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ML techniques are impacting our life

- A day in our life with ML techniques
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Now we are stepping into risk-sensitive areas
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Problems of today’s ML - Explainability

Most machine learning models are black-box models

Unexplainable Human in the loop
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Problems of today’'s ML - Stability

Most ML methods are developed under |.I.D hypothesis

Test Distribution

Training Distribution
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Problems of today’'s ML - Stability

Yes

Maybe

No




Problems of today’'s ML - Stability

- Cancer survival rate prediction

Testing Data

Training Data +

> el (O
OO —
OOd

\ Predictive Model

City Hospital
Higher income, higher survival rate.

University Hospital
Survival rate is not so correlated with income.



A plausible reason: Correlation

Correlation is the very basics of machine learning.

WE FOUND THIS CORRELATION
SALES IN THE DATA. EVERYONE
TAKE A RAZOR.

® marketoonist.com



Correlation is not explainable

People who drowned after falling out of a fishing boat
correlates with

Marriage rate in Kentucky
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Correlation is ‘unstable’

At home on beach

in cage in water lying

on grass in street running




It's not the fault of correlation, but the way we use it

Three sources of correlation:
Causation

: lce Cream
Causal mechanism < >—’® Summer Sales
()

Stable and explainable
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Confounding eeme
Ignoring X
Financial Accepted
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A Practical Definition of Causality

Definition: T causes Y if and only if
changing T leads to a change in Y,
while keeping everything else constant.

Causal effect is defined as the magnitude by which Y is
changed by a unit change in T.

Called the “interventionist” interpretation of causality.

*Interventionist definition [http://plato.stanford.edu/entries/causation-mani/]



http://plato.stanford.edu/entries/causation-mani/

The benefits of bringing causality into learning

Causal Framework Grass—Label: Strong correlation
Weak causation
Dog nose—Label: Strong correlation

Strong causation

T: grass
X: dog nose
Y: label




The gap between causality and learning

OHow to evaluate the outcome?

OWild environments

0 High-dimensional

0 Highly noisy
O Little prior knowledge (model specification, confounding structures)
[0 Targeting problems

0 Understanding v.s. Prediction

[0 Depth v.s. Scale and Performance

How to bridge the gap between causality and (stable) learning?



Outline

»Correlation v.s. Causality

»Causal Inference

»Stable Learning

»NICO: An Image Dataset for Stable Learning
»Conclusions



Paradigms - Structural Causal Model

A graphical model to describe the causal mechanisms of a system

- Causal Identification with back
door criterion

- Causal Estimation with do
calculus

How to discover the causal structure?



Paradigms — Structural Causal Model

- Causal Discovery

- Constraint-based: conditional independence
- Functional causal model based

X1 1L X5 | Pa/.l‘/;f
X 1 Xz s lp,
g
X1 L X4 | {X3} /ro".. c @
X1 L Xo | {X3} N
i S )

A generative model with strong expressive power.

But it induces high complexity.



Paradigms - Potential Outcome Framework

- A simpler setting
- Suppose the confounders of T are known a priori

Confounders

- The computational complexity is affordable
- Under stronger assumptions
- E.g. all confounders need to be observed

Treatment

T

reatment Effect
Estimation

More like a discriminative way to estimate treatment’s

partial effect on outcome.



Causal Effect Estimation

- Treatment Variable: T =1orT =0

- Treated Group (T = 1) and Control Group (T = 0) ;"=
- Potential Outcome: Y(T = 1) and Y(T = 0)

- Average Causal Effect of Treatment (ATE):

ATE = E[Y(T=1) — Y(T = 0)]




Counterfactual Problem

Person T Yr_; Y-

P1 1 04 ?
P2 0o 7 0.6
P3 1 0.3 ?

P4 0o 7 0.1
P5 1 0.5 ?

P6 0o 7 0.5
P7 0o 7 0.1

Two key points for causal effect
estimation

Changing T

Keeping everything else constant

For each person, observe only one:
either Y;_,or Y;—

For different group (T=1 and T=0),
something else are not constant



|deal Solution: Counterfactual World

- Reason about a world that does not exist

- Everything in the counterfactual world is the same as the
real world, except the treatment




Randomized Experiments are the "Gold Standard”

- Unrealistic



23

- Two key points for causal effect estimation

Recap: Causal Effect and Potential Outcome
-Changing T
- Keeping everything else (X) constant

X
- Counterfactual Problem

Y(T=1) or Y(T =0) Treatment Outcome
- |deal Solution: Counterfactual World
-“Gold Standard”: Randomized Experiments
- We will discuss other solutions in next Section.

reatment Effect
Estimation



Outline

»Correlation v.s. Causality

»Causal Inference
»Methods for Causal Inference

»Stable Learning
»NICO: An Image Dataset for Stable Learning
»Conclusions



Causal Inference with Observational Data

- Average Treatment Effect (ATE) represents the mean

(average) difference between the potential outcome of
units under treated (T=1) and control (T=0) status.

ATE = E[Y(T =1) — Y(T = 0)]

- Treated (T=1): taking a particular medication
- Control (T=0): not taking any medications
- ATE: the causal effect of the particular medication




Causal Inference with Observational Data

- Counterfactual Problem:
Y(T=1) or Y(T =0)
- Can we estimate ATE by directly comparing the average
outcome between treated and control groups?

- Yes with randomized experiments (X are the same)
- No with observational data (X might be different)

- Two key points:

Balancing Confounders’ Distribution I\J

reatment Effect
Estimation




Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing (DCB)



Assumptions of Causal Inference

A1: Stable Unit Treatment Value (SUTV): The effect of treatment on
a unit is independent of the treatment assignment of other units

P(Y:|T;, T, X;) = P(Y;IT;, X))

A2: Unconfounderness: The distribution of treatment is independent
of potential outcome when given the observed variables

T L (Y(0),Y(D))l X
No unmeasured confounders
A3: Overlap: Each unit has nonzero probability to receive either

treatment status when given the observed variables
O<P(T=1X=x)<1



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing



Matching




8358



Matching

- Identify pairs of treated (T=1) and control (T=0)
units whose confounders X are similar or even

identical to each other Q Q
Distance(Xi,Xj) <€ \5) l/

- Paired units provide the everything else
(Confounders) approximate constant

- Estimating average causal effect by comparing
average outcome in the paired dataset

- Smaller €: less bias, but higher variance



Matching
- Exactly Matching:

Xi =Xj \2 — \2

Distance(Xi,Xj) <€

w1

0)
Distance(Xi,Xj) =Voo

- Easy to implement, but limited to low-
dimensional settings

- Since In high-dimensional settings, there
will be few exact matches



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing



E———— T
Propensity Score Based Methods

- Propensity score e(X) is the probability of a unit to be treated
e(X) = P(T =1|X)

- Then, Rubin shows that the propensity score is sufficient to
control or summarize the information of confounders

TLX|e(X) = TLuY(D),Y(0)]elX)

- Propensity score are rarely observed, need to be estimated



Propensity Score Matching
- Estimating propensity score: é(X) = P(T = 1|X)

- Supervised learning: predicting a known
label T based on observed covariates X.

- Conventionally, use logistic regression \2 - Q

- Matching pairs by distance between
propensity score:

Distance(X;, X;) = |é(X;) — é(X;)|

Distance(Xi,Xj) <€

- High dimensional challenge: transferred from matching to PS estimation



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing



Inverse of Propensity Weighting (IPW)

- Why weighting with inverse of propensity score is helpful?
- Propensity score induces the distribution bias on confounders X

e(X) = P(T = 1|X)
e
A 0.7 0.3 10

. . A 10 10 Confounders
B 06 0.4 50 B 50 50 are the same!

C 0.2 0.8 40

T, 1-—T;
Reweighting by inverse of propensity score: W; = o + .
l i




Inverse of Propensity Weighting (IPW)
- Estimating ATE by IPW [1]: W, = L 1-T

- Interpretation: IPW creates a pseudo-population where the
confounders are the same between treated and control groups.

n

° ’) - = 141
Why does this work”? Consider - E 2

1=1
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Inverse of Propensity Weighting (IPW)

If: e(X) =e(X), the true propensity score

o1 i o] ) vTereaonr,

{
= |E { G(X)E(T|Y1,X)} ~FE { G(X)E(T|X)} (2) TL(Yy,Yo)|X
s

(3(X)} _E(y) (3) e(X) = E(T|X)

- Similarly: { (11__5));;} = E(Yy) ATE = E[Y(1) —Y(0)]




E—————TTTTT
Inverse of Propensity Weighting (IPW)

-If: e(X) =e(X), the true propensity score, the IPW
estimator is unbiased

n T

1 1;Y; 1 (1 -1T3)Y;
ATE pw = — - — E(Y; -V
W Z e(X;) n Z 1 —e(X;) (Y1 = ¥o)

=1 1=1

- Wildly used in many applications

- But requires the propensity score model is correct
- High variance when e is close to O or 1



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing



Doubly Robust

‘Recap: ATE =E[Y(T=1)-Y(T =0)]
- Simple outcome regression:
m=FEY|T=1,X) and mo=E(Y|T =0,X)
- Unbiased if the regression models are correct

- IPW estimator:
- Unbiased if the propensity score model is correct

- Doubly Robust [2]: combine both approaches



mo = E(Y|T =0, X)
Doubly Robust my = E(Y|T =1, X)

- Estimating ATE with Doubly Robust estimator:

TY, (T - (X))
e(X5) e(X;)

] — .
ATEDR — EZ ml(XZ)}
i=1

I [(1-T)Y; AT —e(Xy)} .
— E;_l—é(Xz) | 1—é(XZ) mO(XZ):|

- Unbiased if either propensity score or regression model is correct
- This property is referred to as double robustness



e
Doubly Robust

- Theoretical Proof:
1Y {T —e(Xy)}

e ooy )
- Elamy )
= BV L g()é((f)(i)} Y, — ml(X’i)}}
= E(MW)+E € ;(;(j;i)} {Y1 - ﬁu(Xi)}]




Doubly Robust my = E(Y|T =1, X)

- Estimating ATE with Doubly Robust estimator:

TY, (T - (X))
e(X5) e(X;)

] — .
ATEDR — EZ ml(XZ)}
i=1

I [(1-T)Y; AT —e(Xy)} .
— E;_l—é(){z) | 1—é(XZ) mO(Xz):|

- Unbiased if propensity score or regression model is correct
- This property is referred to as double robustness

- But may be very biased if both models are incorrect



Propensity Score based Methods

Recap:
Propensity Score Matching
Inverse of Propensity Weighting
Doubly Robust

Need to estimate propensity score
Treat all observed variables as confounders :
In Big Data Era, High dimensional data '
But, not all variables are confounders

(a) Previous Causal Framework.

---------------------




Propensity Score based Methods

Recap:
Propensity Score Matching
Inverse of Propensity \\ei

But, not all variables are confounders

(a) Previous Causal Framework.



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D?VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing (DCB)



Inverse of Propensity Weighting (IPW)

- Treat all observed variables U as
confounders X

» Propensity Score Estimation:
e(U) =p(T = 1|U) = p(T = 1|X) = e(X)
- Adjusted Outcome:

* __ Vobs . T'—e(U) _ yobs T'—e(X)
Y =Y cora-eon =¥ ' e®X) (1-eX)

- [PW ATE Estimator:
ATEpw = E(Y*)

(a) Previous Causal Framework.



Data-Driven Variable Decomposition (D%VD)

--------------------------------------------------
. =
. .

Variables

: Automated
Variables
: Decomposition

Treatnh Outcome

T Treatment Effect Y
\ Estimation

(b) Our Causal Framework.

- Separateness Assumption:

- All observed variables U can be decomposed into
three sets: Confounders X, Adjustment Variables Z,
and Irrelevant variables | (Omitted).

- Propensity Score Estimation:

e(X) = p(T = 1]X)

- Adjusted Outcome:

T — e(X)

vr= (YT -0®) i e

- Our D2VD ATE Estimator:

ATEpeyp = E(YH)



E———— T
Data-Driven Variable Decomposition (D%VD)

- Confounders Separation & ATE Estimation.
- With our D2VD estimator:

mDQVD =E(Y*") = B ((YObS — (@) e(X;F' (—16—()?(7())){

- By minimizing following objective function:
minimize ||[Y T — h(U)||*.

- We can estimate the ATE as:

A

ATEp2vp = E(h(U))




Data-Driven Variable Decomposition (D%VD)

[ minimize ||[Y T — h(U)||2 Where Y™ = (YObS B ¢(Z)> ' e(X)T- Z1e—()i)(X)) ]
] 1
G(X) — 1 —I—exp(—Xﬁ) ¢(Z) — ZOZ,
Replace X, zwithu  A(U) = Uy,
/minz’mz’ze (Y —Ua) @ W(B) —Uyl|3, Where W(f) := e(Uj)ﬂ.(_le_(gzU))\

s.t. Z log(1 +exp((1 —2T3)-U;B)) <,
=1

lalle <A 118l <6, Iyl < my|lle® B2 = 0.

. J

- Adjustment variables: Z = {U, : &; # 0}
- Confounders: X = {U; : 3; # 0}
- Treatment Effect: ATE p2yp = E(UA)

a,p,y




Data-Driven Variable Decomposition (D%VD)

Bias Analysis:
Our D2VD algorithm is unbiased to estimate causal effect
THEOREM 1. Under assumptions 1-4, we have
E(YT|X,Z)=E(Y(1) = Y(0)|X,Z2).

Variance Analysis:
The asymptotic variance of Our D2VD algorithm is smaller

THEOREM 2. The asymptotic variance of our adjusted estima-
A . . _/\
tor AT E qqj is no greater than IPW estimator AT E1pw :

2 2
Oadj < O1PW -




Data-Driven Variable Decomposition (D%VD)

-OUR: Data-Driven Variable Decomposition (D*VD)

-Baselines
* Directly Estimator (dir): 1ignores confounding bias
- [PW Estimator (IPW): treats all variables as confounders
*Doubly Robust Estimator (DR): IPW+regression

» Non-Separation Estimator (D*VD-): no variables separation



———— T
Data-Driven Variable Decomposition (D%VD)

- Dataset generation:
- Sample size m={1000,5000}
- Dimension of observed variables n={50,100,200}

- Observed variables: v = (X,Z,1)

o o iid 4
. SERIREED. SOPY 4 PIREPE FO0PS § PIEPS P ~ N(01)~

e 4

- Treatment: logistic and misspecified

Tiogit ~ Bernoulli(1/(1 4 exp(—>_.*, x;))) and
Trnissp = Lif Y% x; > 0.5, Thissp = 0 otherwise.

» Qutcome:
Y =3 tne X wj + 300 2k pre + T+ N(0,2),
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Data-Driven Variable Decomposition (D%VD)

- Dataset generation:

The true treatment effect in synthetic data is 1.

- Observed variables: v = (X,Z,1)

o o 1id :
X1, s Xpgs Ly, 5Ly, 00 Ly, ~ -/\/'(01)q

- Treatment: logistic and misspecified
Tiogit ~ Bernoulli(1/(1 4 exp(—>_.*, x;))) and
Tonissp = Lif >0 x; > 0.5, Thissp = 0 otherwise.
- Outcome:

V=3 e Xj-wi + > 52 2k pr + T+ N(0,2),

2



Data-Driven Variable Decomposition (D%VD)

- Experimental Results on Synthetic Data:  Bias = |ATE — ATE]

n n =50 n = 100 n = 200
T/m Estimator Bias SD [ MAE | RMSE [[ Bias | SD | MAE | RMSE || Bias | SD | MAE | RMSE
ATE 4:, 0.418 | 0.409 | 0.479 | 0.582 || 0.302 | 0.490 | 0.472 | 0.571 | 0.405 | 0.628 | 0.574 | 0.720

fﬁu’\-v-l—lasso 0.078 | 0.310 | 0.252 | 0.317 0.097 | 0.356 | 0.295 | 0.366 0.073 | 0.328 | 0.267 | 0.320
T =Tiogit ATFEpRr + lasso | 0.060 | 0.181 | 0.152 | 0.189 || 0.067 | 0.190 | 0.155 | 0.199 0.081 | 0.181 | 0.169 | 0.190

m = 1000 ATE ey, | 0053 | 0.138 | 0.124 | 0.146 || 0.064 | 0.130 | 0.117 | 0.144 | 0.018 | 0.170 | 0.128 | 0.162
ATE 2y g 0.045 | 0.108 | 0.091 | 0.116 || 0.019 | 0.114 [ 0.093 | 0.115 [[ 0.067 | 0.144 | 0.130 | 0.152 ]
ATE 4, 0.418 | 0.170 | 0.418 | 0.451 || 0.659 | 0.181 | 0.659 | 0.681 || 0.523 | 0.412 | 0.555 | 0.653

ATE1pw + lasso | 0.036 | 0.201 | 0.163 | 0.202 || 0.034 | 0.222 | 0.194 | 0.213 0.032 | 0.341 | 0.274 | 0.325
T =Tiogit ATFEpr + lasso | 0.051 | 0.079 | 0.071 | 0.094 || 0.106 | 0.075 | 0.114 | 0.127 0.055 | 0.084 | 0.086 | 0.096

m = 5000 ATE ey ey | 0.112 | 0.080 | 0.118 | 0.137 || 0.114 | 0.102 | 0.121 | 0.150 || 0.164 | 0.076 | 0.164 | 0.179
ATE pay 0.033 | 0.072 | 0.061 | 0.078 || 0.023 | 0.073 | 0.061 | 0.073 || 0.042 | 0.068 | 0.062 | 0.076 |
ATE g, 0.664 | 0.387 | 0.670 | 0.766 || 0.273 | 0.445 | 0.436 | 0518 || 0.380 | 0.766 | 0.691 | 0.848

.@mw—i-lasso 0.266 | 0.279 | 0.319 | 0.384 || 0.298 | 0.295 | 0.328 | 0.417 0.191 | 0.482 | 0.403 | 0.514
T =Thicep | ATEpr +lasso | 0.138 | 0.187 | 0.174 | 0.231 0.253 | 0.197 | 0.269 | 0.320 || 0.050 | 0.218 | 0.170 | 0.222

m = 1000 flﬁ]}?v Di—) 0.269 | 0.162 | 0.270 | 0.313 |[ 0.129 | 0.162 | 0.170 | 0.206 || 0.175 | 0.207 | 0.236 [ 0.269
AT}*&)QV,) 0.066 | 0.113 | 0.102 | 0.129 || 0.019 | 0.119 | 0.101 | 0.120 || 0.059 | 0.177 | 0.149 | 0.184 )
ATE 4, 0.446 | 0.180 | 0.446 | 0.480 || 0.587 | 0.323 | 0.587 | 0.662 0.778 | 0.246 | 0.778 | 0.812

ATE pw +lasso | 0.148 | 0.133 | 0.161 | 0.198 || 0.172 | 0.167 | 0.199 | 0239 || 0.142 | 0.224 | 0.206 | 0.263
T ="Tpicep | ATEpr +lasso | 0.119 | 0.073 | 0.123 | 0.139 || 0.100 | 0.067 | 0.107 | 0.120 | 0.127 | 0.079 | 0.127 | 0.148
m = 5000 ATEpeyvpy, | 0112 | 0.070 | 0.119 | 0.132 || 0.058 | 0.067 | 0.069 | 0.086 | 0.068 | 0.055 | 0.073 | 0.086
ATE payp 0.033 | 0.055 | 0.052 | 0.063 || 0.039 | 0.068 | 0.066 | 0.075 || 0.032 | 0.047 | 0.049 | 0.055 |




1. The direct estimator is failed under all settings.

2. IPW and DR estimators are good when T=T,,4;;, but poor when T=T, .
3. D?VD(-) has no variables separation, get similar results with DR estimator.
4. D?VD can improve accuracy and reduce variance for ATE estimation.

n n = 50 n = 100 n = 200

T/m Estimator Bias | SD | MAE | RMSE || Bias [ SD | MAE | RMSE || Bias [ SD | MAE | RMSE

ATE g, 0.418 | 0.409 | 0.479 | 0.582 || 0.302 | 0.490 | 0.472 | 0.571 | 0.405 | 0.628 | 0.574 | 0.720

fﬁl}’w" + lasso | 0.078 | 0.310 | 0.252 | 0.317 0.097 | 0.356 | 0.295 | 0.366 0.073 | 0.328 | 0.267 | 0.320

T =Tiogit fﬁl}l? + lasso | 0.060 | 0.181 | 0.152 | 0.189 0.067 | 0.190 | 0.155 | 0.199 0.081 | 0.181 | 0.169 | 0.190

m = 1000 fﬁu’lv Di—) 0.053 | 0.138 | 0.124 | 0.146 || 0.064 | 0.130 | 0.117 | 0.144 | 0.018 | 0.170 | 0.128 | 0.162
,47&)2 v 0.045 | 0.108 | 0.091 [ 0.116 0.019 [ 0.114 | 0.093 | 0.115 0.067 [ 0.144 | 0.130 | 0.152 ]

ATE 4, 0.418 | 0.170 | 0.418 | 0.451 || 0.659 | 0.181 | 0.659 | 0.681 | 0.523 | 0.412 | 0.555 | 0.653

ATEpw + lasso | 0.036 | 0.201 | 0.163 | 0.202 || 0.034 | 0.222 | 0.194 | 0213 | 0.032 | 0.341 | 0.274 | 0.325

T =Tiogit fmun + lasso | 0.051 | 0.079 | 0.071 | 0.094 0.106 | 0.075 | 0.114 | 0.127 0.055 | 0.084 | 0.086 | 0.096

m = 5000 ATE poy ey | 0.112 | 0.080 | 0.118 | 0.137 || 0.114 | 0.102 | 0.121 | 0.150 || 0.164 | 0.076 | 0.164 | 0.179
ATFE 2y 0.033 | 0.072 | 0.061 | 0.078 || 0.023 | 0.073 | 0.061 | 0.073 || 0.042 | 0.068 | 0.062 | 0.076 |

- ATE g, 0.664 | 0.387 | 0.670 | 0.766 | 0.273 | 0.445 | 0.436 | 0.518 || 0.380 | 0.766 | 0.691 | 0.848

ATFEipw + lasso | 0.266 | 0.279 | 0.319 | 0.384 || 0.298 | 0.295 | 0.328 | 0.417 || 0.191 | 0.482 | 0.403 | 0.514
T = Toniasp ATEpn +lasso | 0.138 | 0.187 | 0.174 | 0.231 0.253 | 0.197 | 0.269 | 0.320 || 0.050 | 0.218 | 0.170 | 0.222

m = 1000 fﬁ\E‘DQV Di—) 0.269 | 0.162 | 0.270 | 0.313 || 0.129 | 0.162 | 0.170 | 0.206 || 0.175 | 0.207 | 0.236 | 0.269
AT’E&)Q VD 0.066 | 0.113 | 0.102 | 0.129 || 0.019 | 0.119 | 0.101 | 0.120 | 0.059 | 0.177 | 0.149 | 0.184 ]
ATE 4ir 0.446 | 0.180 | 0.446 | 0.480 || 0.587 | 0.323 | 0.587 | 0.662 0.778 | 0.246 | 0.778 | 0.812

ATE pw +lasso | 0.148 | 0.133 | 0.161 | 0.198 || 0.172 | 0.167 | 0.199 | 0239 || 0.142 | 0.224 | 0.206 | 0.263
T ="Tpicep | ATEpr +lasso | 0.119 | 0.073 | 0.123 | 0.139 || 0.100 | 0.067 | 0.107 | 0.120 | 0.127 | 0.079 | 0.127 | 0.148
m = 5000 ATEpeyvpy, | 0112 | 0.070 | 0.119 | 0.132 || 0.058 | 0.067 | 0.069 | 0.086 | 0.068 | 0.055 | 0.073 | 0.086
ATE p2vp 0.033 | 0.055 | 0.052 | 0.063 || 0.039 | 0.068 | 0.066 | 0.075 || 0.032 | 0.047 | 0.049 | 0.055 |




Data-Driven Variable Decomposition (D%VD)

- Experimental Results on Synthetic Data:

Table 3: Separation results of confounders X and adjustment

variables Z.. The closer to 1 for TPR and TNR is better.

TPR: true positive rate

T = Tloglt . .
Tl 100 ~——500 TNR: true negative rate
m TPR | TNR || TPR | TNR || TPR | TNR
1000 | X | 1000 [0.9T7 [[70.977 | 0.948 || 0.966 | 0.906
B Z | 1.000 | 0.973 || 1.000 | 0.983 || 1.000 | 0.984 :
o0 | X[ 1000 [ 0923 [ 1.000 [ 0.8587 || 0.994 | 0.989 Our D?VD algorithm
B Z | 1.000 | 0.975 || 1.000 | 0.987 || 1.000 | 0.994 :
——— can precisely separate
— missp
1000 | X [ 1000 [0:84471°0.997 ] 0.866 [ 0.867 [ 0.977 the confounders and
Z | 1.000 | 0.982 || 1.000 | 0.987 || 1.000 | 0.983 ) )
=000 | X | 1.000 [ 0843 ["1.000 [ 0.837 [[0.998 | 0.965 adjustment variables.
B Z | 1.000 | 0.986 || 1.000 | 0.990 || 1.000 | 0.994




Experiments on Real World Data

- Dataset Description: Q
- Online advertising campaign (LONGCHAMP) WeChat

- Users Feedback: 14,891 LIKE: 93,108 DISLIKE 2015

- 56 Features for each user
- Age, gender, #friends, device, user setting on WeChat

- Experimental Setting:
- Qutcome Y: users feedback  ¢=mm
- Treatment T: one feature
- Observed Variables U: other features

Y =1, if LIKE
Y =0, if DISLIKE



Experiments Results

- ATE Estimation.

No. Features (ATE p2yp (SD)\ ATE pw (SD) | ATEpr (SD) | ATEmatching
| No_friends (> 166) 0.295 (0.018) 0.240 (0.026) 0.297(0.021) 0.276
2 Age (> 33) -0.284 (0.014) -0.235 (0.029) -0.302(0.068) -0.263
3 Share Album to Strangers 0.229 (0.030) 0.236 (0.030) -0.034(0.021) n/a
4 With Online Payment 0.226 (0.019) 0.260 (0.029) 0.244(0.028) n/a
5 With High-Definition Head Portrait 0.218 (0.028) 0.203 (0.032) 0.237(0.046) n/a
6 With WeChat Album 0.191 (0.014) 0.237 (0.021) 0.097(0.050) n/a
7 With Delicacy Plugin 0.124 (0.038) -0.253 (0.037) 0.067(0.051) 0.099
8 Device (10S) 0.100 (0.024) 0.206 (0.012) 0.060(0.021) 0.085
9 Add friends by Drift Bottle -0.098 (0.012) ¥ 0.016(0.019) -0.115(0.015) -0.032
10 |Gender (Male) ¥ -0.073 (0. 017)94 -0.240 (0.029) 0.065(0.055) -0.097

1. Our D?VD estimator evaluate the ATE more accuracy.

2. Our D2VD estimator can reduce the variance of estimated ATE.

3. Younger Ladies are with higher probability to like the LONGCHAMP ads.




Experiments Results

- Variables Decomposition.

Table 4: Confounders and adjusted variables when we set
feature “Add friends by Shake™ as treatment.

ZConfoundgE) J_Adjustment Variables j>
Add friends by Drift Bottle No. friends
Add friends by People Nearby Age
Add friends by QQ Contacts With WeChat Album
Without Friends Confirmation Plugin | Device

1. The confounders are many other ways for adding friends on WeChat.
2. The adjustment variables have significant effect on outcome.

3. Our D2VD algorithm can precisely separate the confounders and
adjustment variables.




Summary: Propensity Score based Methods
e(X) = P(T = 1|X)

- Propensity Score Matching (PSM): —
- Units matching by their propensity score Treat all observed
- Inverse of Propensity Weighting (IPW): — variables as confounder.

- Units reweighted by inverse of propensity score

- Doubly Robust (DR):

- Combing IPW and regression

- Data-Driven Variable Decomposition (D?VD):
- Automatically separate the confounders and adjustment variables
- Confounder: estimate propensity score for IPW
- Adjustment variables: regression on outcome for reducing variance
- Improving accuracy and reducing variance on treatment effect estimation

- But, these methods need propensity score model is correct

ignoring non-confounders

’



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing (DCB)



Causal Inference with Observational Data

- Average Treatment Effect (ATE):
ATE = E[Y(T =1) = Y(T = 0)]
- Average Treatment effect on the Treated (ATT):
ATT = E[Y(D|T = 1] = E[Y(0)|T = 1]

Treatment

- Two key points:
- Changing T (T=1 and T=0)
- Keeping everything else (Confounder X) constant



Causal Inference with Observational Data

- Average Treatment Effect (ATE):
ATE = E[Y(T=1) = Y(T = 0)]

- Average Treatment effect on the Treated (ATT):
ATT = E[Y(D)|T = 1] = E[Y(0)|T = 1]

- Two key points:

Balancing Confounders’ Distribution




Directly Confounder Balancing

- Recap: Propensity score based methods T 1-T,
- Sample reweighting for confounder balancing Wi = e—i + 1—e,
- But, need propensity score model is correct
- Weights would be very large if propensity score is close to 0 or 1

- Can we directly learn sample weight that can balance
confounders’ distribution between treated and control?

Yes!



Directly Confounder Balancing

- Motivation: The collection of all the moments of variables
uniquely determine their distributions.

- Methods: Learning sample weights by directly balancing
confounders’ moments as follows

- W

The first moments of X ] [ The first moments of X ]
on the Treated Group on the Control Group

With moments, the sample weights can be learned
without any model specification.




Directly Confounder Balancing

- Motivation: The collection of all the moments of variables
uniquely determine their distributions.

- Methods: Learning sample weights by directly balancing
confounders’ moments as follows

- W

The first moments of X ] [ The first moments of X ]
on the Treated Group on the Control Group

- Estimating ATT by:  ATT — > iY(l)— > WY (0)



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing (DCB)



Entropy Balancing

j l
win W log(W)

st (IX, —XTW|2=0)
S Wi=1,W =0

- Directly confounder balancing by sample weights W
- Maximize the entropy of sample weights W

- But, treat all variables as confounders and balance
them equally



Approximate Residual Balancing

- 1. compute approximate balancing weights W as

- 2
W = argminy, {(1 — QW2 +[§ ' X, — ijH ]S.t. ST OWi=1and W, > o}

{i:T;=0}
- 2. Fit 5. in the linear model using a lasso or elastic net,

Be = argmin { So(v X B) A ()8l +a|5||1)}

{i:W;=0}

- 3. Estimate the ATT as

m:?t_ (Yt‘éc-i- Z Wi (YiObin'Bc))

{’LT,L:O}
- Double Robustness: Exact confounder balancing or regression is correct.
- But, treats all variables as confounders and balance them equally



Directly Confounder Balancing

- Recap:
- Entropy Balancing, Approximate Residual Balancing eftc.
- Moments uniquely determine variables’ distribution
- Learning sample weights by balancing confounders’ moments

The first moments of X The first moments of X
on the Treated Group on the Control Group

- But, treat all variables as confounders, and balance them equally
- Different confounders make different confounding bias



Directly Confounder Balancing

- Recap:
- Entropy Balancing, Approximate Residual Balgpns:
- Moments uniquely determine variaple~

The first moments of X
on the Control Group

- But, treat \variables as confounders, and balance them equally
- Different confounders make different confounding bias



Methods for Causal Inference

- Matching

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D2VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing
- Differentiated Confounder Balancing (DCB)



Differentiated Confounder Balancing

- Ideas: simultaneously learn confounder weights [ and
sample weighs W' .

min (ﬁT (X — XF;FVV))2

- Confounder weights determine which variable 1s
confounder and 1ts contribution on confounding bias.

-Sample weights are designed for confounder balancing.

How to learn the confounder weights?




Confounder Weights Learning
» General relationship among X, T, and Y

Y = f(X)4+T g(X)+ec mmp ATT=EGEX))

f(X) = a1 X -+ Z ainin -+ Z a,,;ijz-Xij 4+ .. 4+ Rn(X)

|
1
1
%] ijk I
I
1

[Confounder WY hts] [ Confounding bias ]
m = ATT + Ei:l Zi:Tizl %M%k - Zj:T,i:O W;M;.k) + ¢(e€).

If a;, = 0, then M, is not confounder, no need to balance.
Different confounders have different confounding weights.




Confounder Weights Learning

Propositions:

- In observational studies, not all observed variables are confounders, and

different confounders make unequal confounding bias on ATT with their
own weights.

- The confounder weights can be learned by regressing potential outcome
Y (0) on augmented variables M.

M=(X,X:X;, X;X; Xz, )



Differentiated Confounder Balancing

- Objective Function

st W5 <6, I8z <p |18l <v, "W =1 and W >0

The ENT[3] and ARB[4] algorithms are special case of our DCB
algorithm by setting the confounder weights as unit vector.

Our DCB algorithm is more generalize for
treatment effect estimation.




Differentiated Confounder Balancing
- Algorithm

Algorithm 1 Differentiated Confounder Balancing (DCB) JB) = (687 M, —MIW) + ulBl3 + vI8l: (12)
Input: Tradeoff parameters A > 0,0 > 0, u > 0, v > 0, Aug- +A Ej:szo(l +W;) - (Y; — M, - B)?
mented Variables Matrix on treat units M;, Augmented Vari-
ables Matrix on control units M. and Outcome Y. S - 5 )
Output: Confounder Weights 3 and Sample Weights W Jw) = (B (M- M. W)) +6[[W[2 (13)
1: Initialize Confounder Weights 3(*) and Sample Weights W (*) +A Zj:szo(l + W;) - (Y; — M; - B)?,

2: Calculate the current value of 7(W, 3)© = (W 30)
with Equation (11)
3: Initialize the iteration variable ¢ <— 0
4: I_re[Tesz __________________ |
Sp teitl , s | : In each iteration, we first
6: Update 3'* by solving 7 (8'*~")) in Equation (12) | ;
: ' — fi
7.1 Update W® by solving 7 (W *~Y)) in Equation (13) ! update ﬁ by 1XIng W, and

st. 1"W =1 and W = 0.

. t) — (t) g(t) | .
81 Caleulaie J(W, 5)7 = J(W, 677) - | then update W by fixing S
o: luntil 7 (W, 3)™) converges or max iteration is reached :
io: refurn g, WS - T T T T T T m e

- Training Complexity: O (np)

- n: sample size, p: dimensions of variables



Experiments

- Experimental Tasks:

»Robustness Test (high-dimensional and noisy)
»Accuracy Test (real world dataset)
»Predictive Power Test (real ad application)



Experiments

- Baselines:

- Directly Estimator: comparing average outcome between treated and control units.
- IPW Estimator [1]: reweighting via inverse of propensity score

- Doubly Robust Estimator [2]: IPW + regression method

- Entropy Balancing Estimator [3]: directly confounder balancing with entropy loss

- Approximate Residual Balancing [4]: confounder balancing + regression

- Evaluation Metric:

Bias = |+« ,I::l ATT), — ATT|
SD = \/%Zle(mk_% {c{:lmk)z
MAE = LK |ATT) — ATT|
RMSE = \/ LK (ATT) — ATT)?



Experiments - Robustness Test

 Dataset
»Sample size: n = {2000,5000}
» Variables” dimensions: p = {50,100}
»Observed Variables: X = (X1,X2," " ,Xp)
X1,X2, - ,Xp e N(0,1),
»Treatment: from logistic function Ty, 4;; and misspecified function Typssp
Tiogit ~ Bernoulli(1/(1 4 exp(—>_r"¢ sc-xi + N(0,1)))), and
Tmissp = Lif D> 0" sc-ai + N(0,1) > 0, Thnissp = 0 otherwise
« Confounding rate 7,.: the ratio of confounders to all observed variables.
« Confounding strength s.: the bias strength of confounders

»Qutcome: from linear function Y};;,04, and nonlinear function Y, n1in
Yiinear = T+ Y5_1{I(mod(j,2) = 0) - (3 +T) - x;} + N(0,3),
Yoontin = T+ 35_ {I(mod(j,2) = 0) - (5 + T) - x;} + N(0,3)
+ 20 {I(mod(5,10) = 1) - § - (25 + ;- j41)},



Experiments - Robustness Test

More results see our paper!

n/p n = 2000, p = 50 n = 2000, p = 100
Te Estimator | Bias (SD) | MAE | RMSE || Bias (SD) | MAE | RMSE
—
ATT gip | 51,06 (3.725) | 51.06 | 51.19 || 143.0 (9.389) | 143.0 | 143.3

ATT 1 pw | 29.99 (4.048) | 29.99 | 30.26 || 98.24 (8.462) | 98.24 | 98.6
re =08 _ATTpg | 0.345(0.253) | 0367 | 0428 || 4.492(0.333) | 4.492 | 4.504

ATT gnT | 15.06 (IHS) 15.06 15.16 63.02 (4.551) | 63.02 | 63.19
| ATT app | 0231(0.645) | 0553 | 0.685_]| 2.909.(0.491) | 2.909 | 2951

ATTpcp | 0.003 (0.127) | 0.102 | 0.127 || 0.020 (0.135) | 0.114 A3

- Directly estimator fails in all settings, since it ignores confounding bias.

- IPW and DR estimators make huge error when facing high dimensional
variables or the model specifications are incorrect.

« ENT and ARB estimators have poor performance since they balance all
variables equally.



Experiments - Robustness Test

More results see our paper!

n/p n = 2000, p = 50 n = 2000, p — 100
o Estimator | Bias (SD) | MAE | RMSE || Bias (SD) | MAE | RMSE
ATT g | 51.06(3.725) | 51.06 | 51.19 || 143.0 (9.389) | 143.0 | 1433
ATTrpw | 29.99 (4.048) | 29.99 | 30.26 || 98.24 (8.462) | 98.24 | 98.60
re =0.8 | ATTpgr | 0.345(0.253) | 0367 | 0428 || 4492 (0.333) | 4.492 | 4.504
ATTent | 15.06(1.745) | 15.06 | 15.16 || 63.02 (4.551) | 63.02 | 63.19
ATT agg. | 0231(0645) | 0553 | 0.685 [ 2.900 (0491) | 2.009 | 2.951_]
ATTpog | 0.003(0.127) | 0102 | 0.127 || 0.020 (0.135) | 0.114 | 0.136

Our DCB estimator achieves significant improvements over
the baselines 1n different settings.

Our DCB estimator 1s very robust!




Experiments - Robustness Test

- Sample Size 200

- Dimension of variables 5

- Confounding rate

. L
- Confounding strength < 100/

(b) dimension of variables p

The MAE of our DCB estimator 1s consistent
stable and small.




Experiments - Robustness Test

60 . 150 ' ' ' 200 '
R dir dir 19 4 Q—?FI:W
50 | S DA
h - ENT 150}
40t —¥—ARB | - 100¢
e 1 e :1:_1 EEJ 100
< 30} (X 4 < '
o Ii) N
= f 5000 10000 = =
20¢ 1
50}
10} 1
]
0O 2000 4000 éEO(_JO 8000 10%00 O0
Sample Size Confoundlng Rate
(a) sample size n (d) confounding strength s (¢) confounding rate 7

Our DCB algorithm 1s very robust for
treatment effect estimation.




Experiments - Accuracy lest

- LalLonde Dataset [5]: Would the job training program increase people s earnings
in the year of 1978?

- Randomized experiments: provide ground truth of treatment effect

- Observational studies: check the performance of all estimators

- Experimental Setting:

- V-RAW: variables set of 10 raw observed variables, including employment,
education, age ethnicity and married status.

- V-INTERACTION: variables set of raw variables, their pairwise one way
interaction and their squared terms.



Experiments - Accuracy lest

Results of ATT estimation

Variables Set V-RAW V-INTERACTION
Estimator m Bias (SD) A/T\T Bias (SD)
ATTair | -8471 | 10265 (374) || -8471 | 10265 (374)
ATT pw | -4481 | 6275 (971) || -4365 | 6159 (1024)
ATTpr | 1154 | 639491) || 1590 | 204 (812)
ATTenxt | 1535 | 259(995) | 1405 | 388 (787)
ATTare | 1537 | 257.(996) | 1627 | 167 (957)

chB 1

Our DCB estimator 1s more accurate than the baselines. ‘

Our DCB estimator achieve a better confounder
balancing under V-INTERACTION setting.
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Experiments - Predictive Power
- Dataset Description: 2015 g

* Online advertising campaign (LONGCHAMP)
- Users Feedback: 14,891 LIKE; 93,108 DISLIKE

» 56 Features for each user
- Age, gender, #friends, device, user settings on WeChat

- Experimental Setting:
- Qutcome Y: users feedback ===
- Treatment T: one feature

Y =1, 1f LIKE
Y =0, 1f DISLIKE

Select the top k features with high causal effect for prediction




Experiments - Predictive Power

0.5

'--{-twdir .
‘_ ~< MR - Two correlation-based feature
MRMR . .
0.45; Pw 1 selection baselines:
—¥—DR .
Ll SN > P > S 'gf\g{, » MRel [6]: maximum relevance
<L 04 R = - .
= e _3‘11 . [7]: Maximum relevance
ol and minimum redundancy:.
0.35} :

0 2 4 5 8
Top k features selected

» Our DCB estimator achieves the best prediction accuracy.
» Correlation based methods perform worse than causal methods.




Summary: Directly Confounder Balancing

- Motivation: Moments can uniquely determine distribution
- Entropy Balancing

- Confounder balancing with maximizing entropy of sample weights
- Approximate Residual Balancing

- Combine confounder balancing and regression for doubly robust
- Treat all variables as confounders, and balance them equally
- But different confounders make different bias

- Differentiated Confounder Balancing (DCB)

- Theoretical proof on the necessary of differentiation on confounders
- Improving the accuracy and robust on treatment effect estimation



Sectional Summary: Methods for Causal Inference

- Matching Limited to low-dimensional settings

- Propensity Score Based Methods
- Propensity Score Matching
- Inverse of Propensity Weighting (IPW)
- Doubly Robust
- Data-Driven Variable Decomposition (D4VD)

- Directly Confounder Balancing

- Entropy Balancing
- Approximate Residual Balancing

- Differentiated Confounder Balancing (DCB)

Treat all observed
variables as confounder

Not all observed variables
are confounders

Balance all confounder
equally

Different confounders
make different bias




Sectional Summary: Methods for Causal Inferenc

0 Progress has been made to draw causality from

big data.
O From single to group
0 From binary to continuous
0 Weak assumptions
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Drawing Causal Inference from Big Data

Arthur M. Sackler
COLLOQUIA

Drawing Causal Inference from Big Data

This meeting was held March 26-27, 2015 at the National Academy of Sciences 2101 Constitution Ave. NW in
Washington, D.C.
Organized by Richard M. Shiffrin (Indiana University), Susan Dumais (Microsoft Corporation), Mike Hawrylycz
(Allen Institute), Jennifer Hill (New York University), Michael Jordan (University of California, Berkeley), Bernhard
Schélkopf (Max Planck Institute) and Jasjeet Sekhon (University of California, Berkeley)
Graduate Student / Postdoctoral Researcher travel awards sponsored by the National Science Foundation and the Ford
Foundation.

Overview

This colloquium was motivated by the exponentially growing amount of information collected about complex systems, colloquially
referred to as “Big Data”. It was aimed at methods to draw causal inference from these large data sets, most of which are not
derived from carefully controlled experiments. Although correlations among observations are vast in number and often easy to
obtain, causality is much harder to assess and establish, partly because causality is a vague and poorly specified construct for
complex systems. Speakers discussed both the conceptual framework required to establish causal inference and designs and
computational methods that can allow causality to be inferred. The program illustrates state-of-the-art methods with approaches
derived from such fields as statistics, graph theory, machine learning, philosophy, and computer science, and the talks will cover
such domains as social networks, medicine, health, economics, business, internet data and usage, search engines, and genetics.
The presentations also addressed the possibility of testing causality in large data settings, and will raise certain basic questions:
Will access to massive data be a key to understanding the fundamental questions of basic and applied science? Or does the vast
increase in data confound analysis, produce computational bottlenecks, and decrease the ability to draw valid causal inferences?

Videos of the talks are available on the Sackler YouTube Channel. More videos will be added as they are approved by the
speakers.



Outline

»Correlation v.s. Causality

»Causal Inference

»Stable Learning

»NICO: An Image Dataset for Stable Learning
»Future Directions and Conclusions



Stability and Prediction

Prediction
Performance

Learning Process

True Model

=

Traditional Learning

Prediction
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Stability

Bin Yu (2016), Three Principles of Data Science: predictability, computability, stability

Stable Learning



Stable Learning

Testing

Distribution 1 Accuracy 1 —~ L.I.D. Learning

Training
Distribution 2 Accuracy 2

Distribution 1 - _ VAR (Acc)  Otable
Distribution 3 Accuracy 3 Learning

————————————————————————————

i Distribution n Accuracy n i Transfer Learning




T
Stability and Robustness

- Robustness
- More on prediction performance over data perturbations
- Prediction performance-driven
- Stability
- More on the true model
- Lay more emphasis on Bias
- Sufficient for robustness

Stable learning is a (intrinsic?) way to realize robust prediction




Domain Generalization / Invariant Learning

- Given data from different
observed environments ec £ :

(X8, Y®) ~ Fe, ec&

- The task is to predict Y given X
such that the prediction works
well (is “robust”) for “all possible”
(including unseen) environments




Domain Generalization

Assumption: the conditional probability P(Y|X) is stable or
invariant across different environments.

Idea: taking knowledge acquired from a number of related domains
and applying it to previously unseen domains

Theorem: Under reasonable technical assumptions. Then with
probability at least 1 —9

2

sup

1Fll <1 SERL(F(X), Vi) — Esl(f(Xy), Vi)
H >

N - (logd—1+2log N logd—1 ¢
< -Vy(PLP2, .. PN) 4 o (log - eN) ., ., gN +A‘;

N _J
distributional variance ) v
vanish as N,n— oo

Muandet K, Balduzzi D, Schoélkopf B. Domain generalization via invariant feature. ICML 2013.



Invariant Prediction

Invariant Assumption: There exists a subset S € X is causal for the prediction
of Y, and the conditional distribution P(Y|S) is stable across all environments.

for all e € £, X¢ has an arbitrary distribution and

Y¢=g(X, &), g~ F, and ¢° 1l X%
Idea: Linking to causality Ve ST ByaXe+ =S
Structural Causal Model (Pearl 2009): kepa(Y) 5 Fvecs

The parent variables of Y in SCM satisfies Invariant Assumption
The causal variables lead to invariance w.r.t. “all” possible environments

Peters, J., Buhlmann, P., & Meinshausen, N. (2016). Causal inference by using invariant prediction: identification and
confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2016



From Variable Selection to Sample Reweighting

Directly Confounder Balancing

Given a feature T

Assign different weights to samples so that
the samples with T and the samples without
T have similar distributions in X

Typical Causal Framework Calculate the difference of Y distribution in

treated and controlled groups. (correlation
between T and Y)

Sample reweighting can make a variable independent of other

variables.




Global Balancing: Decorrelating Variables

Global Balancing

Given ANY feature T

Assign different weights to samples so that the
samples with T and the samples without T have
similar distributions in X

Typical Causal Framework Calculate the difference of Y distribution in

treated and controlled groups. (correlation
between T and Y)

Partial effect can be regarded as causal effect. Predicting with causal

variables is stable across different environments.

Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018.



Theoretical Guarantee

PROPOSITION 3.3. If0 < P(X; = x) < 1 forallx, where P(X; = x) =
2 ¥ 1(X; = x), there exists a solution W* satisfies equation (4) equals
0 and variables in X are independent after balancing by W*.

Proor. Simce ||<]| = 0, Eq. (8) can be simplified to ¥j, vk = j

W '

Jim | = - = | =0
Z,_, XT_;-(WoX. ) ~ X'« (Wo(1-X.))) 2 (4) :.:.I-; prt.,:,“n.,ﬁ W*, from Lemana 3.1, 0 < POX; = x) < 1,
j=1 wT X, wT.(1-X. ;) N I A C S
= Dm 5yt ® Dideer TR
¢ = lm Yy PO =) e = 2!

with probability 1 (Law of Large Number). Since fealures are binary,

= I L
O .-JI.I_:I.T-,-F—'I""II LAy |“] -"r

K o i1 1 % . 1
lim o bx oWy =270, lim Sk e e Wy =2

and therefore, we have following equation with probability 1

I | Pl :ln.rjlllu'--;l I.|||_-‘:\r.‘ a2 =0
| WXy WnXg | @ T aFT

a

Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018.



Causal Regularizer

Set feature j as treatment variable

----‘ ——-

pixTi (W@IIJ) XL wWoe(-p) ,

_;.L A,
StwTor, e T : 27
j=1 '\-YK_J I W (1 IJ)
" All features " Indicator of |
: Sample
excluding . treatment
. Weights
_ treatment | status

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018.



Causally Regularized Logistic Regression

min | l_lwz log(1+exp((1—2Y;) (x¢B)).

'/ N W W N N W N S N NN NN RN NN N NN NN N NN N RN NN N NN LGN NN N N N R N N M M N NN S S N

S ap (WOI,) (Wo(l IJ)) 2_\
AWz, WIE < 20, BIE < 2. 1811 < A,
Sample \(Zpo; Wk —1)? < 2s, —_—
reweighted Causal
logistic loss Contribution
\. J

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018.



From Shallow to Deep - DGBR
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Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018.



Experiment 1 — non-i.i.d. image classification

- Source: YFCCI00M
- Type: high-resolution and multi-tags
- Scale: 10-category, each with nearly 1000 images

- Method: select 5 context tags which are frequently co-occurred with
the major tag (category label)
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Experimental Result - insights




From Causal problem to Learning problem

- Previous logic:

Sample Independent Causal Stable

Reweighting Variables Variable Prediction

- More direct logic:

Sample Independent : Stable
Reweighting Variables Prediction




Thinking from the Learning end

Problem 1. (Stable Learning) : Given the target y and p
input variables x = |1, ...,x,] € RP, the task is to learn

a predictive model which can achieve uniformly small error
/

small error

on any data point.

Ptrain (x) Ptest (x)

/ lange error

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)




R
Stable Learning of Linear Models

- Consider the linear regression with misspecification bias

y= 2 By + Bo B e

[ Goes to infinity when perfect collinearity exists! ] [Bias term with bound b(x) < 6 ]

- By accurately estiméii‘ng 3 with the property that b(x) is uniformly
small for all x, we can achieve stable learning.
- However, the estimation error.caused by misspecification term can

be as bad as || 3 — ]| §[2(5/7) e 5_], where y? is the smallest
eigenvalue of centered covariance matrix.

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)




——————
Toy Example

Assume the design matrix X consists of two variables X, X,,
generated from a multivariate normal distribution:

X ~ N(0,3), z:(l ”)
p 1

By changing p, we can simulate different extent of collinearity.

To induce bias related to collinearity, we generate bias term b(X)
with b(X) = Xv, where v is the eigenvector of centered covariance

matrix corresponding to its smallest eigenvalue 2.
The bias term is sensitive to collinearity.

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)




Simulation Results

/ large variance in dif ferent distributions

0.6 7

0.5 1

/ large error (estimation bias)

0.4 1 —

0.3 1

Estimation Error
%

0l

0:0 =

I T T T 1
0.1 0.3 0.5 0.7 0.9

y2
increase collinearity

Zheyan Shen, Peng Cui, Tong Zhang. Stable Léarning of Linear Models via Sample Reweighting. (under review)



Reducing collinearity by sample reweighting

Idea: Learn a new set of sample weights w(x) to decorrelate the
iInput variables and increase the smallest eigenvalue

- Weighted Least Square Estimation

AN

: 2
B = arg HlBHl E(x)wD’w(l’) (fETﬁLp + Bo — y)

which is equivalent to

A

: 2

So, how to find an “oracle” distribution D which holds the desired
property?

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Sample Reweighted Decorrelation Operator (cont.)

(CL’H 12 ZBlp\ (5132'1 N o \
21 T2 ... Ty - L1 .. L sl
X = Decorrelation > X =
\mnl Ln2 .. CEnp) \mkl N i /

where i,j, k,r,s,t are drawn from 1 ...n at random

- By treating the different columns independently while performing
random resampling, we can obtain a column-decorrelated design
matrix with the same marginal as before.

- Then we can use density ratio estimation to get w(x).

Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Experimental Results

- Simulation Study

1.7 T T 1.5
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Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Experimental Results

- Classification

0.75
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(a) AUC over different test environments. (b) Average AUC of all the environments

and stability.
Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning of Linear Models via Sample Reweighting. (under review)



Disentanglement Representation Learning

From decorrelating input variables to learning
disentangled representation

- Learning Multiple Levels of Abstraction

- The big payoff of deep learning is to allow learning higher levels of
abstraction

- Higher-level abstractions disentangle the factor of variation,
which allows much easier generalization and transfer

Yoshua Bengio, From Deep Learning of Disentangled Representations to Higher-level Cognition. (2019). YouTube. Retrieved 22 February 2019.



Disentanglement for Causality

- Causal / mechanism independence
- Independently Controllable Factors

selectively chany correspond to value

A policy my, A representation f;
|[fk(s) — fi(s)|

2 [ i (8") = fir (s)]

- Optimize both m;, and f;, to minimize

sel(s,a, k) = IESer;zS,

~"

L ,. the reconstruction error 7 pOlicy Set tO guarantee Causality

WV
Lser the disentanglement objective

E.3lls —g(f(s)5] — )\ZIES[Z i (als)sel(s,a, k)]. RGC]Uire subtle deSign on the
N ” - -




Sectional Summary

0 Causal inference provide valuable insights for stable learning

0 Complete causal structure means data generation process,

necessarily leading to stable prediction
[0 Stable learning can also help to advance causal inference

0 Performance driven and practical applications

Benchmark is important!
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Non-l.|.D. Image Classification

- Non |.I.D. Image Classification

770(1)1:1‘0&11 — (Xtrainr Ytrain)) + w(Dtest — (Xtest: Ytest))

- Two tasks

- Targeted Non-1.1.D. Image Classification
- Have prior knowledge on testing data
- e.g. transfer learning, domain adaptation

- General Non-I.1.D. Image Classification Dirain Dyest

- Testing is unknown, no prior
- more practical & realistic




Existence of Non-l.l.Dness

- One metric (NI) for Non-Il.I.Dness

Definition 1 Non-I.I1.D. Index (NI) Given a feature extractor qv( ) and a class C, the degree of
distribution shift between training data DE._. and testing data Dt . 18 defined as:

train

Distribution shift

For normalization

- Existence of Non-l.I.Dness on Dataset consisted of 10 subclasses from ImageNet

- For each class
- Training data
- Testing data I

NI

- CNN for prediction - LM

4 60.00%

4 50.00%

41 40.00%

41 30.00%

0117 Sunsa

4 2000%

4 10.00%

0.00%

mmmm N1 of DatasetA ~ ==@==Error of DatasetA



Related Datasets

- DatasetA & DatasetB & DatasetC

- NI is ubiquitous, but small on these datasets
- Nl is Uncontrollable, not friendly for Non IID setting Average NI: 2.7

o ImageNet
3.5 F P

s N\

PASCAL
VOC

m DatasetA DatasetB DatasetC

A dataset for Non-l.1.D. image classification is demanded.



NICO - Non-l.I1.D. Image Dataset with Contexts

- NICO Datasets:

- Object label: e.g. dog

- Contextual labels (Contexts)
- the background or scene of a object, e.g. grass/water

- Structure of NICO
|
|
|

2 Superclasses

| per

10 Classes

per

10 Contexts

Overlapping

Diverse &
Meaningful

<



NICO - Non-l.I1.D. Image Dataset with Contexts

- Data size of each class in NICO
- Sample size: thousands for each class
- Each superclass: 10,000 images
- Sufficient for some basic neural networks (CNN)

- Samples with contexts in NICO

Pyl - |
4 & | ‘ .’ g\,\
Dog| | v ""“‘Iﬁ i w
At home on beach eating
R
Horse V
on beach in forest
Boat

on beach cross bridge

Animal DATA S1ZE | Vehicle DATA SIZE
BEAR 1609 930
BIRD 1590 1639
CAT 1479 2156
Cow 1192 1009
Dog 1624 1026
ELEPHANT 1178 HELICOPTER 1351
HORSE 1258 MOTORCYCLE 1542
MONKEY 1117 750
RAT 846 1000
SHEEP 918

'with people

in city

in street

at wharf

4

wooden

ke
e E ]

running

running




Controlling NI on NICO Dataset

-Minimum Bias (comparing with ImageNet)
-Proportional Bias (controllable)
- Number of samples in each context

-Compositional Bias (controllable)
- Number of contexts that observed




Minimum Bias

- In this setting, the way of random sampling leads to minimum distribution shift between
training and testing distributions in dataset, which simulates a nearly i.i.d. scenario.

- 8000 samples for training and 2000 samples for testing in each superclass (ConvNet)

Average NI Testing Accuracy

Animal 3.85 49.6%
Vehicle ~—__ 3.20 63.0%

Average NI on ImageNet: 2.7

more challenging for
image classification

Our NICO data is more Non-iid, more challenging

Images in NICO
are with rich contextual
information




Proportional Bias

- Given a class, when sampling positive samples, we use all contexts for both training and
testing, but the percentage of each context is different between training and testing dataset.

iy

h At home or'1 bea.ch eatirng in cage in water i on grass in street running on snow
bominate 2 %) (%) (5%) (%)  (6%) (5%)  (5%)  (5%)
Context (55%) 45 ¢
. . N i 43 }
Dominant Ratio = —&ominant NI
N minor 2T

6:1

We can control NI by varying dominate ratio

Dominant Ratio in Training Data




139

N, dominant

Compositional Bias Dommant fatio ==y .,

- Given a class, the observed contexts are different between training and testing data.

Training: Training: |
Testing: Testing: ]
4.4 5.0 . Testing

1:1

4.8 } .

4.34
46 |
NI 4.2 | NI 4.44
44 |
4.1
4.2 |
4.0 4.0
7 6 5 4 3

1:1 2:1 3:1 4:1 5:1
Number of Contexts in Training Data Dominant Ratio in Training data

4.3

v

Moderate setting Radical setting

(No Overlap &

(Overlap) Dominant ratio)




T
NICO - Non-l.I1.D. Image Dataset with Contexts

-Large and controllable NI

Compositional Bias -
L

large NI

Proportional Bias

Minimum Bias

ImageNet |Sawa\| LargeNI | Controllable NI
0 2.5

small NI 2. 3.0 3.5 4.0 4.5 5.0 5.5

NI



T
NICO - Non-l.I1.D. Image Dataset with Contexts

The dataset can be downloaded from (temporary address).

https://www.dropbox.com/sh/8mouawidguaupyb/AAD4fdySrA6fn3P
agSmhKwFgva?d|=0

Please refer to the following paper for details:

Yue He, Zheyan Shen, Peng Cui. NICO: A Dataset Towards Non-
|.I.D. Image Classification. https://arxiv.org/pdf/1906.02899.pdf



https://www.dropbox.com/sh/8mouawi5guaupyb/AAD4fdySrA6fn3PgSmhKwFgva?dl=0
https://arxiv.org/pdf/1906.02899.pdf
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Conclusions

- Predictive modeling is not only about Accuracy.
- Stability 1s critical for us to trust a predictive model.
- Causality has been demonstrated to be useful in stable prediction.

- How to marry causality with predictive modeling effectively and
efficiently 1s still an open problem.



COnCIUSiOnS Stable Learning

Disentangled Prediction
Learning

Global
Balancing
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7
Research Problems
Comes down to the Model
i Accuracy 1 — L.I.D. Learning
Accuracy 2
Stable
’@ Accuracy 3 VAR (Acc) Prediction

Accuracy n - Transfer Learning

NICO - Non-L.1.D. Image Dataset with Contexts

Data size of each class in NICO
Sample size: thousands for each class
Each superclass: 10,000 images
Sufficient for some basic neural networks (CNN)

Samples with contexts in NICO

Conclusions Stable Learning

Prediction

Causal Inference

Debiasing
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