpg | 0.345(0.253) | 0367 | 0428 || 4.492(0.333) | 4.492 | 4.504

ATT gnT | 15.06 (IHS) 15.06 15.16 63.02 (4.551) | 63.02 | 63.19
| ATT app | 0231(0.645) | 0553 | 0.685_]| 2.909.(0.491) | 2.909 | 2951

ATTpcp | 0.003 (0.127) | 0.102 | 0.127 || 0.020 (0.135) | 0.114 A3

- Directly estimator fails in all settings, since it ignores confounding bias.

- IPW and DR estimators make huge error when facing high dimensional
variables or the model specifications are incorrect.

« ENT and ARB estimators have poor performance since they balance all
variables equally.



Experiments - Robustness Test

More results see our paper!

n/p n = 2000, p = 50 n = 2000, p = 100
e Estimator | Bias (SD) | MAE | RMSE || Bias (SD) | MAE | RMSE
ATT g | 51.06(3.725) | 51.06 | 51.19 || 143.0 (9.389) | 143.0 | 1433
ATTrpw | 29.99 (4.048) | 29.99 | 30.26 || 98.24 (8.462) | 98.24 | 98.60
re =0.8 | ATTpgr | 0.345(0.253) | 0367 | 0428 || 4492 (0.333) | 4.492 | 4.504
ATTent | 15.06(1.745) | 15.06 | 15.16 || 63.02 (4.551) | 63.02 | 63.19

_ATT spg | 0231(0645) | 0553 | 0.685 || 2.909 (0.491) | 2.909 | 2.951_|]
ATTpcp | 0.003(0.127) | 0.102 | 0.127 || 0.020 (0.135) | 0.114 | 0.136

Our DCB estimator achieves significant improvements over
the baselines 1n different settings.

Our DCB estimator 1s very robust!




Experiments - Robustness Test

- Sample Size 200

- Dimension of variables 5

- Confounding rate

. L
- Confounding strength < 100/

(b) dimension of variables p

The MAE of our DCB estimator 1s consistent
stable and small.




Experiments - Robustness Test

60 . 150 ' ' ' 200 '
R dir dir 19 4 Q—?FI:W
50 | S DA
h - ENT 150}
40t —¥—ARB | - 100¢
e 1 e :1:_1 EEJ 100
< 30} (X 4 < '
o Ii) N
= f 5000 10000 = =
20¢ 1
50}
10} 1
]
0O 2000 4000 éEO(_JO 8000 10%00 O0
Sample Size Confoundlng Rate
(a) sample size n (d) confounding strength s (¢) confounding rate 7

Our DCB algorithm 1s very robust for
treatment effect estimation.




Experiments - Accuracy lest

- LalLonde Dataset [5]: Would the job training program increase people s earnings
in the year of 1978?

- Randomized experiments: provide ground truth of treatment effect

- Observational studies: check the performance of all estimators

- Experimental Setting:

- V-RAW: variables set of 10 raw observed variables, including employment,
education, age ethnicity and married status.

- V-INTERACTION: variables set of raw variables, their pairwise one way
interaction and their squared terms.



Experiments - Accuracy lest

Results of ATT estimation

Variables Set V-RAW V-INTERACTION
Estimator m Bias (SD) A/T\T Bias (SD)
ATTair | -8471 | 10265 (374) || -8471 | 10265 (374)
ATT pw | -4481 | 6275 (971) || -4365 | 6159 (1024)
ATTpr | 1154 | 639491) || 1590 | 204 (812)
ATTenxt | 1535 | 259(995) | 1405 | 388 (787)
ATTare | 1537 | 257.(996) | 1627 | 167 (957)

chB 1

Our DCB estimator 1s more accurate than the baselines. ‘

Our DCB estimator achieve a better confounder
balancing under V-INTERACTION setting.




Experiments - Predictive Power
- Dataset Description: 2015 g

* Online advertising campaign (LONGCHAMP)
- Users Feedback: 14,891 LIKE; 93,108 DISLIKE

» 56 Features for each user
- Age, gender, #friends, device, user setting on WeChat

- Experimental Setting:
- Qutcome Y: users feedback ===
- Treatment T: one feature

Y =1, 1f LIKE
Y =0, 1f DISLIKE

Select the top k features with high causal effect for prediction




Experiments - Predictive Power

0.5

'--{-twdir .
‘_ ~< MR - Two correlation-based feature
MRMR . .
0.45; Pw 1 selection baselines:
—¥—DR .
Ll SN > P > S 'gf\g{, » MRel [6]: maximum relevance
<L 04 R = - .
= e _3‘11 . [7]: Maximum relevance
ol and minimum redundancy:.
0.35} :

0 2 4 5 8
Top k features selected

» Our DCB estimator achieves the best prediction accuracy.
» Correlation based methods perform worse than causal methods.




Summary: Directly Confounder Balancing

- Motivation: Moments can uniquely determine distribution
- Entropy Balancing

- Confounder balancing with maximizing entropy of sample weights
- Approximate Residual Balancing

- Combine confounder balancing and regression for doubly robust
- Treat all variables as confounders, and balance them equally
- But different confounders make different bias

- Differentiated Confounder Balancing (DCB)

- Theoretical proof on the necessary of differentiation on confounders
- Improving the accuracy and robust on treatment effect estimation



Summary: Methods for Causal Inference

- Matching Limited to low-dimensional settings

- Propensity Score Based Methods
- Propensity Score Matching Treat all observed

- Inverse of Propensity Weighting (IPW) variables as confounder
- Doubly Robust

- Data-Driven Variable Decomposition (D2vD) |Not all observed variables
: : are confounders
- Directly Confounder Balancing

- Entropy Balancing Balance all confounder
- Approximate Residual Balancing equally

- Differentiated Confounder Balancing (DCB) Different confounders
make different bias
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OUTLINE

PART I. Introduction to Causal Inference

PART Il. Methods for Causal Inference

PART Illl. Causally Regularized Machine Learning
PART IV. Benchmark and Open Datasets

PART V. Conclusion and Discussion



OUTLINE

PART I. Introduction to Causal Inference

PART Il. Methods for Causal Inference

PART lll. Causally Regularized Machine Learning
Causal Inference for Stable Prediction
Causal Inference for Offline Policy Evaluation

PART IV. Benchmark and Open Datasets

PART V. Conclusion and Discussion



Causal Inference for Stable Prediction
- CAN and CANNOT of predictive models

Yes

Maybe

No




Why they fail”?

- The fault of Data
- IID hypothesis (violated often)

- Sample selection bias result in distribution shift

- More serious in small-sample learning

- We CANNOT control the generation of testing data

Training Distribution

A

Test Distribution

A




Why they fail”?

- The fault of Model

- Correlation based model

- Three sources of correlation: Causation, Confounding, and Selection Bias
(Invariant Causation and Spurious Correlation)

- Idea: Causally Regularized Stable Learning

Test Distribution

Training Distribution

A




Stable Prediction

- Stable Prediction

Testing

Distribution 1 Accuracy 1 — l.I.D. Learning

_____________________________

Training
Distribution 2 Accuracy 2

Stable
VAR (Acc) Prediction

Distribution 1 By i
Distribution 3 Accuracy 3

————————————————————————————

Distribution n Accuracy n - Transfer Learning

_____________________________

Stable Prediction across Unknown Testing Data



Why would a predictive model not be stable?

» Prediction / Classification
- X: vector of features; Y = {0,1} =k
- Environment: joint distribution of X and Y, denoted as P(XY) ‘% ‘ ) 3 r
*Suppose X = {S,V},and Y = f(S) + ¢ S =

- S: set of stable (causal) features

- I/: set of non-causal features
- P(Y|S) 1s stable, but P(Y|V) is not stable
- Why would a predictive model not be stable?
- Dependence issue, Y is not independent with V' (Spurious Correlation)
- Environment shift issue, P(XY)trqining # P(XY)testing



Why would a predictive model not be stable?

- Dependence issue s) s s
X ={5V},andY = f(S) + ¢ (—- - N |
. oo o (v
» Diagram (b) & (¢): s LVC g)h . C(C)vﬁ o
* Y 1s not independent with V Figure 1: Three diagrams for stable features S, noisy features

V, and response variable Y.

*Diagram (a): Y LV
» Selection bias, leading to Y is not independent with V
- Some v € V would be learned as important predictors

- Environment shift issue
- P(XY) = P(Y|X)P(X) = P(Y|S)P(X) (assume P(Y|S) is stable)

- Selection bias 2 P(X)training  P(X)testing = Corr(Vraining Y training)

Y 1s not independent with V 2 Corr(Vtesting» Ytesting)



Related Work — address env. shift problem

- Covariate shift
- Kernel mean matching [1], maximum entropy [2], robust bias-aware [3]
- Importance weights: mimic the distribution of testing data to training data

ftesting (X)
7’1/11—{{.10 mh:,ln E t(rz)inlng(x)f(y|x) ftraining (X)

= mml, @i (Y = h(X)?)]

(Y — h(X))’

- These methods require prior knowledge of testing data

- These methods 1gnore the dependence 1ssue
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Related Work

- Invariant Component Learning
- Invariant prediction [4], domain generalization [5]
» Assume P(Y|S) is stable across environments

- Finding a subset/representation of features S’, such that P(Y|S") is
invariant across all observed multiple environments

- Their performance depends on the diversity of their training data

- They could still have dependence issue on V', if P(Y|V") is also invariant
across observed environments



Challenges

- Dependence challenge
- Y 1s not independent with V
-Some v € V would be learned as important predictors

- Environment shift challenge
> The joint distribution P(XY) 1s different across environments.

: Corr(Vtraining: Ytraining) 2 Corr(vtesting: Ytesting)
- Can be addressed 1f V' L Y on training environment

- Unknown testing environments challenge
» No prior knowledge on future testing data.
- Can be addressed 1f V' L Y on training environment



Challenges

- Dependence challenge
- Y 1s not independent with V
-Some v € V would be learned as important predictors

- Environment shift challenge
> The joint distribution P(XY) 1s different across environments.

: Corr(Vtraining: Ytraining) 2 Corr(vtesting: Ytesting)
- Can be addressed 1f V' L Y on training environment
- Unknown testing environments challenge

Key Challenge: How to make V LY
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Linking to Causality

-OQutcome generating mechanism
Y=f()+¢e X={S5V}
- Difference between S and V

- S has causal effecton Y,

-but V has no causal effecton Y.

-Our idea: Recover causation between X and Y, such that
V LY, and only S 1s correlated with Y



Towards stable prediction

Discard spurious correlation and embrace causality.

G(Xr) @ Estimate the correlation effect

of variable 7 and output ¥V
Typical Correlation Framework without evaluating the

relationships between X and 7
(%)
Estimate the causal effect of
variable 7 on output ¥V
@ @ With balanced confounder X
(A/B Testing)

Typical Causal Framework




Causal Inference by Exactly Matching

Analogy of A/B Testing

Given a feature T

Find out the sample pairs that one contains
T while the other don’t, but they are similar
in all other features.

Typical Causal Framework Calculate the difference of Y distribution in

treated and controlled groups. (correlation
between T and Y)

The requirement is too strong and we can hardly find satisfied groups

of samples.




Causal Inference by Confounder Balancing

Analogy of A/B Testing

Given a feature T

Assign different weights to samples so that
the samples with T and the samples without
T have similar distributions in X

Typical Causal Framework Calculate the difference of Y distribution in

treated and controlled groups. (correlation
between T and Y)

Too many parameters. For N samples and K features, we need to

learn K*N parameters. Not learning-friendly.




Global Balancing: bridging causality and prediction

Analogy of A/B Testing

Given ANY feature T

Assign global sample weights to samples so
that the samples with T and the samples
without T have similar distributions in X

Typical Causal Framework Calculate the difference of Y distribution in

treated and controlled groups. (correlation
between T and Y)

Reduce the parameter number from K*N to N.



Causal Regularizer and Theoretical Guarantee

- Causal Regularizer (Approximate global balancing)
- Making any two variables in X become independent by learning a global
sample weights W

2
X! ;-(WeX,;) B X! -(Wo(1-X. ;)

WT.X.,J- ¢ WT'(I—X.J)
0

PROPOSITION 3.3. If0 < P(X; = x) < 1 forallx, where P(X; = x) =
2 ¥ I(Xi = x), there exists a solution W* satisfies equation (4) equals
0 and variables in X are independent after balancing by W*.

>E , (4)

2



Causally Regularized Logistic Regression

- Global Balancing Regression (GBR) Algorithm

min I.{Zle Wi - log(1 + exp((1 - 2Y;) - (X;@J\)v] (5)
/ 2 N

5.t [zj;l E AT,\]\W > 0,

/ Y \

S IWI < Ao, 1B < As, N1l < Aay (R, Wi~ D)* < As

Sample re-weighted : Causality
[ logistic loss ] [ Causal Regularizer ] [ Coefficients

X! -(wox,;) X! (wo(-X.,)))
WT X wT.(1-X. ;)

- Causality Coefficients: explainable and stable
- Linear model



T
Challenges from the Wild Big Data Era

- High dimensional predictors

g g g g S S S S g -

- Hundred and thousand variables | T

- Dimension reduction

- Non-linear predictions

- Non-linear relationship between L : :
predictors and outcome variable | T T e

- Non-linear function

- Deep Auto-Encoder L A — A 5

Qutput data X'




From Shallow to Deep - DGBR

Deep Global Balancing Regression Algorithm

Unsupervised Component Unsupervised Component
(Deep Auto-Encoder) (Global Balancing)
o= —----- () Rttt eiets
| X : -  ox )&
I |
W '
: , = | P(X.,—2) X
I t I ,
I e0 e I I L N
| pEmshoos--bqsssssmssa-i-oof
v L 2X) Y = h(s(X), W) [— Gl X ) i
1T N it | Supervised Component |\
I 4 I (Stable Prediction) :
| |
| | :
| | I
: X ! ! L_oX. ) X

Figure 2: The framework of our proposed DGBR model.
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Theoretical Analysis et |~ o

2

- The components of X could be mutually independent in the
reweighted data.
PROPOSITION 1. If0 < P(X; = x) < 1 forallx, where P(X; = x) =

L ¥ 1(X; = x), there exists a solution W* satisfies equation (4) equals
0 and variables in X are independent after balancing by W*.

* Our GBR algorithm can makeV 1LY

PROPOSITION 2. If0 < P(X::’ = x) < 1 for all x in environ-
mente, Y¢ and V€ are independent when the joint probability mass
function of (X¢,Y€') is given by reweighting the distribution from
environment e using weights W*, so thatpe’ (x,y) = p°(ylx)-(1/]X]).



Theoretical Analysis S|, |, @
- The components of X could be mutually independent in the
reweighted data.
ProrosiTION 1. If0 < P(X; =x) < 1 forall x, where P(X; = x) =

2 3 1(X; = x), there exists a solution W™ satisfies equation (4) equals
0 and variables in X are independent after balancing by W*.

* Our GBR algorithm can makeV 1LY

PROPOSITION 2. If0 < P(X::’ = x) < 1 for all x in environ-

Propositions

&2 suggest that our GBR algorithm can make

a stable

orediction across unknown environments




Theoretical Analysis

- Our DGBR algorithm can preserve all properties of the GBR
algorithm while making the overlap property easier to satisfy
and reducing the variance of balancing weights.

* Our DGBR algorithm can enable more accurate estimation of
P(Y|S).

» More details could be found in our paper.



Experiments

- Baselines:
- Logistic Regression (LR)
- Deep Logistic Regression (DLR): LR + Deep Auto Encoder

* Evaluation Metric:
- RMSE, Average Error, Stability Error

Average_Error = ﬁ Y ecg Error(D°), (1)

Stability Error= \/ISﬁ Y ece (Error(D€) — Average_Error), (2)



Experiments on Synthetic Data

S S

- Data generating /@
X = {S,V} is binary. OROIOROIORO
’ Y — h (f (S) + E) IS also blnary Figure l:Tl(::eld‘i/agramsf(:x)'ss’;l:{le feature(cs):, :osisyfeatures

V, and response variable Y.

- Environments generating
- Changing Pyy by sample selection with the bias rate: r
* Varying P(Y|V):
-if V =Y, then p(selected) = r, otherwise p(selected) = 1 —rr.
- Different r means different environments
 Note that: ¥ > 0.5 implies Corr(V,Y) is positive



Experiments on Synthetic Data /@
-Setting S LV @ @

- Trained on one environment = 0. 85, and @S LV

tested on all environments r = {0.1, ..., 0.9}

- Different r means different environment 0.8 ' o
- > 0.5 implies Corr(V,Y) is positive Z; lii@?
- Traditional and DLR failed %’J 0.5
- GBR (dark blue) is more stable than o
- DGBR (Red) 1s more stable than DLR ZZ ‘ | |
- DGBR 1s more stable and precise than GBR Y ontestdata

(f) Trained on n = 2000, p = 20, r = 0.85



Experiments on Synthetic Data

- More settings: varying n, p, and r

0.7 0.7 " . , 0.7

-&-DGBR ; -=-DGBR : -2-DGBR

‘ -©-GBR 0.6} --GBR | 0.6 -©-GBR |.
06 #-DLR +#DLR “#-DLR

LR 05} LR | 0.5 LR |

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
r on test data r on test data r on test data

(b) Trained on n = 1000, p = 20, r = 0.75  (e) Trained on n = 2000, p = 20, r = 0.75  (h) Trained on n = 4000, p = 20, r =0.75

Vary sample size n



Experiments on Synthetic Data

- More settings: varying n, p, and r

0.7 : 0.7 .
-=-DGBR -=-DGBR
0.6+ -©-GBR |. 0.6 ; -©-GBR
#DLR o #DLR |]
05 LR LR
7 g 0 ‘
= 0'4CM 1 =
(o a C 04} 4
0.3 -‘\e-hehﬁ, .
0.2} . 0.3 . ]
0.1 b—— : 0.2 b— —

0.2 0.4 0.6 0.8 0.2 0.4 0.6

0.8
r on test data r on test data
(a) Trained on n = 4000, p = 20, r = 0.75 (b) Trained on n = 4000, p = 40, r = 0.75

Vary variables’ dimension p

>

b . -i
0.6 0.8

r on test data

(¢) Trained on n = 4000, p = 80, r = 0.75



Experiments on Synthetic Data

- More settings: varying n, p, and r

0.45, : 0.7 —— : : 0.8 - :
-8-DGBR ; -=-DGBR - -=-DGBR
04} -©-GBR | 0.6 0.7
‘ -#DLR
LR 0.5 0.6
w 0.35 1 w w
2 204 205
C 03} ; : o o
*sﬁ 0.3 0.4
025} | 0.2 0.3
0.2 : . . : 0.1 b—— . . 0.2 ‘ A .
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
r on test data r on test data r on test data
(d) Trained on n = 2000, p = 20, r = 0.65 (e) Trained on n = 2000, p = 20, r = 0.75 (f) Trained on n = 2000, p = 20, r = 0.85

Vary bias rate r on training environment



Experiments on Synthetic Data /@\ @\
OROIONRO

- More settings: setting S22V (S is the cause of V) 45—y ©V s
setting V-2S (V is the cause of S)

0.7

' [=DGBR " [=DGBR

-©-GBR * -©-GBR
0.6+ %DLR | 06} -%DLR |]
LR LR
w 0.5 ] w 0.5+ ]
%) %)
= \1\ =z
PERS - tr04tijjifEEE;;;;;:;=qp-qh=;
~ O 5 o o y 0
I L |
02 - t — 02 A :
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
r on test data r on test data

The RMSE of DGBR is consistently stable and small across
environments under all settings.




Experiments on online advertising

- Dataset Description:
* Online advertising campaign (LONGCHAMP)
- Users Feedback: 14,891 LIKE; 93,108 DISLIKE

- 56 Features for each user

- Age, gender, #friends, device, user setting on WeChat

- Experimental Setting: vV =1 if LIKE

- Outcome Y: users feedback == v _( if DISLIKE
- Setting: generating environment with users’ age.

138



Experiments on online advertising

- Environments generating:

- Separate the whole dataset into 4 environments by users’ age, including
Age € [20,30), Age € [30,40), Age € |[40,50), and Age € [50,100).

e - , S 0.42
0.45} 0l L
B
& 0.38 I
= %5 0.36 |
o S
0.35] uj|0.34»
$0.32}
o
H 2 03
[20,30) [30,40) [40,50)[50,100) < LR DLR GBR DGBR
Age
Fig. 15: Prediction across environments separated by age. The Fig. 16: Average_Error and Stability_Error of all algo-

rithms across environments after fixing P(Y’) as the same with

models are trained on dataset where uses’ Age € [20,30), but
its value on global dataset.

tested on various datasets with different users’ age range.



Experiments on image classification

- Source: YFCC100M
- Type: multi-tags and high-resolution
- Scale: 10-category, each with nearly 1000 images

- Method: one major object tag (as category label) and 5 context tags
which are frequently co-occurred with the major tag

S

S
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Experiments on image classification
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Experiments on image classification
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Summary: Causally Regularized Stable Learning

- Today’'s Machine Learning:
- Correlation Based
- Correlation: causation, confounding, selection bias (Spurious Correlation)

- To know the hows but not the whys
« ko B 5, fa R 4o B AT LS

- Causally Regularized Stable Learning
- Causal regularizer
- Recover causation from correlation
- Causation based stable learning
- Improving interpretability and stability on prediction
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OUTLINE

PART I. Introduction to Causal Inference

PART Il. Methods for Causal Inference

PART Illl. Causally Regularized Machine Learning
Causal Inference for Offline Policy Evaluation

PART IV. Benchmark and Open Datasets

PART V. Conclusion and Discussion



User Interactive systems
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Interactive System Schema

Utility: U(my)
Average feedback

Algorithm
Policy m

Action Y = my(X)

O VouTube x  + -0
C @ httpsy//www.youtube.com % 0

= DYoulube Q o B
BTRIAAT

Aventura - Inmortal (Official Marshmello - Here With Me Jonas Brothers - Cool BLACKPINK - Kill This Love'
Video) Feat. CHVRCHES (Official... (%
Jonas Brothers
Romeo Santos ¢ Marshmello 60875 O - BLACKPINK ¢
1 10675 200 - 16147 738775 RO - 1 KA

CE,
BRUDER EXP-6 EXPEDITION How | Converted A VAN into $1:E37 Camping by an Why does the 2019 Honda
TRAILER (Detailed) - 2019 an OFF GRID CAMPER for... Alaskan river; nothing bette... Civic Type R cost MORE tha...

Bruder Vegan Earth & Soul @ Lifestyle Overland Raiti's Rides



Search engine

- Context X:
* Query

«Action Y = my(X):
- Top-k ranking results

-Feedback 0 (X,Y):

» Click or not

G data mining - Google #E X ar

< c

Google

& https://www.google.com.hk/search?newwindow=1&safe=strict&ei=fkaoXMKrN-WKr7wPocOO2AQ&q=data+...

data mining $ Q

What is data mining? | SAS

https://iwww.sas.com > SAS Insights » Analytics Insights v ElZEIHE

Data mining is the process of finding anomalies, patterns and correlations within large data sets to
predict outcomes. Using a broad range of techniques, you can

What is data mining? - Definition from Whatls.com - SearchSQLServer
https://searchsqlserver.techtarget.com/definition/data-mining v EFItm

Data mining is the process of sorting through large data sets to identify patterns and establish
relationships to solve problems through data analysis. Data mining ...

How To Data Mine | Data Mining Tools And Techniques | Statgraphics
www.statgraphics.com/data-mining v EHFEILR

Use Statgraphics software to discover data mining tools and techniques. Learn how to data mine with
methods like clustering, association, and more!

What is Data Mining, Predictive Analytics, Big Data
statsoft. com/textbook/data-mining-techniques/ - E:ZEIHE
Data Mining and predictive analytics help from Statsoft.

What is Data Mining - The Economic Times
https://economictimes.indiatimes.com » Definitions > Analytics v ElZLvE

Definition: In simple words, data mining is defined as a process used to extract usable data from a
larger set of any raw data. It implies analysing data patterns in

NAata Minina Muanvdiaw  Tiitarinalennint




Ads-placement systems

- Context X:

- Users’ features
«Action Y = my(X):

- Ads placed
-Feedback 0 (X,Y):

» Click or not

C @ https;//www.amazon.com B 0

amaZOn Alv Why Shop with Amazon? Learn More

Deliver to _ _ EN  Hello, Signin \Yy
@cmna Departments ~  Your Amazon.com Today's Deals Gift Cards Registry Sell Help ® - Account&Lists - Orders %= Cart

Women's Dresses F Sign in for the best
—_— N experience (6
N

Shop by Category Men's Dress Shoes

‘ Sign in securely ‘

* Buy or not




Video Recommender System

- Context X:

- User features
«Action Y = my(X):
- Videos recommend

-Feedback 0 (X,Y):

» Click or not
- Watching time

B YouTube X + N a
C & https://www.youtube.com * O
2 YouTube g5 Q HHEN -~ B =R

B TRRAT

Aventura - Inmortal (Official Marshmello - Here With Me Jonas Brothers - Cool BLACKPINK - 'Kill This Love'
Video) Feat. CHVRCHES (Official... . M/V
Jonas Brothers J
Romeo Santos 4 Marshmello & 60877 AWME - 1 F& BLACKPINK J
4T R0E - 1 KA 10673 RXE - 16 /MRl 73875 RWE - 1 XAl

=
- e—

BRUDER EXP-6 EXPEDITION How | Converted A VAN into S1:E37 Camping by an Why does the 2019 Honda
TRAILER (Detailed) - 2019 an OFF GRID CAMPER for... Alaskan river; nothing bette... Civic Type R cost MORE tha...

Bruder Vegan Earth & Soul @ Lifestyle Overland Raiti's Rides




Offline Policy Evaluation

-Log Data from m,: samples indexed by 1,2,:-+,n
S = ((Xli Yl) 51): (XZJ YZ» 52)1 Y (Xn' Y‘ru 611))

. @
* Properties

- Contexts X; are drawn 1.1.d from unknown Pr(X)
- Actions Y; are decided by the existing policy my: X = Y
- Feedback 6; are from unknown feedback function §: XXY — R

How to evaluate a new policy m ?
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Policy Evaluation: Online A/B Testing

- A/B Testing:

- Deploy a new policy 7 1n the interactive systems

* Draw X ~ Pr(X) , select Y ~ n(Y|X)., and get 6(X,Y)
- Drawbacks:

 Long turn-around time

» Costly, number of A/B Testing limited

- May be detrimental to the user experience

- Big Data Era
* Lots of logged data

How to evaluate a new policy m offline with logged data ?



e
Offline Policy Evaluation
- Given the logged data from a past (existing) policy m,:
S — ((Xli Yl) 61)1 (XZI YZ' 52)' Y (XTU YTU 671))

- Goal: to estimate the utility of a new policy m:

U(r) = BEx-prx), v~y x) [0(X, V)]

- Utility: the average feedback of policy over the population



Rt e () = [5(X, Y)]!

EX~Pr(X), Y~z(Y|X)
Challenges of Offline Policy Evaluation

Distribution shift induced by the past policy
Y 1s assigned based on X through m,(Y|X)

Pr(X|Yy, = i) # Pr(X|Yy, =j) # Pr(X)

Distribution on
the population

Pr(X)

Action discrepancy induced by the new policy
m(Y|X):Y 1s assigned through (Y |X)

(Y = i|X) # 7(Y = j|X)

(Y = k|X) ~ 0 : No context X will be assigned to Y=k
under m, hence distribution shift from Distribution with Distribution with
action Y=k does not affect results the past policy 7y the new policy

/ SyPr(X| V)

I/ \\ '\ aes ’, , N
1 _ =\ ,’,__‘:\_, ~. ’ A
| Pr(X|Y = 1)/;/, “{Pr(X|Y = i)
\ 7/ W h

/7

I

Pr(X|Y = )\, S
7 ‘~~__,'/
/ T~

\ /’l _\\
oo HPrX[Y =)
//_\\ \\ /I

Focus on the action group with high value of = (Y = i|X)
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Related Work

» Direct method (DM) directly estimate the feedback function 5(X,Y)
by utilizing the logged data to predict the feedbacks of actions
chosen by the new policy 7.

N 1 <& N
Upm(r) = ~ 71 Xy 6(Xi, Yj)m(Y;1Xi)
i=1Y;e

- Direct method 1s unbiased if the feedback model 1s correct.

- But we hardly know the real underlying feedback function, and
it ignores the distribution shift induced by the past policy.
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Related Work

- Inverse propensity score (IPS) estimator use the propensity score
(the probability of the chosen action 7(Y|X) ) to reweight sample:

~ 1 . 7(Yi|X;)
Urps(r) = = ) di=
n ; 7o (Yi|X;)

- IPS 1s unbiased if propensity score model 1s correct.

- But we have no prior knowledge on propensity score model
- High variance 1f propensity score 1s close to 0 and 1
- Ignoring the action discrepancy induced by new policy



e
Related Work

* Doubly Robust (DR) estimator combined IPS estimator and
direct method:

Opr(r) = =~ 37 3" #(¥IX;) \E(Xi, )+ 2o - 506 )
i=1YelY L

- DR estimator 1s unbiased 1f either propensity score model or feedback
model 1s correct

- But one cannot guarantee the specified model 1s correct
» Moreover, 1t still 1ignores the action discrepancy induced by new policy



Summary on Related Work

- Distribution shift induced by the past policy

- Y 1s assigned based on 1, (Y|X) Related Work
Pr(X|Yy, =i) # Pr(X)
- Action discrepancy induced by the new policy

n(Y]X) Remain Challenges

7(Y = i|X) # 7(Y = j|X)

7(Y = k|X) ~ 0 : No X will be assigned with Y=k
under 1, hence distribution shift from

action Y=k does not affect results MOdGlS dependency
Focus on the action group with high (Y = i|X)




Context Balancing

- Context Balancing: a non-parametric method based on directly covariate
balancing to correct the distribution shift induced by the past policy

- Learning sample weights W in each action group k as follows:

—————————

————————————

. '1 g /"\‘| { 2
Wy=k = arg min |~ > M3+ 1" w;-M; |5,
’_,.W'sz |\n : - . 1o~ \

———————————

é — = .\.\.\'\.\
The distribution [M XXX X X XX X }] ~.| The corrected
on the population : | S | distribution

\

- With sample weights W = {Wy_;, Wy_,,--- ,Wy_k}, CB estimator 1s

Remove the model dependency

Ucp(m) = Z r(YilXi)Wio But ignore action discrepancy

=1



e
Focused Context Balancing (FCB) estimator

- Context Balancing: learning sample weights by directly
variables balancing

il
Wy=k = arg min |- ;Mi —j.YZij My ;
= Y2

- Focused Context Balancing: focusing on the action group with
high probability when learning sample weights:

n
1
Wy = arg min | D (Y =kXMi~ » Wir(Y = kXM, [;

i=1 \V

[ Focused Component ]




Theoretical Analysis

- Taylor's expansion of feedback function on the context:
S(X,Y = k) = ay—p-M where M = {X, X% X ;X ;, X3, X ;X X .-}
U(r) = X0, Win(Y = Y;|X;)8(Xi,. Vi)
= Xkey Ay=k Liy,=k Win(Y = k[X;, )M;,
= Yrey Ay=k | Disv,=k Wir(Y = k|X; )M;, — £+ ¥ 2(Y = k|X; )M; |

1 n _ . .
*Llkel Fy=ky Zi=l (Y = klX;,)M;, Distribution shift induced by past policy
= Ykey ay=kBr + ; XL, Zkey 0(Xi,, Y =k)n(Y = k|X;,) Action discrepancy from new policy

S S S R S e R S -

The adjusted The target
distribution [ Focused Component ] distribution




Focused Context Balancing algorithm

- Objective Function: [ Focused Compone”t]
n
. 1 2
min | YZk Wil (Y = k|Xi, )M, - 2 (Y = kIXi )M
s.L. ZWI-ZS)L ZWizlandWZO, (7)
i:Yi=k i:Yi=k

- Policy Evaluation:

n
Urcp(r) = ) m(YilX;)W;d;.
=1



Experiment

- Baselines:

- Direct Method: regressing on an estimated feedback function to evaluate the effect of new policy.
« R-IPS: IPS estimator + roughly estimated propensity score not associated with context.

- E-IPS: IPS estimator with estimated propensity score

« T-IPS: IPS estimator with the true propensity score

- SN-IPS: IPS estimator with estimated propensity score + Normalized sample weights

- Doubly Robust: IPS estimator with estimated propensity score + Direct Method

-+ CB: covariate balancing to learn sample weights + ignoring distribution shift induced by new policy.
- Evaluation Metric:

Bias = |+Y1 U(n)i-U(n)
SD = \JE3L,(O)i-+ 3L, U(m)i)?
MAE = L3, |U()i-U(x)

RMSE = /L3I, (@(x); - Un)?



Experiment - Simulations

- Dataset
- Sample size: n = {5,000, 10, 000}
- Context dimension: p = {50, 100}

- Observed context: X = (x1,x2, ...., xp) X1, X240 Xp iid Bernoulli(0.5)

- Policy to be evaluated: from sigmoid function

nsig(Y = 1|X) = 1/(1 + e~ Zi=

- Logged policy: from inverse proportional function, constant function and linear function

P (xi-0.5,>)

Tino(Y =11X) = 1/(1+3%;xi/p) + N (0,0.1)
munilY =11X) = 05+ N(0,0.1)
min(Y =11X) = Zixi/p+N(0,0.1)

- Feedback function: from linear and non-linear function
Stinear = Y+ Xb_ {I(imod2 = 0)- (4 + Y)xi} + N(0,3)
Snontin = Y+ Xh_ {I(imod 2 =0)-({ + Y)x;} + N(0,3)

+ Y {I(imod 5 = 0)- (£ + Y)xixi+1)



Experiments on Synthetic Data

- Part of simulation results:

Setting 1:6 = Sjinear

n/p n = 5000,p = 50 n = 5000, p = 100 n = 10000, p = 50 n = 10000, p = 100
7o | Estimator | BiasSD) | MAE | RMSE | Bias(SD) | MAE | RMSE | BiasSD) | MAE | RMSE | Bias(SD) | MAE | RMSE
Ur-1ps(r) | 7.306(1.632) | 7.305 | 7.486 | 21.03(6.842) | 21.03 | 22.11 | 7.083(1399) | 7.083 | 7.220 | 20.31(6.726) | 20.31 | 21.40
,ﬁn.-\d.(.ﬂ-- ~2J6800.505) L 2168 12226 L 3612001274 L3612 L 3832 L 1L953(0.302) (1993 L 1.975 (343 L104) | 3439 L3620
" Up.1ps () | 0.120(0923) | 0.787 | 0927 | 0577(3.865) | 2.983 | 3.905 | 0.102(0.742) | 0.641 | 0.746 | 0.012(3.015) | 2346 | 3.012)
VUr_ps(m) | 0.111(1.837) | 1.496 | 1.839 | 0.058(7.736) | 5911 | 7.741 | 0.197(1.769) | 1.486 | 1.780 | 0.360(7.382) | 5.885 | 7.395!
‘ﬁgf}';s-(z-r)' —0.074(0.653) 7| 70.540° | 0.659 | 0.0T3(1.696) | 12527 I.69T 7 0.032(0438) | 0.350 | 0.438 | 0.430(T.299)" | I.176 T '131'5’
Upr(7) | 0.056(0576) | 0.476 | 0581 | 0.031(1.531) | 1.079 | 1.512 | 0.021(0398) | 0.312 | 0.393 | 0.364(1.118) | 0974 | 1.197
Ucp(r) | 0.058(0938) | 0.755 | 0942 | 0.093(3.363) | 2.739 | 3.348 | 0.164(0.596) | 0.499 | 0.620 | 0.256(2.681) | 2.153 | 2.709

Upcp(m) | 0.008(0.492) | 0.404 | 0.494 | 0.128(1.250) | 0.904 | 1.295 | 0.014(0.345) | 0.285 | 0.357 | 0.213(0.935) | 0.775 | 0.972

Tinv

Estimated propensity score is better than true propensity score.
True propensity score is closer to 0 or 1, leading to high variance.




Experiments on Synthetic Data

- Part of simulation results:

Setting 1:6 = Sjinear

n/p n = 5000,p = 50 n = 5000, p = 100 n = 10000, p = 50 n = 10000, p = 100
7o | Estimator | BiasSD) | MAE | RMSE | Bias(SD) | MAE | RMSE | BiasSD) | MAE | RMSE | Bias(SD) | MAE | RMSE
Ur-1ps(r) | 7.306(1.632) | 7.305 | 7.486 | 21.03(6.842) | 21.03 | 22.11 | 7.083(1399) | 7.083 | 7.220 | 20.31(6.726) | 20.31 | 21.40
GDM(JT) 2.168(0.505) | 2.168 | 2.226 | 3.612(1.274) | 3.612 3.832 1.953(0.302 1.953 1.975 | 3.439(1.104) | 3439 | 3.620
UE-IPS () | 0.120(0.923) | 0.787 | 0927 | 0.577(3.865) | 2.983 | 3.905 | 0.102(0.742 0.641 0.746 | 0.012(3.015) | 2.346 | 3.012
Ur.rps(r) | 0.111(1.837) | 1.496 | 1.839 | 0.058(7.736) | 5911 | 7.741 | 0.197(1.769) | 1.486 | 1.780 | 0.360(7.382) | 5.885 | 7.395
LAIE_J}’PS (7) | 0.074(0.654) | 0.540 | 0659 | 0.013(1.696) | 1252 | 1.691 | 0.032(0.438) | 0.350 | 0.438 | 0.430(1.299) | 1.176 | 1.415
_Upg(z)_ | 0.056(0576) | 0.476 | 0581 | 0031(1.531)_| 1.079 | 1.512_| 0.021(0.398) | 0312 | 0.393 | 0.364(1.118) | 0.974_| 1.197

{ch(n) 0.058(0.938) | 0.755 | 0.942 | 0.093(3.363) | 2.739 | 3.348 | 0.164(0.596) | 0.499 | 0.620 | 0.256(2.681) | 2.153 | 2.709!

L _» B B B B 1§ § N W _§ B N BN N BN BN N BEEN BN BENN BN BN BN BENN BENN NNN BEEN BN BN BN BN BN DN BN BN BN BEEN BN NN BNEN BN BN BN BN BN BENN BN BN BN BENN DNEN DNEN BEEN BEEN QENN BENN BN BEEN BENN BENN BEEN Bl EES B B . . ----’

Urpcplm) | 0.008(0.492) | 0.404 | 0.494 | 0.128(1.250) | 0.904 | 1.295 | 0.014(0.345) | 0.285 | 0.357 | 0.213(0.935) | 0.775 | 0.972

Tinv

N N N N

CB estimator performs not very well.
Because it ignores the action discrepancy from the new policy




Experiments on Synthetic Data

- Part of simulation results:

Setting 1:5 = Sinear

n/p n = 5000,p = 50 n = 5000,p = 100 n = 10000, p = 50 n = 10000, p = 100
mo | Estimator | Bias(SD) | MAE | RMSE | Bias(SD) | MAE [ RMSE | Bias(SD) | MAE [ RMSE | Bias(SD) | MAE [ RMSE
Ur-rps(r) | 7.306(1.632) | 7.305 | 7.486 | 21.03(6.842) | 21.03 | 22.11 | 7.083(1.399) | 7.083 | 7.220 | 20.31(6.726) | 20.31 | 21.40
Upm(r) | 2.168(0505) | 2.168 | 2226 | 3.612(1.274) | 3612 | 3.832 | 1.953(0.302) | 1.953 | 1.975 | 3.439(1.104) | 3.439 | 3.620
_— QE'”’S () | 0.120(0923) | 0.787 | 0927 | 0577(3.865) | 2.983 | 3.905 | 0.102(0.742) | 0.641 | 0.746 | 0.012(3.015) | 2346 | 3.012
Ur.ips(m) | 0.111(1.837) | 1.496 | 1.839 | 0.058(7.736) | 5911 | 7.741 | 0.197(1.769) | 1.486 | 1.780 | 0.360(7.382) | 5.885 | 7.395
ﬁgj}’l,s () | 0.074(0.654) | 0.540 | 0.659 | 0.013(1.696) | 1.252 | 1.691 | 0.032(0.438) | 0.350 | 0.438 | 0.430(1.299) | 1.176 | 1.415
Upr(7) | 0.056(0576) | 0.476 | 0581 | 0.031(1.531) | 1.079 | 1.512 | 0.021(0.398) | 0.312 | 0.393 | 0.364(1.118) | 0974 | 1.197
- Uca(z)_ | .0,058(0.938) | 0.755 | _0.942 | 0093(3.363)_| 2732 | 3.348_| 0.164(0.596)_| 0.499 | 0620 | 0.256(2.681) | 2.153_| 2709
! Upcp(m) | 0.008(0.492) | 0.404 | 0.494 | 0.128(1.250) | 0.904 | 1.295 | 0.014(0.345) | 0.285 | 0.357 | 0.213(0.935) | 0.775 | 0.972!

With considering the action discrepancy, Our FCB estimator can

consistently improve the performance of policy evaluation.




Experiment - Classifier evaluation

- A classifier can be defined as a policy based on a given dataset
- Features of samples~ contextX
- Predicted label of samples ~ action Y predicted by the classifier
- Feedback function: 8(X,Y)=I(Y = Y?). (Y! is the true label)
- The policy evaluation 1s equivalent to the evaluation of the classifier accuracy

- Datasets: several multiclass classification bench-mark from UCI-repository.
- The new policy to be evaluated

- Logistic regression model trained on the training set
- The past policy:

- A simple function based on one feature variable



Experiments - Classifier evaluation

Estimator Dataset:glass Dataset:wilt Dataset:pageblock Dataset:particle
Bias(SD) MAE | RMSE Bias(SD) MAE | RMSE Bias(SD) MAE | RMSE Bias(SD) MAE | RMSE
Up.rps(m) | 0.711(7.805) | 5.961 7.837 | 0.750(1.090) | 1.112 1.323 | 42.19(2.711) | 42.19 | 42.28 | 4.093(0.432) | 4.093 | 4.116
Upm(m) | 8.810(4.164) | 8.810 | 9.744 | 0.096(0.380) | 0.309 | 0.391 | 2.224(0.444) | 2.224 | 2.267 | 0.741(0.228) | 0.741 | 0.776
Ug.rps(m) | 1.648(5.707) | 4.739 | 5.940 | 0.128(0.323) | 0.267 | 0.347 | 4.723(3.991) | 5.788 | 6.184 | 0.230(0.281) | 0.287 | 0.362
Ur-rps(m) | 1.488(6.162) | 4.866 | 6.339 | 0.175(1.205) | 0.983 | 1.217 | 0.324(2.327) | 1.794 | 2.348 | 0.012(0.553) | 0.447 | 0.554
UE};]PS(H) 0.315(5.455) | 4.447 | 5.465 | 0.121(0.322) | 0.265 | 0.343 1.539(2.326) | 2.247 | 2.788 | 0.091(0.277) | 0.222 | 0.293
Ucp(r) 0.094(6.364) | 5.028 | 6.365 | 0.165(0.337) | 0.318 | 0.372 | 4.660(2.810) | 5.014 | 5.442 | 0.277(0.325) | 0.347 | 0.429
. QDR-(.ZI)- - =103505.334) L 4.420_|_5.434 1 0.129(0.323) L 02690347 o 1.734(1.978) L 2.152 12630, 1 0.124(0276). L 0228 _ _0.3.03.‘
i Upca(r) | 0562(5.242) | 4.098 | 5.273 | 0.024(0:329) | 0.250 | 0.328 | 0.747(0.617)_| 0.791 | 0.968 | 0.080(0.261) | 0.215 | 0272 )

the best for offline policy evaluation.

By simultaneously considering the distribution shift
and action discrepancy, Our FCB algorithm performs




Summary: Causal Inference for Offline Policy Evaluation

- Challenges of offline policy evaluation:
- Distribution shift induced by the past policy «=—— Related work
- Action discrepancy induced by the new policy
- Model dependency

- Focused Context Balancing
- To remove the model dependency
- Simultaneously consider distribution shift and action discrepancy
- Significantly improve the accuracy on policy evaluation
- Supporting for decision making, which policy is the best to deploy



Summary: Causally Regularized Machine Learning

-We have highly accurate predictions, but they are

not enough for: o
- Interpretable prediction e T

Ice Cream
Sales

- Stable/Robust prediction in the future
- Decision making

100 120 140 160 180 200 220 240 260
Sunglasses Sold

Algorlthm A Algorithm B
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Summary: Causally Regularized Machine Learning

- Causal Inference with Observational Data
- Recover causation from observed correlation
- Estimating causal effect for improving interpretability

- Causal Inference for Stable Prediction
- Disrupt spurious correlation, embrace causation
- Interpretable and Stable prediction in the future

- Causal Inference for Offline Policy Evaluation
- Evaluating a new policy based on the log data from a past policy
- Support decision making with the effect of new policies



OUTLINE

PART I. Introduction to Causal Inference

PART Il. Methods for Causal Inference

PART lll. Causally Regularized Machine Learning

PART IV. Benchmark and Open Datasets

PART V. Conclusion and Discussion



TOWARDS NON-L.I.D. IMAGE CLASSIFICATION:
A DATASET AND BASELINES

Correlation V.S. Causation

Training — — Testing




Non-l.|.D. Image Classification

- Non |.I.D. Image Classification

770(1)1:1‘0&11 — (Xtrainr Ytrain)) + w(Dtest — (Xtest: Ytest))

- Two tasks

- Targeted Non-1.1.D. Image Classification
- Have prior knowledge on testing data
- e.g. transfer learning, domain adaptation

- General Non-I.1.D. Image Classification Dirain Dyest

- Testing is unknown, no prior
- more practical & realistic




Existence of Non-l.l.Dness

- One metric (NI) for Non-Il.I.Dness

Definition 1 Non-I.I1.D. Index (NI) Given a feature extractor qv( ) and a class C, the degree of
distribution shift between training data DE._. and testing data Dt . 18 defined as:

train

Distribution shift

For normalization

- Existence of Non-l.I.Dness on Dataset consisted of 10 subclasses from ImageNet

- For each class
- Training data
- Testing data I

NI

- CNN for prediction - LM

4 60.00%

4 50.00%

41 40.00%

41 30.00%

0117 Sunsa

4 2000%

4 10.00%

0.00%

mmmm N1 of DatasetA ~ ==@==Error of DatasetA



Related Datasets

- DatasetA & DatasetB & DatasetC

- NI is ubiquitous, but small on these datasets
- Nl is Uncontrollable, not friendly for Non IID setting Average NI: 2.7

o ImageNet
3.5 F P

s N\

PASCAL
VOC

m DatasetA DatasetB DatasetC

A dataset for Non-l.1.D. image classification is demanded.



NICO - Non-l.I1.D. Image Dataset with Contexts

- NICO Datasets:

- Object label: e.g. dog

- Contextual labels (Contexts)
- the background or scene of a object, e.g. grass/water

- Structure of NICO
|
|
|

2 Superclasses

| per

10 Classes

per

10 Contexts

Overlapping

Diverse &
Meaningful

<



NICO - Non-l.I1.D. Image Dataset with Contexts

- Data size of each class in NICO
- Sample size: thousands for each class
- Each superclass: 10,000 images
- Sufficient for some basic neural networks (CNN)

- Samples with contexts in NICO

Pyl - |
4 & | ‘ .’ g\,\
Dog| | v ""“‘Iﬁ i w
At home on beach eating
R
Horse V
on beach in forest
Boat

on beach cross bridge

Animal DATA S1ZE | Vehicle DATA SIZE
BEAR 1609 930
BIRD 1590 1639
CAT 1479 2156
Cow 1192 1009
Dog 1624 1026
ELEPHANT 1178 HELICOPTER 1351
HORSE 1258 MOTORCYCLE 1542
MONKEY 1117 750
RAT 846 1000
SHEEP 918

'with people

in city

in street

at wharf

4

wooden

ke
e E ]

running

running




Controlling NI on NICO Dataset

-Minimum Bias (comparing with ImageNet)
-Proportional Bias (controllable)
- Number of samples in each context

-Compositional Bias (controllable)
- Number of contexts that observed




Minimum Bias

- In this setting, the way of random sampling leads to minimum distribution shift between
training and testing distributions in dataset, which simulates a nearly i.i.d. scenario.

- 8000 samples for training and 2000 sample for testing in each superclass (ConvNet)

Average NI Testing Accuracy

Animal 3.85 49.6%
Vehicle ~—__ 3.20 63.0%

Average NI on ImageNet: 2.7

more challenging for
image classification

Our NICO data is more Non-iid, more challenging

Images in our NICO
are with rich contextual
information




Proportional Bias

- Given a class, when sampling positive samples, we use all contexts for both training and
testing, but the percentage of each context is different between training and testing dataset.

iy

h At home or'1 bea.ch eatirng in cage in water i on grass in street running on snow
bominate 2 %) (%) (5%) (%)  (6%) (5%)  (5%)  (5%)
Context (55%) 45 ¢
. . N i 43 }
Dominant Ratio = —&ominant NI
N minor 2T

6:1

We can control NI by varying dominate ratio

Dominant Ratio in Training Data




N, dominant

Compositional Bias Dommant fatio ==y .,

- Given a class, the observed contexts are different between training and testing data.

Training: Training: |
Testing: Testing: ]
4.4 5.0 . Testing

1:1

4.8 } .

4.34
46 |
NI 4.2 | NI 4.44
44 |
4.1
4.2 |
4.0 4.0
7 6 5 4 3

1:1 2:1 3:1 4:1 5:1
Number of Contexts in Training Data Dominant Ratio in Training data

4.3

v

Moderate setting Radical setting

(No Overlap &

(Overlap) Dominant ratio)




T
NICO - Non-l.I1.D. Image Dataset with Contexts

- Summary on Non-iidness on our dataset
- Range of NI value for each method
- Large and controllable NI

large NI Compositional Bias -

- Targeted/General Non-I.1.D.

Proportional Bias Image Classification

Minimum Bias I

ImageNet [Sa\| LargeNI | Controllable NI
0 2.5

small NI 2.

3.0 3.5 4.0 4.5 5.0 5.5
NI

Global Balancing Method




ConvNet with Batch Balancing (CNBB)

- Confounder Balancing in the literature of Causal Inference

Confounders

X

X1T
pXIT=1) = oXI|T =-1)

Treatment

T

1 or -1

reatment Effect
Estimation \

EY|T=1)—-EYI|T =-1)
CNBB = Confounder balancing + ConvNet



ConvNet with Batch Balancing (CNBB)

—» Lossq = —Z ||gcp($z))||§

i=1

approaching to binary vari
for reducing info loss

ables

!

Dog

X>0~T, =1
X<0~T,=-1

min Lossb =
W
i

Features 3 Cat
»| 0.9..0.1..0.11 Decisions
gl 0.9...0.1...0.
= - +_
3
0.1...0.99...0.9
Y v 0'3
Batch ]
0.1
Weights

9.(X)T, - (W1 -1))|?

WT . (1-1;)

9,(X)7T, - (W oI
wT .,

st Y Wi=1, W >0

i=1

2
+a||[W]l;

global confounder balancing
for all features

L min Lossp = Z wi In(fo(ge(xi)) - yi) + ALossq
0,p

i=1

learning causal effects &
causal features jointly



Experiments

- We design four experiments according to the supported Non-I.1.D. settings of NICO:

* Minimum bias (Exp 1) (Exp2 | 1:5 | 1:1 ] 2:1[3:1 | 4:1|
- Nearly I.1.D. in NICO (average improvement 0.33%) CNN 37.17 | 37.80 | 41.46 | 42.50 | 43.23
P i | bi Exp2 CNN+BN | 38.70 | 39.60 | 41.64 | 42.00 | 43.85
- Proportional bias (Exp2) CCNBB D | 39.06 | 39.60 | 42.12 | 43.33 | 44.15

- Different dominate ratio

able 1. Performances of different methods on test accuracy (%)

- fix dominant ratio of training to 5:1 or proportional bias in Animal superclass.
- vary dominant ratio of testing from 1:5 to 4:1 | Exp3 [ 3 [ 4 [ 5 ] 6 [ 7 |
e . CNN 40.61 | 42.32 | 43.34 | 44.03 | 44.03
+ Compositional bias (Exp3) always CNN+BN | 41.98 | 38.85 | 43.12 | 44.71 | 4431
- Different observed contexts superior 41.41 | 4334 | 44.54 | 45.96 | 45.16
’ TeSting: with all contexts Table 2. Performances of different methods on test accuracy (%)

for composional bias in Vehicle superclass.

- Training: vary observed contexts from 3 to 7
| Exp4 [ 1:10 [2:10 [3:1[4:1]5:1]

- Combined Proportional & Compositional bias (Exp4)
CNN 37.07 | 35.20 | 34.53 | 34.13 | 33.73
- No overlap on the observed contexts CNN+BN | 33.87 | 32.93 | 31.20 | 3093 | 30.67
- Different dominate ratio CCNBB D || 38.98 | 36.89 | 35.87 | 35.33 | 35.02
- fix dominant ratio of testing to 1:1 Table 3. Performances of different methods of test accuracy (%)

: : . f bined tional & sitional bias in Vehicle su-
- vary dominant ratio of training from 1:1 to 5:1 p‘:rcclzgz ined proportional & compositional bas in v ehucte su




Summary on Experimental Results

- The range of NI with respect to the average improvement of performance to CNN

Experiment Improvement NI
Expl 0.33% 3.8113.93
Exp2 1.22% mdre 4.1744.53 more
Exp3 1.22% effgct 4.13}14.34 bias
Exp4 1.49% v 4.44v4.90




Analysis

- Insight of Batch Balancing Mechanism

. R . 2
_ P 9o (X)), - (WO L) g (X)L, - (W Q1 -1;)
min Lossb = Z —
W : WT .1, WT.(1-1,)
i=1 o
' s
+ ||V sty Wi=1, W >0
1=1
36.00%
35.60%
§35.20%
2
e mCNBB
£ 34.80%
E mCNN
. 34.40% .
less valid saanIes less Ealancmg degree
34.00%

1E+3 2E+3 5E+3 1E+4 2E+4 5E+4 1E+5 2E+5 5E+5
Alpha
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Summary: NICO for Non-iid Image Classification

- NICO: Non-iid image classification dataset
- Non-iid Index (NI) to describe the distribution shift
- Three ways to control NI in NICO Dataset
- Benchmark for Non-iid image classification

- The performance of benchmark is not so exciting, more
work need to do.

- How to use causal knowledge for Non-iid prediction



R ——
OUTLINE

PART I. Introduction to Causal Inference

PART Il. Methods for Causal Inference

PART lll. Causally Regularized Machine Learning
PART IV. Benchmark and Open Datasets

PART V. Conclusion and Discussion



Conclusion

Correlation-based machine learning are not enough for

Interpretable learning
Decision making
Stable/Robust prediction in the future
Correlation: causation, confounding, selection bias
Causation: Invariant and Stable across environments
Confounding / Selection bias: Spurious correlation, changeable
Causally Regularized Machine Learning:
Causal regularizer

Recover causation from correlation
Causation-based machine learning



Conclusion

- Causally Regularized Machine Learning: Causation-based
- Causal Inference for Interpretable learning
- Policy Evaluation for Decision making
- Causally Regularized Stable Prediction in the future

- NICO: Non-iid image classification dataset
- Non-iid Index (NI) to describe the distribution shift
- Three ways to control NI in NICO Dataset
- Benchmark for Non-iid image classification



Future Work and Discussion

- Correlation - Causation

CO—

Correlation Framework

Causal Framework

Recover causation from the observed correlation!



Future Work and Discussion

-With Causality, we can do:
- Recover causation for interpretability
- Help to guide decision making (actionable)
- Make stable and robust prediction in the future
- Prevent algorithmic bias (Fairness)

*Discard spurious correlation and embrace causality
Do interpretable, actionable, stable, fairness prediction



Future Work and Discussion

- Potential Outcome Framework - Structural Causal Model (SCM)
- Rubin - Pearl

Potential Outcome
Framework

Many untestable assumptions Strong prior knowledge
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