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Decision Making with Causality

•Causal Effect Estimation is necessary for decision making!
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Causal effect estimation plays an 
important role on decision making!



A practical definition
Definition: T causes Y if and only if 

changing T leads to a change in Y,
keep everything else constant.

Causal effect is defined as the magnitude by which Y is 
changed by a unit change in T.

Two key points: changing T, keeping everything else constant
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http://plato.stanford.edu/entries/causation-mani/

http://plato.stanford.edu/entries/causation-mani/


Treatment Effect Estimation
• Treatment Variable: 𝑇𝑇 = 1 or 𝑇𝑇 = 0
• Potential Outcome: 𝑌𝑌(𝑇𝑇 = 1) and 𝑌𝑌(𝑇𝑇 = 0)
• Individual Treatment Effect (ITE)

• Average Treatment Effect (ATE):

Two key points: changing T, keeping everything else constant
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𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖) = 𝑌𝑌𝑖𝑖 𝑇𝑇𝑖𝑖 = 1 − 𝑌𝑌𝑖𝑖 𝑇𝑇𝑖𝑖 = 0

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐸𝐸[𝑌𝑌 𝑇𝑇 = 1 − 𝑌𝑌 𝑇𝑇 = 0 ]



Randomized Experiments are the “Gold Standard”

• Drawbacks of randomized experiments:
• Cost
• Unethical
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Causal Inference with Observational Data
• Counterfactual problem: 
• In observational data, we have units with different T:

• Can we estimate ATE by directly comparing the average 
outcome between groups with T=1 and T=0?
• No, because confounders X might not be constant

• Two key points:
• Changing T (T=1 and T=0)
• Keeping everything else (Confounder X) constant
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Balancing Confounders’ Distribution



Related Work
•Matching Methods

• Exactly Matching, Coarse Matching
• Poor performance in high dimensional settings

•Propensity Score based Methods
• Propensity score 
• Matching, Weighting, Doubly Robust 
• Treat all observed variables as confounders, 
and ignore the non-confounders

• Mainly designed for binary treatment
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New challenges in Big Data era
•Automatically separate confounders

• Not all observed variables are confounders
• Data-Driven Variables Decomposition (D2VD)

•Remove unobserved confounding bias
• Not all confounders are observed
• Automatic Instrumental Variable Decomposition (AutoIV)

•Continuous treatment effect estimation
• Treatment variables are not always binary
• Generative Adversarial De-confounding (GAD)
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Previous Causal Framework
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• Treat all observed variables U as 
confounders X

• Propensity Score Estimation:

• Adjusted Outcome:

• IPW ATE Estimator:



Our Causal Framework
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• Separateness Assumption:
• All observed variables U can be decomposed into two 

sets: Confounders X, and Adjustment Variables Z

• Propensity Score Estimation:

• Adjusted Outcome:

• Our D2VD ATE Estimator:

Kuang K, Cui P, Li B, et al. Treatment effect estimation with data-driven variable decomposition 
[C]//AAAI, 2017 (and extended to TKDE 2020)



Data-Driven Variable Decomposition (D2VD)
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• Adjustment variables: 
• Confounders:
• Treatment Effect:

𝛼𝛼,𝛽𝛽, 𝛾𝛾

where

where

Replace X, Z with U



Data-Driven Variable Decomposition (D2VD)
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Bias Analysis: 
Our D2VD algorithm is unbiased to estimate causal effect

Variance Analysis: 
The asymptotic variance of Our D2VD algorithm  is smaller

Kun Kuang, Peng Cui, Hao Zou, Bo Li, Jianrong Tao, Fei Wu, and Shiqiang Yang. Data-Driven 
Variable Decomposition for Treatment Effect Estimation, TKDE, 2020



Learning Decomposed Representation for
Counterfactual Inference
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Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual 
Inference[J]. arXiv preprint arXiv:2006.07040, 2020.



Learning Decomposed Representation for
Counterfactual Inference
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• Three decomposed representation networks
• 𝐼𝐼 𝑋𝑋 , 𝐶𝐶 𝑋𝑋 , 𝐴𝐴 𝑋𝑋

• Three decomposition and balancing regularizers
• Confounder identification: 𝐴𝐴 𝑋𝑋 ⊥ 𝑇𝑇, 𝐼𝐼 𝑋𝑋 ⊥ 𝑌𝑌 | 𝑇𝑇
• Confounder balancing: 𝑤𝑤 ⋅ 𝐶𝐶(𝑋𝑋) ⊥ 𝑇𝑇

• Two regression networks
• 𝑌𝑌 𝑇𝑇 = 1 , 𝑌𝑌(𝑇𝑇 = 0)

• Orthogonal Regularizer for Decomposition

Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual 
Inference[J]. arXiv preprint arXiv:2006.07040, 2020.
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Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual 
Inference[J]. arXiv preprint arXiv:2006.07040, 2020.



Learning Decomposed Representation for
Counterfactual Inference
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Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual 
Inference[J]. arXiv preprint arXiv:2006.07040, 2020.
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AutoIV: Counterfactual Learning with Unobserved 
Confounders via Automatically generating IVs
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Conditions of IV (instrumental variable)
• Relevance: 𝑃𝑃(𝑋𝑋|𝑍𝑍) ≠ 𝑃𝑃(𝑋𝑋)
• Exclusion: 𝑃𝑃(𝑌𝑌|𝑍𝑍,𝑋𝑋,𝑈𝑈) ≠ 𝑃𝑃(𝑌𝑌|𝑋𝑋,𝑈𝑈)
• Unconfounded: 𝑍𝑍 ⊥ 𝑈𝑈

2SLS:
First Stage: regressing 𝑋𝑋 on 𝑍𝑍 �𝑋𝑋 = �𝑔𝑔(𝑍𝑍)
Second Stage: regressing 𝑌𝑌 on �𝑋𝑋 �𝑌𝑌 = 𝑓𝑓( �𝑋𝑋)

But these methods require 
a pre-defined IV and find a 

valid IV is very hard.



AutoIV: Counterfactual Learning with Unobserved 
Confounders via Automatically generating IVs
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Conditions of IV
• Relevance: 𝑃𝑃(𝑇𝑇|𝑍𝑍) ≠ 𝑃𝑃(𝑇𝑇)
• Exclusion: 𝑃𝑃(𝑌𝑌|𝑍𝑍,𝑇𝑇,𝐶𝐶) ≠ 𝑃𝑃(𝑌𝑌|𝑇𝑇,𝐶𝐶)
• Unconfounded: 𝑍𝑍 ⊥ 𝐶𝐶

Mutual Information
Representation Learning

Yuan J, Wu A, Kuang K, et al. Auto IV: Counterfactual Prediction via Automatic Instrumental 
Variable Decomposition[J]. arXiv preprint arXiv:2107.05884, 2021.



AutoIV: Counterfactual Learning with Unobserved 
Confounders via Automatically generating IVs
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Yuan J, Wu A, Kuang K, et al. Auto IV: Counterfactual Prediction via Automatic Instrumental 
Variable Decomposition[J]. arXiv preprint arXiv:2107.05884, 2021.
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Continuous Treatment Effect Estimation
• Binary Treatment

• T=0 or T=1
• 𝑇𝑇 ⊥ 𝑋𝑋: confounder balancing

• Multi-valued Treatment
• T=0,1,2,…
• 𝑇𝑇 ⊥ 𝑋𝑋: confounder balancing

• Continuous Treatment
• How to make 𝑇𝑇 ⊥ 𝑋𝑋 ?
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Kuang K, Li Y, Li B, et al. Continuous Treatment Effect Estimation via Generative Adversarial 
De-confounding[J]//DMKD 2021.



Continuous Treatment Effect Estimation
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• Our goal: 𝑇𝑇 ⊥ 𝑋𝑋
• Variable randomly shuffle to achieve independence

Kuang K, Li Y, Li B, et al. Continuous Treatment Effect Estimation via Generative Adversarial 
De-confounding[J]//DMKD 2021.



Continuous Treatment Effect Estimation
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• Our goal: 𝑇𝑇 ⊥ 𝑋𝑋
• “calibration” distribution generation

• on “calibration”, we have 𝑇𝑇𝑇 ⊥ 𝑋𝑋
• “calibration” distribution approximation

• Observed distribution: 
• Learning sample weights for distribution approximation

• Such that: 𝑊𝑊 𝑇𝑇 ⊥ 𝑊𝑊 𝑋𝑋

sample weights 𝑊𝑊



Idea from GAN mechanism 
• Generative Adversarial Networks (GAN)

• Generative Adversarial De-confounding (GAD)
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Generative Adversarial De-confounding (GAD)
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• “Calibration” distribution:
• Observed distribution: 
• Sample weights learning with GAD

Kuang K, Li Y, Li B, et al. Continuous Treatment Effect Estimation via Generative Adversarial 
De-confounding[J]//DMKD 2021.



Continuous Treatment Effect Estimation
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Summary: New challenges in Big Data era
•Automatically separate confounders

• Not all observed variables are confounders
• Data-Driven Variables Decomposition (D2VD)

•Remove unobserved confounding bias
• Not all confounders are observed
• Automatic Instrumental Variable Decomposition (AutoIV)

•Continuous treatment effect estimation
• Treatment variables are not always binary
• Generative Adversarial De-confounding (GAD)
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Survey Paper：
Causal Inference（因果推理）

Kuang, K., Li, L., Geng, Z., Xu, L., Zhang, K., Liao, B., Huang, H., Ding, P., Miao, W., Jiang, Z. (2020). 
Causal Inference. Engineering. http://www.engineering.org.cn/ch/10.1016/j.eng.2019.08.016

The official journal of the Chinese Academy of Engineering

http://www.engineering.org.cn/ch/10.1016/j.eng.2019.08.016
http://en.cae.cn/en/
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Content
• Kun Kuang: Estimating average treatment effect: A brief review and beyond
• Lian Li: Attribution problems in counterfactual inference
• Zhi Geng: The Yule–Simpson paradox and the surrogate paradox
• Lei Xu: Causal potential theory
• Kun Zhang: Discovering causal information from observational data
• Beishui Liao and Huaxin Huang: Formal argumentation in causal reasoning and explanation
• Peng Ding: Causal inference with complex experiments
• Wang Miao: Instrumental variables and negative controls for observational studies
• Zhichao Jiang: Causal inference with interference

Kuang, K., Li, L., Geng, Z., Xu, L., Zhang, K., Liao, B., Huang, H., 
Ding, P., Miao, W., Jiang, Z. (2020). Causal Inference. Engineering.
http://www.engineering.org.cn/ch/10.1016/j.eng.2019.08.016

http://www.engineering.org.cn/ch/10.1016/j.eng.2019.08.016
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Thank You!

Kun Kuang
kunkuang@zju.edu.cn

Homepage: https://kunkuang.github.io/

Causal Inference
 Sources of Correlation
Causation Confounding Sample Selection

Spurious Correlation: 
T is correlated with Y 
ignoring X

Spurious Correlation: 
T is correlated with Y 
given S

Stable
Actionable
Explainable

Causality Regularized

Machine Learning

 Draw Causation from Big Data

 Causal Representation/Learning
Stable & Explainable Fair & Actionable

mailto:kunkuang@zju.edu.cn
https://kunkuang.github.io/
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