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ABSTRACT 
Uplift modeling aims to measure the incremental efect, which we 
call uplift, of a strategy or action on the users from randomized 
experiments or observational data. Most existing uplift methods 
only use individual data, which are usually not informative enough 
to capture the unobserved and complex hidden factors regarding 
the uplift. Furthermore, uplift modeling scenario usually has scarce 
labeled data, especially for the treatment group, which also poses a 
great challenge for model training. Considering that the neighbors’ 
features and the social relationships are very informative to char-

acterize a user’s uplift, we propose a graph neural network-based 
framework with two uplift estimators, called GNUM, to learn from 
the social graph for uplift estimation. Specifcally, we design the 
frst estimator based on a class-transformed target. The estimator 
is general for all types of outcomes, and is able to comprehensively 
model the treatment and control group data together to approach 
the uplift. When the outcome is discrete, we further design the other 
uplift estimator based on our defned partial labels, which is able 
to utilize more labeled data from both the treatment and control 
groups, to further alleviate the label scarcity problem. Comprehen-

sive experiments on a public dataset and two industrial datasets 
show a superior performance of our proposed framework over state-
of-the-art methods under various evaluation metrics. The proposed 
algorithms have been deployed online to serve real-world uplift 
estimation scenarios. 
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1 INTRODUCTION 
Uplift modeling refers to the set of techniques used to estimate the 
efect of an action on a user’s outcome. This technology can be 
applied to various felds, such as economics[14, 36], medicine[23, 
24] and sociology[17, 37]. For example, an e-commerce company is 
preparing to send promotional coupons (i.e., action or treatment) to 
some users to attract them to purchase more products (i.e., outcome). 
Then estimating the individual uplift can help to fnd target users. 
Uplift modeling is a complicated problem because one needs to 
estimate the diference between two outcomes with and without 
the treatment which are mutually exclusive to individuals. For 
example, we can only observe the outcome of a user getting or 
not getting a promotional coupon. The outcome we can observe is 
called the factual outcome and the outcome we can not observe is 
called the counterfactual outcome. Therefore, uplift modeling also 
can be seen as a counterfactual inference problem[19, 29]. 

To model the counterfactual outcome, existing uplift methods 
mainly rely on randomized experiments or observational data: users 
will be assigned to either the treatment group or the control group 
and we can observe only one type of outcome. Based on these data, 
most existing methods [16, 19, 40] utilize user’s individual features 
to estimate the user uplift [2, 5]. An accurate uplift modeling is 
required to capture the complex and the unobserved hidden factors 
(representations) within the user. However, many factors regarding 
the user’s uplift are difcult to be captured by only using individual 
data for two reasons. Firstly, in real-world scenarios, the individual 
features of users, especially the new users, are missing. Secondly, 
some informative information for uplift estimation is hidden and 
difcult to be characterized by individual features, like social status 
and personality. 

To resolve the aforementioned problems, we hope to introduce 
the social graph. On the one hand, considering that users with close 
social relations usually have similar behaviors and preferences, we 
can utilize the information from social neighbors as a supplement 
to the user’s own features. On the other hand, social graphs can 
reveal some informative social information like social status, which 
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is also benefcial for uplift modeling [45]. From the experiments, 
we also demonstrate that the uplift diference between users with 
friend relationships is much smaller than the diference between 
random users. Therefore, it is very essential to incorporate social 
graphs when doing uplift estimation. 

A few of the existing works propose graph-based uplift models 
for uplift estimation [17, 18, 45]: They frst use graph neural network 
(GNN) model to learn the graph-based representations from the so-
cial graphs. Then with the graph-based representations, these works 
design uplift estimators, which consist of two separate pathways of 
models to predict the outcome with and without the treatment using 
the data of the treatment group and control group respectively. Al-

though these works have achieved substantial improvements, they 
still have limitations. In real-world scenarios, since the efect of the 
treatment is unpredictable, imposing the treatment on samples may 
bring a bad efect like capital loss and user loss. In this way, it is com-

mon that only a little fow will be assigned to the treatment group. In 
this way, the number of labeled instances, particularly the instances 
from the treatment group, is commonly limited, especially in the 
scenario of randomized experiments we mainly focus on. Moreover, 
to model the relational data, graph-based models require learning 
more parameters. From Figure 4.3.3, compared with tree-based and 
NN-based models, the performance of existing graph-based models 
will drop more quickly when the labeled data is scarce, thereby 
labeled data scarcity is a more severe and unresolved problem for 
graph-based representation learning in uplift estimation. 

To address aforementioned problems, we propose a general GNN-

based framework with two uplift estimators for uplift modeling. 
First of all, a GNN-based model with breadth and depth aggregators 
is proposed to generate the graph-based representations for the 
following uplift estimation. And empirically we demonstrate the 
proposed uplift estimation framework is general for many exist-
ing GNN-based models. Furthermore, to address the label scarcity 
problem, we propose two uplift estimators to utilize the treatment 
and control group data and their corresponding social relations. 
Firstly, we design a class-transformed target, which we prove is 
equal to the uplift and is general for uplift scenarios. Unlike two 
separate pathways of estimators, our transformed target is able to 
utilize the training instances with and without the treatment simul-

taneously in a common model to approach the uplift. Furthermore, 
when the outcome is discrete, we design partial labels based on the 
user’s treatment and the observed outcome. Then we design the 
other uplift estimator with two classifers to learn partial labels. 
The two classifers can focus on diferent facets of the uplift but 
all require two groups of data for training. In this way, our model 
can capture the relations between two groups of data and utilize 
the labeled data more efectively. Experimental results show our 
proposed framework can outperform the best-performing baseline 
method by an improvement of 5% to 10% in the regression setting 
and 12% to 25% in the classifcation setting. 

The main contributions of the paper are summarized here: 

• Problem: We point out the label scarcity problem is severe 
for uplift modeling, especially when trained with the graph-

based model. To the best of our knowledge, it is the frst work 
trying to solve the label scarcity problem in uplift estimation. 

• Methodology: We introduce a novel GNN-based framework 
with two uplift estimators for uplift modeling, which can 

utilize the two groups of data and the social graph compre-

hensively. Specifcally, when the outcome is discrete, we are 
the frst to introduce partial label learning to uplift estima-

tion, which is able to utilize the labeled data more efectively 
to alleviate the labeled data scarcity problem. 

• Results: Extensive experiments on a public dataset and two 
industrial datasets demonstrate the superiority of proposed 
GNN-based uplift model(GNUM) on diferent types of out-

comes. Specifcally, we fnd labeled data scarcity is indeed 
a serious problem for previous graph-based uplift methods 
and our methods are robust to the label scarcity problem. 

2 RELATED WORK 

2.1 Uplift modeling 
Existing uplift methods can be classifed into three categories [19], 
i.e. the Two-Model methods [35, 38], the Class-Transformation 
methods [24] and the methods that model uplift directly [39, 40, 43]. 

The Two-Model methods construct two independent models for 
the two groups of data. One model infers the label using the data 
from the treatment group and the other model is for the control 
group data. However, [39] points out that the Two-Model methods 
may miss the uplift signal. Then The Class Transformation methods 
are introduced by [1, 24], which aim to create a new target to 
approach the uplift. Then a single model is proposed to learn the 
new target. But Class Transformation methods usually require a 
balanced dataset between the control and treatment groups. The 
last type of uplift method aims to directly infer the uplift. The work 
[48] proposes a method based on a modifcation of the SVM model 
and the work [15] focuses on k-nearest neighbors to do the uplift 
estimation. 

The aforementioned works assume that the data of the control 
group and treatment group are randomly collected. If the collecting 
data is naturally observed, besides uplift estimation, uplift modeling 
also needs to reduce the bias of the data from the treatment group 
and control group. The most popular methods of this type are the 
doubly robust learning methods [6, 9, 26, 54]. They usually adopt 
the Inverse Propensity Scoring (IPS) [21, 28] to re-weight each 
instance, aiming at making the uplift estimator unbiased. And some 
methods[32, 41] which estimate individual treatment efect can be 
used to estimate the uplift. 

However, aforementioned uplift methods assume that the up-

lift can be fully estimated by the individual features. As we have 
stated before, the social relationships between users are important 
for uplift estimation. Then Guo et. al.[17, 18, 33] frst introduce 
the networked observational data to the problem of causal efects 
estimation. NetEst[25] formalize the networked causal efects esti-
mation to a multi-task learning problem and HyperSCI[34] learning 
causal efects on hypergraphs. These methods prove that networked 
data is important for predicting causal efects. Although incorpo-

rating the graph data will violate the Stable Unit Treatment Value 
Assumption(SUTVA), following works [42] have pointed out that 
SUTVA is not plausible in real-world scenarios. We will follow 
these works [17, 18] to incorporate the graph data but are distinct 
from them by addressing the label scarcity problem for graph-based 
uplift estimation. 
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2.2 Partial Label Learning 
Partial label learning deals with the problem that each sample is 
associated with a set of candidate labels, among which only one 
label is the ground-truth label to be predicted. Existing partial la-
bel learning methods can be classifed into two categories: the 
averaged-based strategy and the identifcation-based strategy. The 
averaged-based strategy assumes that each candidate label con-

tributes equally to the model training [13, 22], which may sufer 
from the problem that the real label is overwhelmed by other labels. 
To overcome this drawback, the identifcation-based methods give 
diferent confdence to diferent candidate labels by learning the 
topological information [50, 51]. Existing partial-label learning is 
often applied to automatic face naming, object detection, and web 
mining. As far as we know, this is the frst work to apply partial 
label learning to uplift modeling. 

Other typical types of weakly-supervised learning include in-

complete label learning[53] and inaccurate label learning[46]. They 
are not closely related to our problem, which will not be discussed 
here. 

2.3 Graph Neural Network 
Graph neural networks (GNNs), aiming to generalize neural net-

works to deal with graph data, have drawn increasing research 
interest recently [3, 52]. Generally, current GNNs can be divided 
into two categories: spectral-based methods and spatial-based meth-

ods. Spectral-based GNNs are originated from signal processing 
and are commonly based on the Laplacian Matrix [4, 7, 27]. Spatial-
based GNNs regard the graph convolution as the ’message-passing’ 
framework in the spatial domain, i.e. defning the graph convolu-

tion as nodes aggregating information from neighborhoods [11, 20]. 
And [8, 10, 44] have explored the causal inference problems with 
GNN-based models. More GNN-based models can be referred in 
recent surveys [47, 52]. However, only a few works focus on uplift 
estimation using GNNs and they do not address some specifc and 
important problems when using GNNs on uplift estimation. 

3 MODEL FORMULATION 

3.1 Notations and Preliminaries 
Firstly, we describe the notations used in this paper. We denote a 
scalar with a letter (e.g., � ), a vector with a boldface lowercase letter 
(e.g., x), and a matrix with a boldface uppercase letter (e.g., A). 

In our uplift estimation problem, we assume there are � users in 
total. The data of each user � can be represented as {x� , �� , �� }, where 
x� ∈ R� 

represents the individual feature vector, �� ∈ {0, 1} denotes 
the observed treatment and �� denotes the observed outcome. Note 
that �� (1) denotes the outcome of user � when he receives the active 
treatment, and �� (0) denotes its outcome with the control treatment. 
In this paper, we focus on the scenario of a randomized experiment, 
which means that each user is randomly given the treatment or not. 
Then, the actual uplift of user � is defned as: 

�� = �� (1) − �� (0), (1) 

and our target in this paper is to estimate the uplift of each user. 
However, for a specifc user � , we can only observe �� (1) or �� (0). 

The one we can observe is called the factual outcome. And the 
other one we cannot observe is called the counterfactual outcome. 

It is not difcult to fnd that the key and the challenging issue 
of uplift modeling is to do the counterfactual prediction. As we 
have stated before, the user’s social relationships and his/her social 
neighbors’ features contribute a lot to uplift estimation. Therefore, 
we introduce the social graph in our work. 

We defne the social graph as G = (V , E) 1, where V = {�1, ..., �� }
denotes the set of nodes, � = |V | is the number of nodes, and 
E ⊆ V × V is the set of edges between nodes. Here the node denotes 
a user and the edge denotes two users’ social relationships. Let X be h i 

h(� ) , h(� )a matrix of node attributes. We defne H(� ) = , ..., h(� )
1 2 � 

as the hidden representations of nodes in the ��ℎ 
layer of the graph 

neural networks where h(� ) is the representation of node �� . And we 
� 

use � as the number of layers for the GNN model. For convenience, 
we also denote X as H(0) 

. 

3.2 GNUM 
To incorporate the social relations and the neighbors’ attributes, we 
propose a novel GNN-based uplift model (GNUM). Figure 1 shows 
the overall framework of the proposed GNUM, which consists 
of two components, i.e. graph-based representation learning and 
uplift estimation. Specifcally, we propose two GNN-based uplift 
estimators in this paper working for diferent scenarios to address 
the labeled data scarcity problem for uplift estimation scenarios. 

3.2.1 Graph-based Representation Learning. This component aims 
to learn the graph-based node (user) representations by extract-
ing the key information from the social relations and neighbors’ 
attributes. Basically, most GNNs can be represented by: 

h(�+1) h(� ) h(� )˜˜ = ����( ̃  , ), (2)
� � N� 

where N� represents the neighbors of user � and AGGR represents 
the aggregation function of the target user’s embedding and his 
neighbors’ embeddings. Experimentally, we demonstrate our pro-
posed uplift estimation framework works well with diferent aggre-
gators like GCN and GAT. 

Inspired by [31], we propose more comprehensive graph-based 
aggregators in GNUM, which consist of a breadth aggregator to 
learn information from social neighbors of the current layer and 
a depth aggregator to ensemble information from diferent layers. 
The �-th graph convolution layer of GNUM is defned as:

⎛ ∑ ⎞ 
h̃ 
�
(�+1) 

= ���ℎ ⎜ � (h
�
(� ) 
, h(

�
� ) )h(

�
� ) W(� ) ⎟ . (3)

⎝� ∈�� (� )∪{� } ⎠ 

, h(� )where � (h(� ) ) is the attention function of the breadth aggre-
� � 

gator to measure the importance of user � and user � for uplift 
modeling, defned as: 

� (h(� ) , h(� ) + W� h
(� )) = �� � ���� (v(� )���ℎ(W� h

(� ) )) (4)
� � � � 

(� )
where W� 

(� ) 
represents the weight for the source node, W� 

represents the weight for the target node and v(� ) denotes a vector 
to map the representations to a value. 

Given a user �� , the breadth aggregator in each layer will adap-
tively gather the information from his neighbors and his own rep-
resentations of the previous layer. Then we further stack multiple 

1
For simplicity, we assume the social graph is a directed unweight graph 
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Figure 1: Framework of GNUM 

convolution layers and utilize a memory-based depth aggregator 
to aggregate the user embedding, defned as:( ) ( )(� )⊤ 

h(�+1) (� )⊤ 
h(�+1)˜ ˜�� = � � , �� = � � 

� � � � ( ) ( )(� )⊤ 
h(�+1) (� )⊤ 

h(� +1)�� = � �� 
˜ , �˜ = tanh � ˜ 

� � � ( )(�+1) (� ) h(�+1) (�+1)
� = �� ⊙ � + �� ⊙ �,˜ = �� ⊙ tanh � 
� � � � 

In this way, our proposed method can extract both local and 
global structural information from the social graph to obtain the 
graph-based representations for each user, which facilitates the 
learning of the following uplift estimators. 

3.2.2 Transformed Target-based Uplif Estimator. With the graph-

based hidden representations, an intuitive way is to build two path-

ways of models to project the node representations into the label 
space, aiming to approach the outcome with and without treatment 
using the treatment group data and control group data respectively 

[17, 18]. The process can be formulated as �̂� (�) = � (� ) (h(�) ), � ∈
� 

{0, 1}, where � (� ) (·) is one pathway of the model for treatment or 
control group data and �̂� (�) represents the prediction of the user’s 
outcome with the treatment or not. Note that �̂� (�) can be continu-

ous as the regression task or discrete as the multi-classifcation task. 
By optimizing the regression loss or classifcation loss, the up-

lift of user � can be estimated as �̂� = �̂� (1) − �̂� (0). However, any 
one pathway of their model can only utilize one group of data to 
learn, which will sufer from the labeled data scarcity problem. Fur-

thermore, as previous works of literature state [19], Two-Model 
methods cannot well capture the relationship between data of the 
treatment group and the control group, which limits their perfor-

mance on uplift modeling. 
To address the problem, we propose a class-transformed target 

and prove that by using the transformed target as the learning 
objective for both treatment and control group data, the model is 
equal to do uplift estimation. We frst defne the observed outcome 
of user � as: 

���� = ���� (1) + (1 − �� )�� (0). (5)� 

Then the class-transformed target can be defned as follows: 

= ���� 
�� − � 

�� · , (6)� � (1 − �) 

where � = E(�� |x� , G) = E(�� ) = � (�� = 1) is defned as the prob-
ability that user � receives the treatment. Since we focus on the 
randomized experiment, it is a constant. 

We have the following important proposition: 

Proposition 1. The uplift of user � can be estimated in the fol-
lowing form: �̂� = E(�� |x� , G). 

Inspired by [1], the proof of the proposition can be found in the 
Appendix A.1. 

Based on the proposition, we can project the node representa-

tions H(�) 
to form the transformed target. The loss for the GNUM 

with class-transformed target (GNUM-CT) is: ∑ 
L�� = (�� − �̂� )2 + ����� (7) 

� ∈V 

where �� has been given in Eq. (6), �̂� = � (W�� h
(�) + b�� ) is the 
� 

prediction of the target, W�� and b�� are learnable parameters. 
���� is defned as the �2 regularized loss on all parameters of the 
proposed model and � is set to 0.0005 in this paper. 

In summary, both the treatment group and control group data 
are utilized to learn and optimize the proposed transformed uplift 
estimator, which can well alleviate the label scarcity problem and 
capture the inherent relationship between the two groups of data. 
Moreover, we do not make any assumption regarding the proposed 
uplift estimator with the class-transformed target. It can work well 
for any types of outcome, i.e. continuous and discrete outcome. 
Additionally, the newly proposed target is also general to balanced 
and imbalanced data of two groups. If the two groups of data are 
biased, we can also replace the � in Eq. (6) with the sample’s propen-

sity score. Therefore, it is a very general uplift estimator which 
can comprehensively utilize the two groups of data for modeling 
individual uplift values. 

3.2.3 Partial-Label-based Uplif Estimator. When the outcome is 
discrete, i.e. a multi-classifcation outcome prediction problem, we 
propose a partial-label-based uplift estimator to further utilize more 
labeled data for uplift estimation. For simplicity, we will assume 
that the outcome is binary and introduce our solution. It can be 
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generalized to a multi-classifcation problem by transforming the 
problem into multiple binary scenarios. 

In detail, we divide the whole users into three groups: 

• Group A: The group of users who give positive outcomes 
regardless of whether they receive the treatment. 

• Group B: The group of users who give positive outcomes 
only when they receive the treatment. 

• Group C: The group of users who do not give positive out-

comes regardless of whether they receive the treatment. 

Without loss of generality, in this paper, we consider the cases 
where the treatment has a positive impact on the user’s outcome 
(e.g., promotional coupon). Thus the situation where a user gives a 
negative outcome with the treatment but gives a positive outcome 
without the treatment does not exist. 

Next, we generate a 3-bits coding as the partial label for each 
user. Each bit of code corresponds to whether the user belongs 
to the above-mentioned group. According to the treatment and 
observed outcome, the partial label of �� = [��, ��, �� ] for user � is

� � � 
defned as: 

⎧
⎪
[1, 0, 0] � � �� = 0 ��� ���� = 1

� 
[0, 1, 1] � � �� = 0 ��� ���� = 0

� �� = (8)

[1, 1, 0] � � �� = 1 ��� ���� = 1
� 

⎨
⎪
⎩[0, 0, 1] � � �� = 1 ��� ���� = 0.

� 

= 1, ���� Taking a user belonging to �� = 1 as an example: if we 
� 

give the treatment to the user � , we can observe his positive outcome. 
Then based on our aforementioned defnition, the user may belong 
to Group A or Group B. Therefore, based on our defnition, the 
partial label is [1, 1, 0] for user � . 

We build two binary classifers to help estimate the uplift. The 
frst classifer gives the probability that the user belongs to group 
A, i.e. � (�� = [1, 0, 0] |x� ). Then the instances whose partial labels 
are �� = [1, 0, 0] are regarded as positive samples, and the instances 
with the partial label �� ∈ {[0, 1, 1], [0, 0, 1]} are negative samples 
for the frst classifer. The second classifer gives the probability 
that the user belongs to group C, i.e. � (�� = [0, 0, 1] |x� ). Thus the 
instances with the partial label �� = [0, 0, 1] are positive samples, 
and the instances with �� ∈ {[1, 1, 0], [1, 0, 0]} are negative samples. 

Then we project the node representations to the partial label 
space: 

��1 
= � (W��1h(�) + b�� 1)�̂

� � 
��2 

= � (W��2h(�) + b�� 2), 
(9) 

�̂
� � 

�� 1 ��2
where �̂ and �̂ represent the prediction of the two partial

� � 
, W��2

labels, W��1
, b��1 

and b�� 2 
are learnable parameters. 

Then we defne the cross-entropy loss as the classifcation loss 
for partial labels. The overall loss function for GNUM with partial-
label-based estimator (GNUM-PL) is defned as: ∑ 

��1 ��1 �� 2 �� 2L = (F (� , �̂ ) + F (� , �̂ )) + �����, (10)
� � � � 

� ∈� 

�� 1 ��2
where � and � are the ground truth for the frst and second 

� �
partial labels we defned. F (�� , �̂� ) is defned as the cross-entropy 
loss, where F (�� , �̂� ) = −(�� log �̂� − (1 − �� ) log(1 − �̂� )). ���� is 

defned as the �2 regularized loss on all the parameters of the model 
and � is set to 0.0005 in this paper. 

Using the above loss function, the proposed graph model with 
partial labels can be trained. Then the fnal uplift of user � can be 
defned in the following ways: 

�̂� = � (�� (1) |x� , G) − � (�� (0) |x� ), G) 
= 1 − � (�� = [0, 0, 1] |x� , G) − � (�� = [1, 0, 0] |x� , G) 

��1 �� 2 
= 1 − �̂ − �̂

� � 

Now we introduce why the proposed model with the partial label 
can further improve the performance. Although the graph-based 
model with the transformed target we just proposed in Section 
3.2.2 utilizes a general target for both treatment group data and 
control group data to capture the relationship between two groups 
of data, each sample can only be utilized once in each epoch of 
training. However, in our partial-label-based uplift estimator, both 
classifers will utilize both the treatment data and the control data 
but focus on diferent facets of information. Specifcally, the data 
with �� = [1, 1, 0] and �� = [0, 1, 1] can be utilized by both classifers. 
In this way, on the one hand, more labeled data can be utilized to 
train each classifer, ensuring a better performance especially when 
the labeled data is scarce in uplift estimation scenarios. On the other 
hand, since the two classifers can both obtain the two groups of 
data, the classifers can better capture the relations and learn useful 
information from the two groups to achieve better results. 

The pseudo-code and complexity analysis of GNUM-CT and 
GNUM-PL can be found in Appendix A.2. 

4 EXPERIMENTS 
In this section, we conduct experimental results to answer the 
following three questions: 

• Q1: How our method performs compared with all the base-
line methods on a public dataset and two industrial datasets? 
(Answered in Section 4.2.1 and Section 4.2.2.) 

• Q2: How can our proposed estimators generalize to other 
GNNs? (Answered in Section 4.3.1.) 

• Q3: What is the relationship between the user uplift and the 
social relation? (Answered in Section 4.3.2.) 

• Q4: How do our proposed graph-based methods and com-

paring methods perform with diferent amounts of labeled 
data? (Answered in Section 4.3.3.) 

4.1 Experiment settings 
4.1.1 Dataset. We evaluate our method on one public dataset and 
two real-world industrial datasets. 

Firstly, we follow [18] to build a semi-synthetic dataset base on 
BlogCatalog: the node features and network structures are collected 
from the BlogCatalog. The treatments and outcomes are synthe-

sized. There are confounders in this dataset and the control and 
test datasets are biased. In detail, the node represents a blogger and 
the edge denotes their social relationships. The node features are 
bag-of-words representations of keywords to describe the bloggers. 
We synthesize (1) the outcomes as the rating of readers on the blog-
gers and (2) the treatments as whether the blog contents are shown 
on mobile devices or desktops. The detailed synthetic process for 
the synthetic process can be found in Appendix A.3.1. There are 
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Table 1: The experimental result on public dataset BlogCatalog. The result of the best performance is in bold and the result of 
the second best performance is underlined. 

�2 

0.5 
Outcome Type 
Continuous 

Metric √ 
���� � 

GNUM-PL 
/ 

GNUM-GCN 
/ 

GNUM-GAT 
/ 

GNUM-CT 
4.164 

Two-Model 
9.215 

CTM 
8.448 

Uplift-RF 
6.760 

NetDeconf 
4.496 

DML 
5.312 

DRL 
5.407 

Binary 
��� � √ 
���� � 

/ 
0.529 

/ 
0.642 

/ 
0.586 

0.935 
0.613 

4.172 
1.253 

3.317 
0.964 

2.629 
0.740 

0.970 
0.621 

1.244 
0.689 

1.360 
0.707 

2 Continuous 
��� � √ 
���� � 

0.121 
/ 

0.147 
/ 

0.129 
/ 

0.138 
9.337 

0.470 
23.348 

0.364 
17.277 

0.210 
15.945 

0.135 
9.623 

0.159 
12.134 

0.172 
13.060 

Binary 
��� � √ 
���� � 

/ 
0.353 

/ 
0.430 

/ 
0.392 

2.102 
0.411 

10.920 
1.047 

8.624 
0.820 

8.004 
0.699 

2.243 
0.423 

6.530 
0.554 

7.191 
0.598 

��� � 0.105 0.136 0.114 0.126 0.417 0.255 0.202 0.131 0.164 0.160 

Table 2: Statistics of datasets. |� | denotes the number of users, 
|� | denotes the number of edges and |� | denotes the number of 
attributes.�� and�� represent the set of users in the treatment 
group and the set of users in the control group, respectively. 

Datasets |� | |� | |� | |�� | |�� |
Industry-A 505.2K 2.2M 652 252.6K 252.6K 
Industry-B 573.8K 2.6M 915 286.9K 286.9K 
Blogcatalog 5.2K 173.5K 8189 1.6K 3.6K 

three diferent parameters �, �1, �2 that control the synthetic re-
sults of the dataset. Following the experimental settings in previous 
work[18], we set � = 5, �1 = 10, �2 ∈ {0.5, 2}. 

The two real-world industrial datasets are collected from an 
internet company

2
, denoted as Industry-A and Industry-B. The 

company has two products and plans to send discount coupons to 
users who have not purchased the products. Because the discount 
coupons are limited, we need to fnd the users who are most likely 
to purchase the product when receiving the coupons. This can be 
regarded as a problem of uplift modeling. For each dataset, the users 
are randomly split into the treatment group and the control group. 
The users of the treatment group will receive the coupons and the 
users of the control group will not. Then we observe whether they 
will purchase the product for the following 30 days. The nodes 
represent users and the edges represent users’ friendships. The user 
features mainly consist of statistical features regarding the user’s 
profle and behaviors in our platform. Note that the collection of 
data removes the user’s sensitive information and obtains the user’s 
privacy authorization. 

The detail statistics of three datasets are shown in Table 2. 

4.1.2 Baseline Methods. To evaluate the efectiveness of GNUM-PL 
and GNUM-CT, we compare them with three lines of state-of-the-

art uplift methods, including NN-based methods (Two-Model [38] 
and CTM [24]), a tree-based method (Uplift-RF [16]), Causal-efect-

based methods (DML [6] and DRL [54]) and graph-based uplift 
methods (NetDeconf [18]). GNUM-GCN and GNUM-GAT are im-

plemented by using the GCN or GAN as the GNN backbones but 

2
The data set does not contain any Personal Identifable Information. The data set 

is desensitized and encrypted. Adequate data protection was carried out during the 
experiment to prevent the risk of data copy leakage, and the data set was destroyed 
after the experiment. The data set is only used for academic research, it does not 
represent any real business situation. 

still use partial-label-based uplift estimator. More details of the com-

paring methods can be found in Appendix A.3.2. And the parameter 
settings can be found in Appendix A.3.3. 

4.2 Overall Performance 
4.2.1 Results on BlogCatalog. Since we have both factual and 
counterfactual outcomes for each user in BlogCatalog, we can 
measure the performance of diferent methods by comparing the 
predicted average treatment efect (ATE) with the ground-truth 
ATE, where ATE is defned as the average uplift over the users 

1 Í� 
as �� � = �=1 �� . Specifcally, we use two evaluation metrics,� 
i.e. the Rooted Precision in Estimation of Heterogeneous Efect√ Í

1
(���� � = �=1 (�̂� − �� )2) and Mean Absolute Error on ATEÍ� Í

1
(��� � = �=1 (�̂� ) − 1 

�=1 (�� ) ). Furthermore, we also extend|� � |
the setting to the scenario of the discrete outcome, by setting the 
outcome of each sample greater than the mean ATE value as 1, oth-

erwise as 0. It is worth noting that these two metrics require both 
factual and counterfactual outcomes. Therefore, we only report the 
results on semi-synthetic dataset BlogCatalog in Table 1. Then we 
have the following observations: 

• In the regression setting, our proposed method GNUM-CT 
outperforms other baseline methods by 5% to 10%, which 
demonstrates that the proposed class-transformed target is 
able to utilize the graph-based data more efectively. 

• In the classifcation setting, our proposed method GNUM-PL 
outperforms GNUM-CT and other baseline methods by 12% 
to 25%, which demonstrates that the proposed partial-label 
learning can further utilize the labeled graph data to improve 
the overall performance. 

• All the graph-based methods achieve a substantial gain over 
non-graph-based methods, which demonstrates the impor-

tance of graph data for uplift modeling. 
• The result that the Two-Model achieves bad results demon-

strates that it is very important to use a common uplift es-
timator to utilize the treatment and control group of data 
together. 

4.2.2 Results on Industrial Datasets. Without the counterfactual 
outcome, we use commonly accepted metrics, i.e. uplift curve and 
the Qini Coefcient value to evaluate the performance of diferent 
methods on our industrial datasets. 
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(d) Qini Coefcient on Industry-B. 

Figure 2: The uplift curve on (a) Industry-A and (b) Industry-B: The ordinate represents the uplift value defned in Eq. 11, 
and the abscissa represents users with top �% largest predicted uplift values. The Qini Coefcient on (c) Industry-A and (d) 
Industry-B. 

Table 3: The detailed comparison of the uplift curve. The result of the best performance is in bold and the result of the second 
best performance is underlined. 

Datasets Quantiles GNUM-PL GNUM-GCN GNUM-GAT GNUM-CT Two-Model CTM Uplift-RF NetDeconf DML DRL 
Industry-A Top10% 6.92% 6.58% 6.79% 6.67% 4.18% 5.50% 6.00% 6.54% 6.50% 6.44% 

Top20% 5.52% 5.22% 5.45% 5.34% 3.12% 3.63% 4.19% 5.19% 5.02% 4.86% 
Industry-B Top10% 8.72% 8.38% 8.51% 8.47% 6.44% 6.92% 7.51% 8.35% 8.21% 7.98% 

Top20% 8.20% 7.85% 8.11% 7.97% 5.95% 6.21% 6.58% 7.74% 7.67% 7.32% 

In detail, we sort all users in the treatment group and control 
group based on their predicted uplift values. Then we will select 
the top-�% users to get their uplift �� as: ∑ ∑ 

�� = �̂� /|��� | − �̂� /|��� | (11) 
� ∈� � � ∈� � 

� � 

where � � 
and � � 

are the set of the top �% samples of the treatment � � 
and control group, and �̂� is the predicted uplift value by the model. 
By changing the � from 10% to 100%, we can obtain the curve on 
�� . Note that the leftmost point corresponds to the top 10% users 
which the models predict as the most sensitive to the treatment and 
the following right part corresponds to the top 20% users. Since 
the ATE of the dataset is fxed, all the curves will converge to the 
same value. A well-performing model will show a curve with a 
larger slope. The left part has larger values than other methods. 
The results of uplift curve is shown in Figure 2(a)(b). In addition, 
we introduce the Qini metric to measure the overall performance 
of uplift methods [38]. Similar to the AUC value, the Qini metric 
measures the distance between the Qini curve and the random 
curve. The detail of the calculation process of Qini curve and Qini 
Coefcient can be referred in [38]. We show the results of the Qini 
Coefcient in Figure 2(c)(d). 

From Figure 2, we fnd that the proposed method GNUM-PL 
and GNUM-CT consistently outperform the baseline methods on 
two metrics. Specifcally, GNUM-PL improves the best performing 
baseline method NetDeconf by an improvement of 21% and 14% on 
two datasets in terms of Qini Coefcient. It demonstrates that our 
proposed methods have a better ranking performance regarding 
the user’s uplift. Additionally, the result that GNUM-PL performs 
better than GNUM-CT demonstrates that in the classifcation sce-
nario, the proposed uplift estimators based on partial label learning 
can further improve the overall performance because partial label 
learning can utilize the labeled data more efectively. The result 

that CTM outperforms Two-Model demonstrates that a common 
uplift estimator to model both the treatment and control group data 
is very essential. 

In many real-world scenarios, we only focus on samples with up-

lift values ranking ahead because we will only give actions to users 
with larger uplift values. Therefore, we give a detailed comparison 
of the users with the largest 20% uplift values in Table 3. We can 
fnd that GNUM-CT and GNUM-PL also achieve better results than 
other baseline methods, which demonstrates that our proposed 
methods with the two estimators can fnd users with larger uplift. 

4.3 In-Depth Analysis 
4.3.1 Generality to diferent backbones of GNN models. We fur-

ther replace our GNN models with GAT and GCN to demonstrate 
the generality of our proposed uplift estimators. The results are 
shown in Figure 4. We fnd in most cases, our proposed graph-based 
methods GNUM-PL, GNUM-GCN and GNUM-GAT perform better 
than NetDeconf and DML. It demonstrates that our proposed uplift 
estimators can be adapted to diferent GNN-based representation 
learning methods efectively. Furthermore, GNUM-PL still achieves 
the best performance because our breadth and depth aggregators 
can utilize more informative information from the social graph. 

4.3.2 Correlation between Uplif and Social Relationship. Previ-

ously, we claim that the uplift diference between users with social 
relationships is smaller than the uplift diference between random 
users. To verify this, for each user we frst calculate the average of 
the inferred uplift value of his neighbors. Then, according to the 
number of his neighbors, we randomly sample the same number of 
users to calculate the average of their inferred uplift values. Finally, 
we compare the uplift diference between the above two averaged 
values and the user’s own inferred uplift value. Specifcally, we use 
mean-squared error (MSE) as the evaluation metric. 
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Table 4: The mean-squared error of the inferred uplift between diferent users. 

Datasets Sampling strategy GNUM-PL GNUM-GCN GNUM-GAT GNUM-CT NetDeconf Two-Model CTM Uplift-RF DML DRL 
Industry-A Neighbors 1.05 ∗ 10−3

0.97 ∗ 10−3
1.07 ∗ 10−3

1.11 ∗ 10−3
1.07 ∗ 10−3

1.29 ∗ 10−3
1.30 ∗ 10−3

1.22 ∗ 10−3
1.14 ∗ 10−3

1.18 ∗ 10−3 

Random 1.40 ∗ 10−3
1.38 ∗ 10−3

1.40 ∗ 10−3
1.39 ∗ 10−3

1.37 ∗ 10−3
1.35 ∗ 10−3

1.41 ∗ 10−3
1.39 ∗ 10−3

1.36 ∗ 10−3
1.38 ∗ 10−3 

Industry-B Neighbors 1.44 ∗ 10−3
1.32 ∗ 10−3

1.42 ∗ 10−3
1.49 ∗ 10−3

1.48 ∗ 10−3
1.75 ∗ 10−3

1.68 ∗ 10−3
1.63 ∗ 10−3

1.50 ∗ 10−3
1.55 ∗ 10−3 

Random 1.95 ∗ 10−3
1.94 ∗ 10−3

1.93 ∗ 10−3
1.95 ∗ 10−3

1.91 ∗ 10−3
1.87 ∗ 10−3

1.90 ∗ 10−3
1.88 ∗ 10−3

1.93 ∗ 10−3
1.92 ∗ 10−3 
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Figure 3: The Qini Coefcient of the diferent uplift methods under diferent percentage of labeled users. The ordinate represents 
the value of Qini Coefcient, and the abscissa represents diferent percentage of labeled users. (c)(d) More comparisons by 
replacing the GNN layers in GNUM-PL with GCN/GAT. 
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Figure 4: The uplift curve of diferent graph-based methods. 

The result of the uplift analysis is shown in Table 4. We can see 
that for the graph-based methods, the uplift diference between 
neighbors is signifcantly smaller than the diference between ran-

dom users compared with non-graph-based methods. Compared 
with the random sampling strategy, the MSE of inferred uplift calcu-

lated from neighbors drops by more than 30%. It demonstrates that 
the graph-based method can indeed learn the similarity information 
from neighbors which is useful for uplift modeling. It is worth men-

tioning that the smaller diference of uplift is not representing that 
the model performs better necessarily. The result of GNUM-GCN 
is worse than that of GNUM-PL and GNUM-GAT because GNUM-

GCN does not capture the attentional weight of diferent neighbors. 
The uplift diferences between the neighbors of Two-Model and 
CTM are largest, since they can not capture structural information 
at all. Therefore, this result demonstrates that it is very essential to 
utilize social relations to do the uplift estimation. And the perfor-

mance gain can be achieved by proposing the graph-based model 
to mine the social relationships between users. 

4.3.3 Data Scarcity Analysis. Due to the labeled data scarcity prob-
lem for uplift modeling, we propose GNUM-PL and GNUM-CT in 
this paper to alleviate the problem. To prove this point, we ran-

domly sample 10% to 90% of the labeled users to train diferent uplift 
models and compare their performance on the same test set. Note 
that we will not sample the edges of the graph. We use the Qini Co-

efcient to evaluate the performance and note that the uplift curve 

is consistent with the Qini coefcient. The experimental results are 
shown in Figure 3(a)(b) and we have the following observations: 

• The performance of GNUM-PL and GNUM-CT are consis-

tently above the curves of baseline methods, which demon-

strates that both the partial-label-based uplift estimator and 
the class-transformed uplift estimator are robust to the la-
bel scarcity. Furthermore, in the classifcation setting, the 
partial-label-based uplift estimator can further improve the 
performance by utilizing more labeled data explicitly. 

• Comparing Netdeconf and other baseline methods, we fnd 
that NetDeconf drops more quickly than other baseline meth-

ods, which proves our assumption that data scarcity is a more 
severe problem for the graph-based uplift method because of 
the more parameters. Therefore, our solution for alleviating 
the labeled data scarcity problem is very critical. 

Moreover, as is shown in Figure 3(c)(d), GNUM-GCN and GNUM-

GAT are still robust to the data scarcity problem. It demonstrates 
that our partial-label-based uplift estimator can alleviate the data 
scarcity problem when using diferent types of GNN-based models. 

5 CONCLUSION 
In this paper, we propose GNUM, a novel and general GNN-based 
framework with two uplift estimators for user uplift modeling. 
The frst uplift estimators are general to diferent uplift scenarios, 
which can utilize the two groups of data together to estimate the 
user uplift. Specifcally, when the outcome is discrete, we further 
propose an uplift estimator based on our designed partial labels 
to address the labeled data scarcity problem. Experimental results 
demonstrate that our proposed methods outperform state-of-the-

art uplift methods under various evaluation metrics. We also give an 
analysis of the relationship between the uplift and social relations. 
And we further demonstrate the robustness of our proposed model 
when labeled data is limited. In the future, we expect to utilize more 
types of graphs to estimate the user uplift. 
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A APPENDIX 

A.1 Proposition Proof 
Proof. 
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neously with the defnition in Eq. (5), we have: 
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A.2 Pseudo Code and Complexity Analysis 
The pseudo-code of GNUM-CT is given in Algorithm 1 and GNUM-

PL in Algorithm 2. Our proposed method can be trained by an 
end-to-end back-propagation, and thus we can use gradient descent 
to optimize the model. 

For each sample, it will go through the GNUM layer frst and 
then perform the uplift prediction. The complexity of the whole( )Í� Í� 
process is � � �=0 �� + � �=1 �� −1 �� where � denotes the total 
number of users, including the users in the treatment and control 
group, � = |E | is the number of relationships, � is number of 
hidden layers and �� is the dimensionality of the ��ℎ 

hidden layer. 
In practice, � and �� are often bounded within a small constant. 
The proposed method is linear to the number of users and number 
of relationships in the dataset respectively. Therefore, the overall 
model is scalable. 

� 3
Due to the limit of space, � represents �� = � here. 

� 

Algorithm 1 Graph Neural Network for Uplift Modeling (GNUM) 
using Class-Transformed Target 

Require: Set of user features, treatment assignment and observed 
outcome {(x� , �� , �� )}�

� 
=1

, social graph G = (V , E) and number 
of layers �, 

Ensure: Prediction of user uplift and GNUM parameters �. 
1: Initialize all parameters � and using X as H(0) 

2: while L does not converge do 
3: for i ← 1 to L do 
4: Calculate graph-based representation H(� ) 

. 
5: end for 

��1 ��2
6: Calculate �̂ and �̂ from learned representations H(�)

� � 
using Eq. (9). 

7: Calculate the class-transformed target �� using Eq. (6). 
8: Calculate the loss L�� using Eq. (7). 
9: Update � using back-propagation. 

10: end while 
11: Using the trained model parameters to estimate the user uplift 

as: �̂� = E(�� |x� , G). 

Algorithm 2 Graph Neural Network for Uplift Modeling (GNUM) 
using Partial Label Learning 

Require: Set of user features, treatment assignment and observed 
outcome {(x� , �� , �� )}�

� 
=1

, social graph G = (V , E) and number 
of layers �, 

Ensure: Prediction of user uplift and GNUM parameters �. 
1: Initialize all parameters � and using X as H(0) 

2: while L does not converge do 
3: for i ← 1 to L do 
4: Calculate graph-based representation H(� ) 

. 
5: end for 

��1 ��2
6: Calculate �̂ and �̂ from learned representations H(�)

� � 
using Eq. (9). 

7: Construct the sample’s partial labels based on �� and �� . 
8: Calculate the loss L using Eq. (10). 
9: Update � using back-propagation. 

10: end while 
11: Using the trained model parameters to estimate the user uplift 

as: �̂� = 1 − � (�� = [1, 0, 0] |x� , G) − � (�� = [0, 0, 1] |x� , G) 

� (��2 
��� ���� ), where � denotes the total number of users, in-

cluding the users in the treatment and control group, ���� denotes 
the maximum number of dimensionality among diferent layers and 
���� denotes in the social graph the maximum degree among all 
the users. In practice, ���� is often bounded within a constant. For 
example, in social networks like Facebook, the number of friends a 
user can have has an upper bound. 

A.3 More Experimental Details 
A.3.1 More Details about Dataset. Blogcatalog is a social blog direc-
tory that manages bloggers and their blogs. The dateset contains the 
features of bloggers and the social relationships between bloggers 
listed on the BlogCatalog website. The features are bag-of-words 
representations of keywords in bloggers’ descriptions. We follow 
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the assumptions and procedures of synthesizing the outcomes and 
treatments assignments in [18], in which the outcomes represent 
the opinions of readers on each blogger and the treatments repre-
sent whether contents created by a blogger receive more views on 
mobile devices or desktops. In the treatment group, the blogger’s 
blogs are read more on mobile devices. In the control group, the 
blogger’s blogs are read more on desktops. We assume that the 
social relationships of bloggers can causally afect their treatment 
assignments and readers’ opinions of them. We trained the LDA 
topic model to get the device preference of the readers of the i-th 
blogger’s content as: ( )

exp �� 
1

Pr(� = 1 | x� , A) = ( ) ( ) ; 
exp �� + exp �� 

1 0∑ ( )
�� 

� 
�� = �1� (x� )� �
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0 
� + �2 A� x� 0

, 

where �1, �2 ≥ 0 signifes the magnitude of the confounding 
bias resulting from a blogger’s topics and her neighbors’ topics, 
respectively. �1 = 0, �2 = 0 means the treatment assignment is 
random and there is no selection bias, and greater �1, �2 means 
larger selection bias. The factual outcome and the counterfactual 
outcome of the i-th blogger are simulated as:( )

�� �� (x� ) = �� = � 
0 + �� �

� + � 
1� � 

��� (x� ) = � �� 
0 + (1 − �� ) �� + �, 

1 

where � is a scaling factor and the noise is sampled as � ∼ N(0, 1). 
In this work, we set � = 5, �1 = 10, �2 ∈ {0.5, 2}. 

A.3.2 Details about the comparing methods. The detail descriptions 
of the comparing methods can be found here. 

• Two-Model: This method infers the labels in the treatment 
group and the control group respectively. 

• CTM: The Class-Transformation model (CTM) creates the 
new target variable to estimate the uplift. 

• Uplift-RF: This model modifes existing random forest algo-
rithms to directly infer the uplift. 

• DML: Double Machine Learning (DML) method uses the 
Neyman orthogonal score and cross-ftting to construct the 
uplift estimator. 

• DRL: Doubly Robust Learning (DRL) method combines the 
error imputation and the inverse propensity score estimator 
to address the bias problem. 

• NetDeconf: It uses the graph to minimize confounding bias 
in the task of estimating treatment efects. 

• GNUM-GCN/GAT: To show the efectiveness of partial la-
bel learning, we replace the graph representation learning 
method with GCN and GAT respectively for comparison. 

A.3.3 Parameter Setings. We adopt the deep neural networks [30] 
with two 64-unit hidden layers as the building block for the Two-

Model and CTM methods. For uplift random forest, we set the 
number of estimators as 50 and the depth of the tree as 5. For 

NetDeconf and our proposed method, we use two layers of GNN 
with units of 128 − 64. All the weight matrices are initialized using 
Xavier initialization [12]. We train the model for 5 epochs with 
a learning rate of 0.0001 and batch size of 256. Note that we use 
grid search to get the best hyper-parameters. For each dataset, we 
randomly sampled 70% of the users as the training set, 10% as the 
validation set, and 20% as the test set. The models are trained on 
a cluster of 10 Dual-CPU servers with AGL [49] framework. For 
the largest dataset, containing 573.8K nodes and 2.6M edges, the 
proposed method took about 17 minutes to train on a cluster of 10 
Dual-CPU servers. We run each algorithm 5 times and report the 
average result. 

405


	Abstract
	1 Introduction
	2 Related Work
	2.1 Uplift modeling
	2.2 Partial Label Learning
	2.3 Graph Neural Network

	3 Model Formulation
	3.1 Notations and Preliminaries
	3.2 GNUM

	4 Experiments
	4.1 Experiment settings
	4.2 Overall Performance
	4.3 In-Depth Analysis

	5 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Proposition Proof
	A.2 Pseudo Code and Complexity Analysis
	A.3 More Experimental Details




