

The 4th International Conference on Machine Learning and Machine Intelligence

CAUSAL INFERENCE IN OBSERVATIONAL STUDIES

Kun Kuang (况現)

Associate Professor

College of Computer Science

Zhejiang University

Homepage: https://kunkuang.github.io/

Decision Making with Causality

• Causal Effect Estimation is necessary for decision making!

3

Causal effect estimation plays an important role on decision making!

A practical definition

Definition: T causes Y if and only if changing T leads to a change in Y, keep everything else constant.

Causal effect is defined as the magnitude by which Y is changed by a unit change in T.

Two key points: changing T, keeping everything else constant

*Interventionist definition [http://plato.stanford.edu/entries/causation-mani/]

Treatment Effect Estimation

- Treatment Variable: T = 1 or T = 0
- Potential Outcome: Y(T = 1) and Y(T = 0)
- Individual Treatment Effect (ITE)

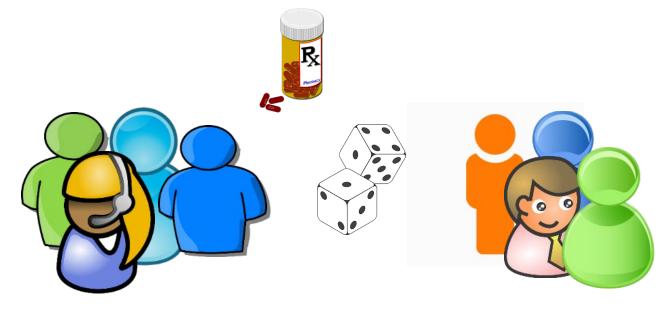
$$ITE(i) = Y_i(T_i = 1) - Y_i(T_i = 0)$$

• Average Treatment Effect (ATE):

$$ATE = E[Y(T = 1) - Y(T = 0)]$$

Two key points: changing T, keeping everything else constant

Randomized Experiments are the "Gold Standard"



- Drawbacks of randomized experiments:
 - Cost
 - Unethical

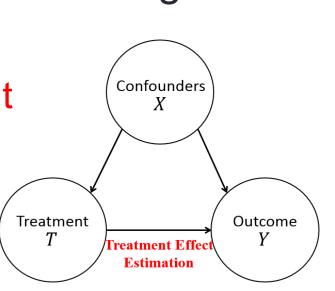
Causal Inference with Observational Data

• Counterfactual problem: Y(T = 1) or Y(T = 0)

In observational data, we have units with different T:

E[Y(T = 1)] or E[Y(T = 0)]

- Can we estimate ATE by directly comparing the average outcome between groups with T=1 and T=0?
 - No, because confounders X might not be constant
- Two key points:
 - Changing T (T=1 and T=0)
 - Keeping everything else (Confounder X) constant



Causal Inference with Observational Data

• Counterfactual problem: Y(T = 1) or Y(T = 0)

In observational data, we have units with different T:

E[Y(T = 1)] or E[Y(T = 0)]

- Can we estimate ATE by directly comparing the average outcome between groups with T=1 and T=0?
 - No, because confounders X might not be constant
- Two key points:

Balancing Confounders' Distribution

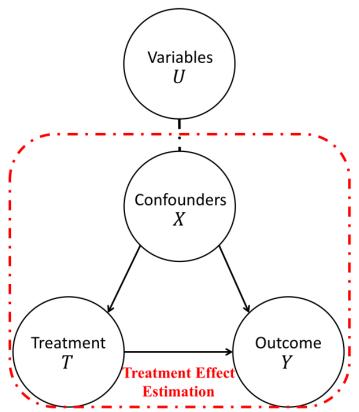
Confounders X

reatment Effe Estimation Outcome

Treatment

Related Work

- Matching Methods
 - Exactly Matching, Coarse Matching
 - Poor performance in high dimensional settings
- Propensity Score based Methods
 - Propensity score $e(\mathbf{X}) = p(T = 1 | \mathbf{X})$
 - Matching, Weighting, Doubly Robust
 - Treat all observed variables as confounders, and ignore the non-confounders
 - Mainly designed for binary treatment



(a) Previous Causal Framework.

10

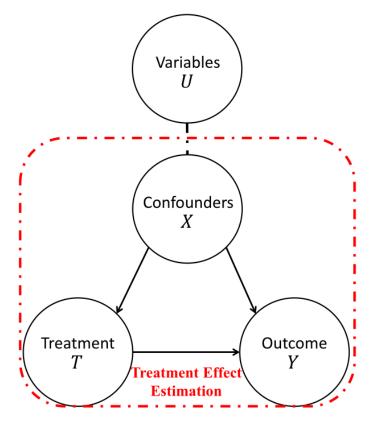
New challenges in Big Data era

- Automatically separate confounders
 - Not all observed variables are confounders
 - Data-Driven Variables Decomposition (D²VD)
- Remove unobserved confounding bias
 - Not all confounders are observed
 - Automatic Instrumental Variable Decomposition (AutoIV)
- Continuous treatment effect estimation
 - Treatment variables are not always binary
 - Generative Adversarial De-confounding (GAD)

New challenges in Big Data era

- Automatically separate confounders
 - Not all observed variables are confounders
 - Data-Driven Variables Decomposition (D²VD)
- Remove unobserved confounding bias
 - Not all confounders are observed
 - Automatic Instrumental Variable Decomposition (AutoIV)
- Continuous treatment effect estimation
 - Treatment variables are not always binary
 - Generative Adversarial De-confounding (GAD)

Previous Causal Framework



(a) Previous Causal Framework.

- Treat all observed variables U as confounders X
- Propensity Score Estimation:

$$e(\mathbf{U}) = p(T = 1 | \mathbf{U}) = p(T = 1 | \mathbf{X}) = e(\mathbf{X})$$

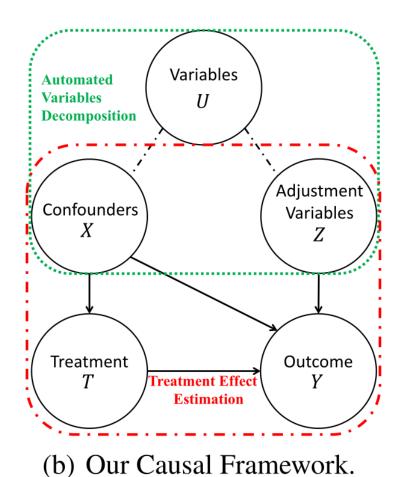
Adjusted Outcome:

$$Y^{\star} = Y^{obs} \cdot \frac{T - e(\mathbf{U})}{e(\mathbf{U}) \cdot (1 - e(\mathbf{U}))} = Y^{obs} \cdot \frac{T - e(\mathbf{X})}{e(\mathbf{X}) \cdot (1 - e(\mathbf{X}))}$$

• IPW ATE Estimator:

$$\widehat{ATE}_{IPW} = \widehat{E}(Y^{\star})$$

Our Causal Framework



Separateness Assumption:

 All observed variables U can be decomposed into two sets: Confounders X, and Adjustment Variables Z

Propensity Score Estimation:

$$e(\mathbf{X}) = p(T = 1 | \mathbf{X})$$

Adjusted Outcome:

$$Y^{+} = \left(Y^{obs} - \phi(\mathbf{Z})\right) \cdot \frac{T - e(\mathbf{X})}{e(\mathbf{X}) \cdot (1 - e(\mathbf{X}))}$$

• Our D²VD ATE Estimator:

$$\widehat{ATE}_{D^2VD} = \widehat{E}(Y^+)$$

Kuang K, Cui P, Li B, et al. Treatment effect estimation with data-driven variable decomposition [C]//AAAI, 2017 (and extended to TKDE 2020)

Data-Driven Variable Decomposition (D²VD)

$$\begin{array}{c|c} \hline minimize & \|Y^{+} - h(\mathbf{U})\|^{2} & \text{where } Y^{+} = \left(Y^{obs} - \phi(\mathbf{Z})\right) \cdot \frac{T - e(\mathbf{X})}{e(\mathbf{X}) \cdot (1 - e(\mathbf{X}))} \\ \hline e(\mathbf{X}) = \frac{1}{1 + \exp(-\mathbf{X}\beta)} & \phi(\mathbf{Z}) = \mathbf{Z}\alpha, \\ \hline Replace \mathbf{X}, \mathbf{Z} \text{ with } \mathbf{U} & h(\mathbf{U}) = \mathbf{U}\gamma, \\ \hline minimize & \|(Y^{obs} - \mathbf{U}\alpha) \odot W(\beta) - \mathbf{U}\gamma\|_{2}^{2}, & \text{where } W(\beta) := \frac{T - e(\mathbf{U})}{e(\mathbf{U}) \cdot (1 - e(\mathbf{U}))} \\ s.t. & \sum_{i=1}^{m} \log(1 + \exp((1 - 2T_{i}) \cdot U_{i}\beta)) < \tau, \\ \|\alpha\|_{1} \leq \lambda, \|\beta\|_{1} \leq \delta, \|\gamma\|_{1} \leq \eta, \|\alpha \odot \beta\|_{2}^{2} = 0. \\ \hline \alpha, \beta, \gamma & \bullet \text{ Adjustment variables: } \mathbf{Z} = \{\mathbf{U}_{i} : \hat{\alpha}_{i} \neq 0\} \\ \bullet \text{ Confounders: } \mathbf{X} = \{\mathbf{U}_{i} : \hat{\beta}_{i} \neq 0\} \\ \bullet \text{ Treatment Effect: } \widehat{ATE}_{D^{2}VD} = E(\mathbf{U}\hat{\gamma}) \end{array}$$

Data-Driven Variable Decomposition (D²VD)

Bias Analysis:

Our D²VD algorithm is unbiased to estimate causal effect

THEOREM 1. Under assumptions 1-4, we have

 $E(Y^+|X,Z) = E(Y(1) - Y(0)|X,Z).$

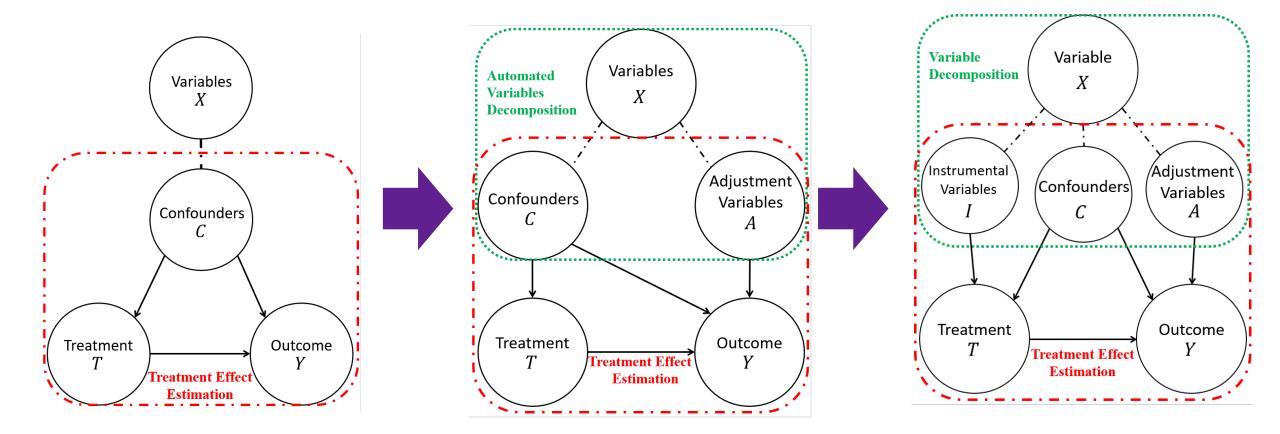
Variance Analysis:

The asymptotic variance of Our D²VD algorithm is smaller

THEOREM 2. The asymptotic variance of our adjusted estimator \widehat{ATE}_{adj} is no greater than IPW estimator \widehat{ATE}_{IPW} :

 $\sigma_{adj}^2 \le \sigma_{IPW}^2.$

Kun Kuang, Peng Cui, Hao Zou, Bo Li, Jianrong Tao, Fei Wu, and Shiqiang Yang. Data-Driven Variable Decomposition for Treatment Effect Estimation, TKDE, 2020

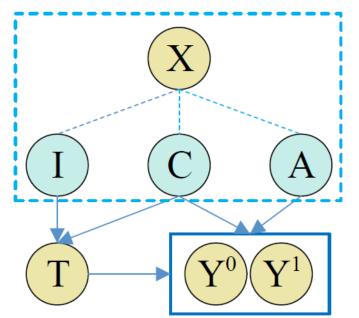


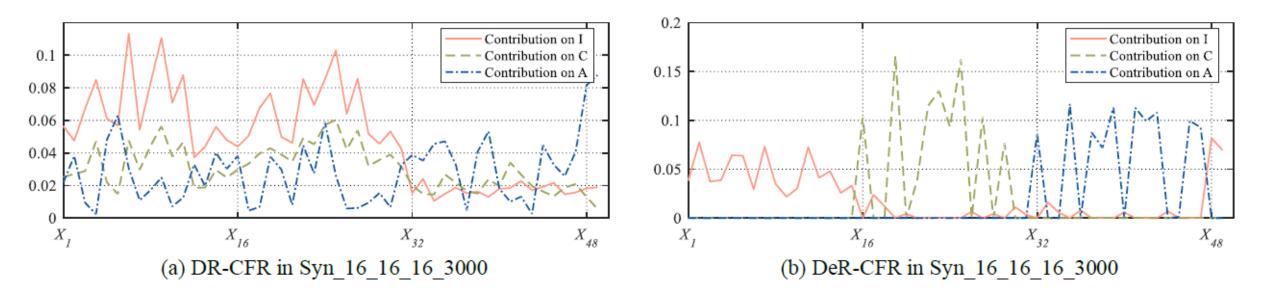
Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual Inference[J]. arXiv preprint arXiv:2006.07040, 2020.

- Three decomposed representation networks
 - I(X), C(X), A(X)
- Three decomposition and balancing regularizers
 - Confounder identification: $A(X) \perp T, I(X) \perp Y \mid T$
 - Confounder balancing: $w \cdot C(X) \perp T$
- Two regression networks
 - Y(T = 1), Y(T = 0)
- Orthogonal Regularizer for Decomposition

$$\mathcal{L}_O = \bar{I}_W^T \cdot \bar{C}_W + \bar{C}_W^T \cdot \bar{A}_W + \bar{A}_W^T \cdot \bar{I}_W$$

Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual Inference[J]. arXiv preprint arXiv:2006.07040, 2020.





Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual Inference[J]. arXiv preprint arXiv:2006.07040, 2020.

20

Table 1: The results on IHDP.						e 2:
Mean +/- Std	Within	-sample	Out-of-sample		\mathcal{L}_A	\mathcal{L}_I \mathcal{L}
Methods	PEHE	$\epsilon_{ m ATE}$	PEHE	$\epsilon_{ m ATE}$		/
CFR-MMD	0.702 +/- 0.037	0.284 +/- 0.036	0.795 +/- 0.078	0.309 +/- 0.039	√	V
CFR-WASS	0.702 +/- 0.034	0.306 +/- 0.040	0.798 +/- 0.088	0.325 +/- 0.045	\checkmark	\checkmark
CFR-ISW	0.598 +/- 0.028	0.210 +/- 0.028	0.715 +/- 0.102	0.218 +/- 0.031	\checkmark	\checkmark
SITE	0.609 +/- 0.061	0.259 +/- 0.091	1.335 +/- 0.698	0.341 +/- 0.116		
DR-CFR	0.657 +/- 0.028	0.240 +/- 0.032	0.789 +/- 0.091	0.261 +/- 0.036	• 	
DeR-CFR	0.444 +/- 0.020	0.130 +/- 0.020	0.529 +/- 0.068	0.147 +/- 0.022		√

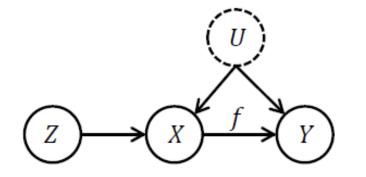
ĺ	Table 2: Ablation studies of DeR-CFR.						
Ĺ	C	\mathcal{L}_{I}	\mathcal{L}_{C_B}	\mathcal{L}_O	PEHE		
	\mathcal{L}_A				Within-sample	Out-of-sample	
•	\checkmark	\checkmark	\checkmark	√	0.444 +/- 0.020	0.529 +/- 0.068	
•	\checkmark	\checkmark	\checkmark		0.478 +/- 0.033	0.542 +/- 0.053	
•	\checkmark	\checkmark		√	0.482 +/- 0.039	0.565 +/- 0.075	
•	\checkmark		\checkmark	\checkmark	0.479 +/- 0.030	0.560 +/- 0.071	
		\checkmark	\checkmark	\checkmark	0.635 +/- 0.035	0.858 +/- 0.133	

Wu A, Kuang K, Yuan J, et al. Learning Decomposed Representation for Counterfactual Inference[J]. arXiv preprint arXiv:2006.07040, 2020.

New challenges in Big Data era

- Automatically separate confounders
 - Not all observed variables are confounders
 - Data-Driven Variables Decomposition (D²VD)
- Remove unobserved confounding bias
 - Not all confounders are observed
 - Automatic Instrumental Variable Decomposition (AutoIV)
- Continuous treatment effect estimation
 - Treatment variables are not always binary
 - Generative Adversarial De-confounding (GAD)

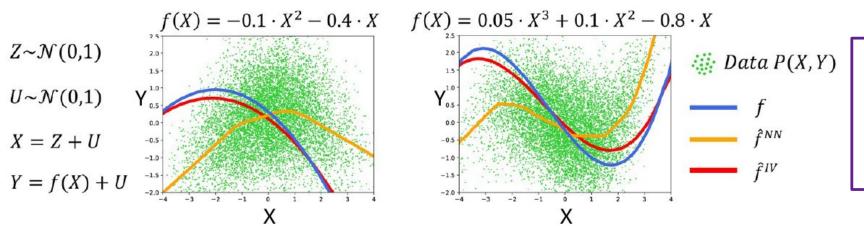
AutoIV: Counterfactual Learning with Unobserved Confounders via Automatically generating IVs



Conditions of IV (instrumental variable)

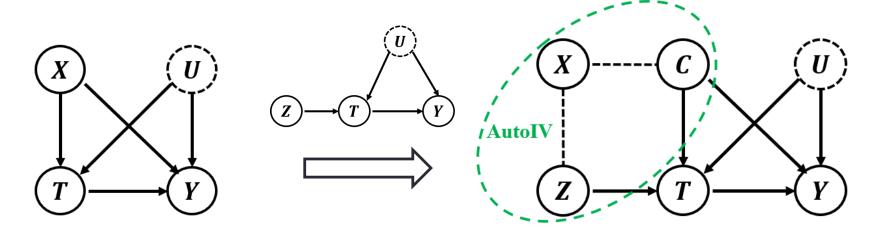
- Relevance: $P(X|Z) \neq P(X)$
- Exclusion: $P(Y|Z, X, U) \neq P(Y|X, U)$
- Unconfounded: $Z \perp U$

2SLS: First Stage: regressing X on Z $\hat{X} = \hat{g}(Z)$ Second Stage: regressing Y on \hat{X} $\hat{Y} = \hat{f}(\hat{X})$



But these methods require a pre-defined IV and find a valid IV is very hard.

AutoIV: Counterfactual Learning with Unobserved Confounders via Automatically generating IVs



Conditions of IV

- Relevance: $P(T|Z) \neq P(T)$
- Exclusion: $P(Y|Z,T,C) \neq P(Y|T,C)$

Mutual Information Representation Learning

• Unconfounded: $Z \perp C$

Yuan J, Wu A, Kuang K, et al. Auto IV: Counterfactual Prediction via Automatic Instrumental Variable Decomposition[J]. arXiv preprint arXiv:2107.05884, 2021.

AutoIV: Counterfactual Learning with Unobserved Confounders via Automatically generating IVs

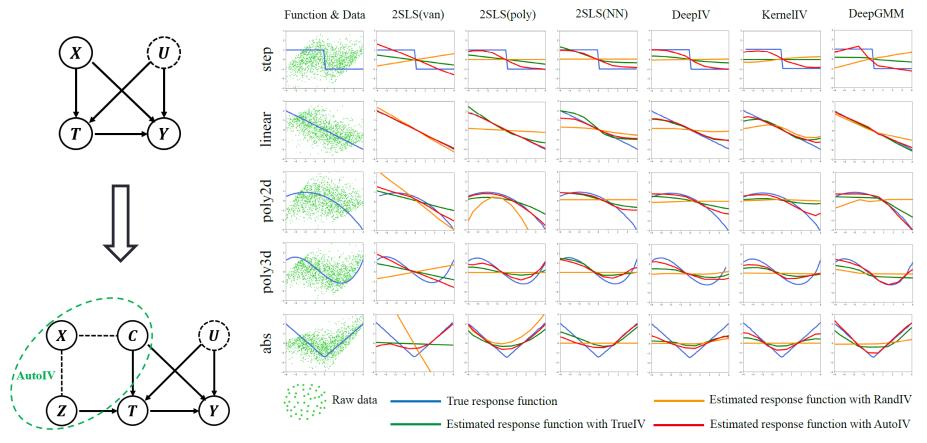
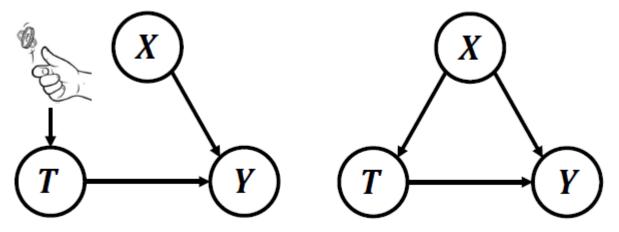


Figure 2: Response function prediction in low-dimensional scenarios.

Yuan J, Wu A, Kuang K, et al. Auto IV: Counterfactual Prediction via Automatic Instrumental Variable Decomposition[J]. arXiv preprint arXiv:2107.05884, 2021.

New challenges in Big Data era

- Automatically separate confounders
 - Not all observed variables are confounders
 - Data-Driven Variables Decomposition (D²VD)
- Remove unobserved confounding bias
 - Not all confounders are observed
 - Automatic Instrumental Variable Decomposition (AutoIV)
- Continuous treatment effect estimation
 - Treatment variables are not always binary
 - Generative Adversarial De-confounding (GAD)

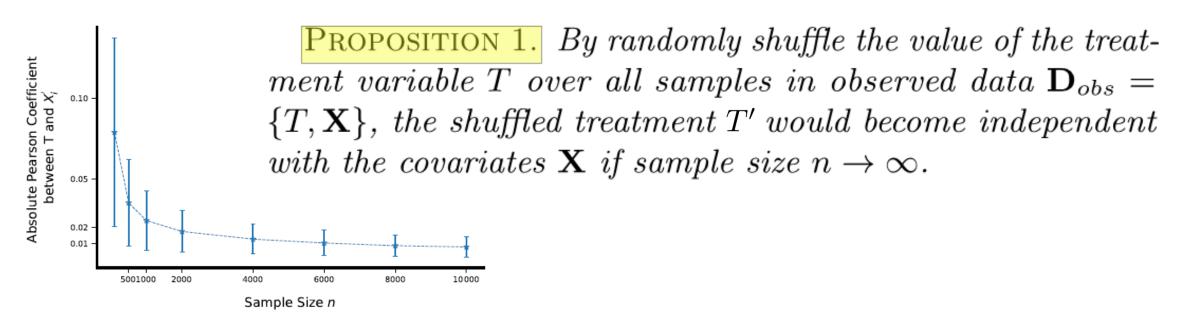


(a) Randomized Con- (b) Observational Studies trolled Trial (RCT)

- Binary Treatment
 - T=0 or T=1
 - $T \perp X$: confounder balancing
- Multi-valued Treatment
 - T=0,1,2,...
 - $T \perp X$: confounder balancing
- Continuous Treatment
 - How to make $T \perp X$?

Kuang K, Li Y, Li B, et al. Continuous Treatment Effect Estimation via Generative Adversarial De-confounding[J]//DMKD 2021.

- Our goal: $T \perp X$
- Variable randomly shuffle to achieve independence



Kuang K, Li Y, Li B, et al. Continuous Treatment Effect Estimation via Generative Adversarial De-confounding[J]//DMKD 2021.

- Our goal: $T \perp X$
- "calibration" distribution generation
 - $\mathbf{D}_{cal} = \{T', \mathbf{X}\}$ on "calibration", we have $T' \perp X$
- "calibration" distribution approximation
 - Observed distribution: $\mathbf{D}_{obs} = \{T, \mathbf{X}\}$
 - Learning sample weights for distribution approximation

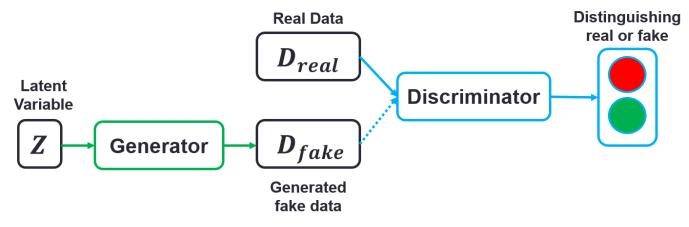
sample weights W

 $\mathbf{D}_{obs} = \{T, \mathbf{X}\} \longrightarrow \mathbf{D}_{cal} = \{T', \mathbf{X}\}$

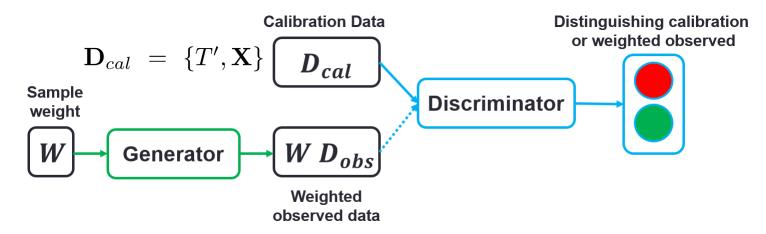
• Such that: $W T \perp W X$

Idea from GAN mechanism

• Generative Adversarial Networks (GAN)



• Generative Adversarial De-confounding (GAD)

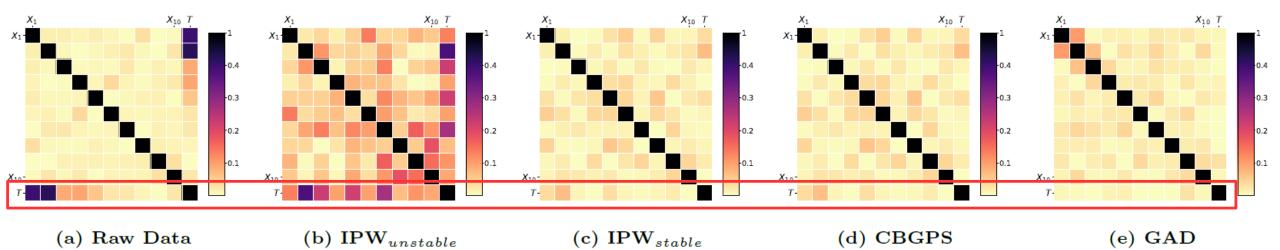


Generative Adversarial De-confounding (GAD)

- "Calibration" distribution: $\mathbf{D}_{cal} = \{T', \mathbf{X}\}$
- Observed distribution: $\mathbf{D}_{obs} = \{T, \mathbf{X}\}$
- Sample weights learning with GAD

$$L(\mathbf{w}, d) = \mathbb{E}_{(t,x)\sim\mathbf{D}_{cal}}[l(d(t,x),1)] + \mathbb{E}_{(t,x)\sim\mathbf{D}_{obs}}[w_{(t,x)}\cdot l(d(t,x),0)], s.t. \quad \mathbb{E}_{(t,x)\sim\mathbf{D}_{obs}}[w_{(t,x)}] = 1, \mathbf{w} \succeq 0,$$

Kuang K, Li Y, Li B, et al. Continuous Treatment Effect Estimation via Generative Adversarial De-confounding[J]//DMKD 2021.



Method	TWINS				
	BIAS_{MTEF}	RMSE_{MTEF}	RMSE_{ADRF}		
OLS	0.208(0.079)	0.236(0.089)	0.686(0.350)		
$IPW_{unstable}$	1.385(0.757)	1.532(0.890)	5.506(2.061)		
IPW_{stable}	1.693(1.599)	1.878(1.849)	6.982(4.453)		
ISMW	0.165(0.062)	0.181(0.069)	0.962(0.214)		
CBGPS	0.187(0.137)	0.216(0.158)	0.683(0.380)		
GAD	0.127(0.039)	0.144(0.046)	0.383(0.091)		

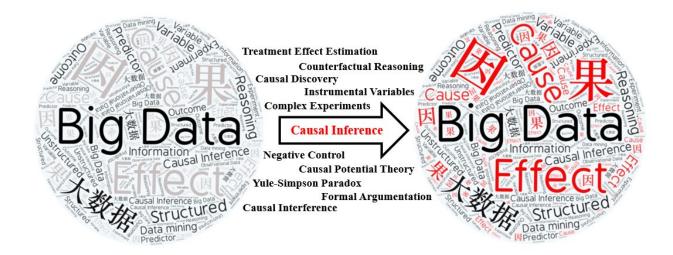
Summary: New challenges in Big Data era

- Automatically separate confounders
 - Not all observed variables are confounders
 - Data-Driven Variables Decomposition (D²VD)
- Remove unobserved confounding bias
 - Not all confounders are observed
 - Automatic Instrumental Variable Decomposition (AutoIV)
- Continuous treatment effect estimation
 - Treatment variables are not always binary
 - Generative Adversarial De-confounding (GAD)

The official journal of the Chinese Academy of Engineering

Survey Paper: Causal Inference (因果推理)

Engineering

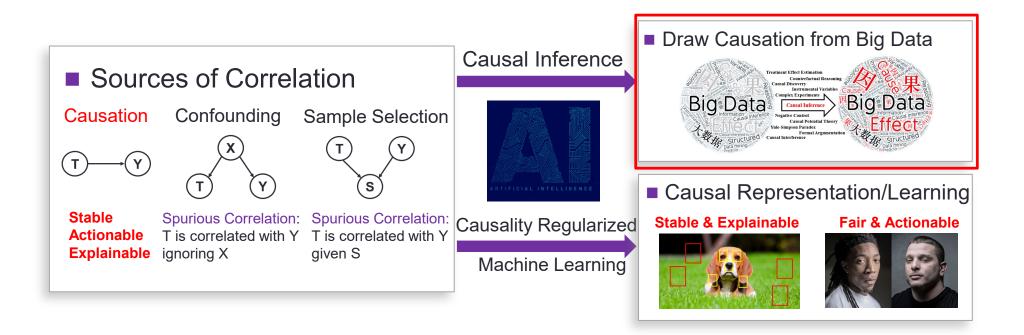


Kuang, K., Li, L., Geng, Z., Xu, L., Zhang, K., Liao, B., Huang, H., Ding, P., Miao, W., Jiang, Z. (2020). Causal Inference. *Engineering*. <u>http://www.engineering.org.cn/ch/10.1016/j.eng.2019.08.016</u>

Content

- Kun Kuang: Estimating average treatment effect: A brief review and beyond
- Lian Li: Attribution problems in counterfactual inference
- Zhi Geng: The Yule–Simpson paradox and the surrogate paradox
- Lei Xu: Causal potential theory
- Kun Zhang: Discovering causal information from observational data
- Beishui Liao and Huaxin Huang: Formal argumentation in causal reasoning and explanation
- Peng Ding: Causal inference with complex experiments
- Wang Miao: Instrumental variables and negative controls for observational studies
- Zhichao Jiang: Causal inference with interference

Kuang, K., Li, L., Geng, Z., Xu, L., Zhang, K., Liao, B., Huang, H., Ding, P., Miao, W., Jiang, Z. (2020). Causal Inference. *Engineering*. http://www.engineering.org.cn/ch/10.1016/j.eng.2019.08.016



Thank You!

Kun Kuang <u>kunkuang@zju.edu.cn</u> Homepage: <u>https://kunkuang.github.io/</u>