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ABSTRACT 
Device Model Generalization (DMG) is a practical yet under-
investigated research topic for on-device machine learning 
applications. It aims to improve the generalization ability of 
pre-trained models when deployed on resource-constrained 
devices, such as improving the performance of pre-trained 
cloud models on smart mobiles. While quite a lot of works have 
investigated the data distribution shift across clouds and devices, 
most of them focus on model fne-tuning on personalized data for 
individual devices to facilitate DMG. Despite their promising, these 
approaches require on-device re-training, which is practically 
infeasible due to the overftting problem and high time delay when 
performing gradient calculation on real-time data. In this paper, we 
argue that the computational cost brought by fne-tuning can be 
rather unnecessary. We consequently present a novel perspective 
to improving DMG without increasing computational cost, i.e., 
device-specifc parameter generation which directly maps data 
distribution to parameters. Specifcally, we propose an efcient 
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Device-cloUd collaborative parametErs generaTion framework 
(DUET). DUET is deployed on a powerful cloud server that only 
requires the low cost of forwarding propagation and low time delay 
of data transmission between the device and the cloud. By doing so, 
DUET can rehearse the device-specifc model weight realizations 
conditioned on the personalized real-time data for an individual 
device. Importantly, our DUET elegantly connects the cloud and 
device as a “duet” collaboration, frees the DMG from fne-tuning, 
and enables a faster and more accurate DMG paradigm. We 
conduct an extensive experimental study of DUET on three public 
datasets, and the experimental results confrm our framework’s 
efectiveness and generalisability for diferent DMG tasks. 
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1 INTRODUCTION 
The high performance of Deep Neural Networks (DNNs) [9, 26] is 
tempered by the huge parameter size of intricate design patterns 
and the demand for high computational costs. This situation greatly 
hinders the application of intelligent services in mobile phones and 
Internet of Things (IoT) devices since their hardware resources are 
tightly constrained by the form factor, battery, and heat dissipation. 
Therefore, on-device machine learning (DML) that goes beyond 
DNNs by exploiting lightweight neural networks (LNNs) for task-
specifc learning and inference on devices is gaining traction, such 
as MobileNets [11, 12, 24], DIN [41], SASRec [15], GRU4Rec [10]. 
Along with the rapid development of cloud computing, the predom-
inant DML paradigm is not simply learning on the device. It often 
collaboratively connects with a powerful cloud server with perceiv-
ably limitless resources. As shown in Figure 1(a), the cloud trains 
a global primary model conditioned on rich data collected from 
diferent devices, and then the local device performs inference using 
the trained model. Some researches [22, 30, 31] have achieved great 
success on image classifcation tasks and recommender systems, 
demonstrating the potential value of the device-cloud collaboration 
scheme for DML. 

Unfortunately, due to the heterogeneity of data distributions 
across devices, a primary cloud model trained on the data aggre-
gated from all the devices might not generalize well and is typically 
less personalized to each particular device[4, 16, 18, 32, 33, 35– 
37]. For instance, user data originating from devices of diferent 
geographical locales is potentially heterogeneous, leading to per-
formance degradation for personalized DML [20, 21, 30]. In other 
words, distribution shifts between the cloud and diferent devices 
require personalization of the cloud model before deployment on 
the device. To alleviate such data distribution shift problem, Device 
Model Generalization (DMG) is needed to improve the general-
ization ability of a pre-trained model on a specifc device. In this 
varying distribution setting, a commonly known DMG technique, 
as illustrated in Figure 1(b), fne-tunes the pre-trained cloud model 
based on the current device data to mitigate the distribution shift 
issue, yielding an improvement of DMG for personalized learning1. 

Despite their promising, fne-tuning based approaches may not 
be the true savior to resolve the DMG problems, due to the two 
key challenges summarized as follows. (i) Overftting Issue and 
Annotation Demand. The distribution of the real-time data input 
to the device is dynamic, and sometimes it may change drastically. 
For example, in the product recommendation task shown in Fig-
ure 1, the user behavior sequence consists of dozens of recently 
clicked items by the users, which may exhibit diferent preferences 
in a short time snippet (� : → � + 1: → � + 2: ). In order to 
achieve personalization, fne-tuning based DMG methods require 
re-training the model conditioned on those very limited samples 
with rapidly changing distributions on the device. Such a learning 
paradigm may cause overftting and performance degradation. To 
make the matters worse, in vision tasks, the data on the device 
is generally not annotated. To use the fne-tuning based methods, 
it is necessary to perform real-time annotation on the real-time 
data generated on the device. However, such frequent annotation 
is time-consuming and human-labor intensive to acquire for a de-
vice, which may not even be feasible in real-life applications. (ii) 
1This paper studies the DMG problem in which primary models on the cloud and 
device have the same architecture but diferent parameters. 

High Time-Resource Cost. In addition to overftting and extra 
annotation, on-device fne-tuning is time-consuming as it incurs 
numerous calculations on the gradients to update the model param-
eters, which is undesirable when the device applications typically 
have the real-time requirement constraint. It also consumes substan-
tial amounts of device computing resources, thus leading to power 
consumption problem of smart devices. Therefore, these on-device 
training methods are not suitable for real-time DML in resource-
constrained devices. Summing up, the premise of better DMG is to 
mitigate the aforementioned issues. The limitations require us to 
revisit the design of DMG solution for device-cloud collaboration. 

In this paper, we propose a novel framework for DML, called 
Device-cloUd collaborative parametErs generaTion framework, 
(DUET) to address the aforementioned limitations. The core idea 
of our approach for DMG is to learn a device-specifc model weight 
generator that dynamically adjusts from personalized data to solve 
a learning task. As shown in Figure 1(c), our framework comprises 
the following parts: (1) Universal Meta Network (UMN) frst col-
lects data from all the devices over a time period, labels them on the 
cloud server and then trains a primary model with these labeled 
data. For DMG, we divide the trained model into static layers and 
dynamic layers. The parameters of the static layers (backbone) are 
fxed, while the parameters of the dynamic layers (classifer) are 
dynamically generated based on device-specifc real-time data in 
inference. (2) The Personalized Parameters Generator (PPG) 
leverages the HyperNetworks [7] that efciently share parameters 
across devices to generate separate classifer parameters for every 
device. Each device, with its unique real-time samples, passes as 
input to the designed PPG on the cloud to produce its personalized 
classifer weights. Then, the cloud will deliver the dynamic layer 
parameters to the device and enable real-time on-device inference 
with the personalized model. It is worth noting that the PPG is 
parallelly trained with UMN based on global data and only requires 
feedforward computation of local real-time data. The small time 
delay is due to the transmission of few data between the device 
and cloud, which produces a real-time DMG scheme. (3) We also 
propose a Stable Weight Adapter (SWA) which aims to gener-
ate stable parameters for dynamic layers by multiple PPGs due to 
the observation that one single PPG sufers from the performance 
oscillation problem. SWA measures the correlations between indi-
vidualized trained PPGs, based on which a self-corrected adapter 
adaptively predict the optimal parameters of the primary model on 
the device. From the perspective of machine learning, the utilization 
of the correlation and similarity among related learning methods 
can be regarded as a form of inductive transfer. It can introduce the 
inductive bias [2] to make the combined learning method prefer the 
correct hypothesis, thereby improving the performance. 

In summary, as illustrated in Figure 1(d), compared to the fne-
tuning approaches that incur high calculation cost and high an-
notation demand, our proposed DUET entails zero calculation cost 
and zero annotation demand. Our proposed DUET is arguably more 
pragmatic and suitable for real-time DMG. In this work, we make 
the following four key contributions: 

• To the best of our knowledge, we are the frst to incorporate 
the model parameter generation into device-cloud collabo-
ration without expensive fne-tuning in on-Device Machine 
Learning. 
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Figure 1: (a) describes the device model generalization in device-cloud collaboration, Δ� indicates the data distribution shift 
of global and local data. (b) and (c) are overviews of fne-tuning based approaches and our DUET, respectively. Ω� and Ω�

respectively denoted the parameters of backbone and classifer. (d) is the comparison of fne-tuning and DUET (Time Delay: 
0.34ms (DUET) ≪ 60,000ms (Fine-tuning)), AUC: 0.9230 (DUET) > 0.9080 (Fine-tuning)). 

• We propose the personalized parameter generator which
directly maps the device-specifc data to model parameters
for fast model personalization.

• We design a stable weight adapter to reduce the performance
oscillation of the dynamic model and further boost general-
ization across heterogeneous devices.

• We conduct extensive experiments with various baselines
on real-world benchmark datasets. The results demonstrate
the consistent superiority and generalizability of DUET.

2 RELATED WORK 
Lightweight Neural Network. The performance of traditional
neural networks for diferent research tasks [5, 23, 38, 39] is already 
impressive. However, when the model is deployed on a device, the 
device’s storage space and computing power have to be considered. 
Therefore, many lightweight CNN models [8, 11–13, 19, 24, 27, 40] 
have been proposed in recent years. SqueezeNet [13] reduces the 
number of parameters by extensively using fre modules with 1 × 1 
convolutions. MobileNetV1 [12] decomposes traditional convolu-
tion kernels into depth-wise convolution kernels and point convo-
lution kernels. MobileNetV2 [24] introduces inverted residuals and 
linear bottlenecks. MobileNetV3 [11] builds the network based on 
AutoML, manually fne-tunes the optimization to obtain the best 
network structure, and improves the performance and efciency 
of the activation function. ShufeNetV1 [40] uses channel shufe 
to enhance information exchange between channel groups. Shuf-
feNetV2 [19] introduces channel split to improve inference speed. 
EfcientNet [27] uses a neural network architecture (NAS) with a 
hybrid scaling method. GhostNet [8] applies a linear transforma-
tion layer with fewer parameters to generate ghost feature maps. 
These models achieve good performance with small parameters and 
FLOPs, but the number of parameters still limits the performance 
and generalization ability. 
HyperNetwork. HyperNetwork [1, 3, 6, 7, 25, 28, 29, 34] is a neu-
ral network that generates its parameters for another neural net-
work. When HyperNetwork was frst proposed by Ha et al. [7], it 
achieved model compression by reducing the number of parame-
ters the model needs to train. Subsequently, the research on Hy-
perNetwork gradually increased. Oscar et al. [3] studied parameter 
initialization for HyperNetwork. At the same time, the research of 

HyperNetwork is applied to various tasks, such as continual learn-
ing [28], graph [34], meta-learning [29], federated learning [25], Etc. 
HyperNetwork-related research has mainly focused on generating 
diferent network parameters from diferent data inputs in the past 
two years. For example, HyperStyle [1] and HyperInverter [6] both 
use HyperNetwork to generate diferent decoder parameters for 
diferent images, thereby improving the quality of the reconstructed 
images. In our work, we adapt HyperNetwork to the device-cloud 
system with unique challenges arising from the problem setup. 

3 METHODOLOGY 
This section describes our proposed Device-cloUd collaboraTive
parametErs generaTion framework (DUET) for device model gen-
eralization. We shall present each module and its training strategy. 

3.1 Problem Formulation 
In the problem of device model generalization (DMG) in the device-
cloud collaboration system, we have access to a set of devices 
D = {� (� ) }

� 
N 
= 
� 
1, each device with its personal i.i.d history sam-

( � ) ( � ) � (� )N
ples S� (� ) = {� 

� (� ) 
, �

� (� )
}
�=1 and real-time samples S� (� ) =

N( � ) � (� ){� 
� (� )

}
�=1 in current session, where N� , N� (� ) and N� (� ) repre-

sent the number of devices, history data and real-time data, re-
spectively. The goal of DMG is to generalize a trained global cloud 
model M� (·; Θ�) learned from {S� (� ) }� 

N 
= 
� 
1 to each specifc local de-

vice model M� (� ) � (� ) � (� ) 

where Θ� and Θ  (� ) respectively � denote the learned parameters for
the global and local models. 

DUET : NM ({S } 𝑑 ;Θ ) → M (S ;Θ ) .︸  ︷︷  ︸ 𝑔 (𝑖 ) =1 𝑔 (𝑖 ) (𝑖 ) (𝑖 )︸                          𝐻              ︷︷    𝑖                             𝑑     ︸ ︸  𝑑 𝑅                                      ︷︷                                      ︸ (1)
DMG Model Global Cloud Model Local Device Model

Figure 2 illustrates the overview of our DUET framework which 
consists of three modules to improve the generalization ability of 
the trained models on the device: (a) Universal Meta Network (UMN)

(·; Θ ) conditioned on real-time samples S ,

aims to learn a global benchmark model based on the global data 
(in Sec. 3.2); (b) Personalized Parameters Generator (PPG) that gen-
erates the network parameters for local device-specifc model (in 
Sec. 3.3); (c) Stable Weight Adapter (SWA) presents the personal-
ized parameter optimization strategy for robust DMG learning (in 
Sec. 3.3.3). 
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Figure 2: Overview of the proposed DUET. The UMN is trained on the cloud that contains a backbone with parameters Θ� and a 
classifer with parameters Θ� . The PPG is deployed on the cloud, which generates and delivers the personalized parameters Θ� 

� 
of dynamic layers for the device classifer based on the distribution of the real-time samples uploaded from the device. The 
SWA aims to reduce the performance oscillation of single PPG, accelerating the convergence and improving the prediction 
stability. 

3.2 Universal Meta Network. 
In Universal Meta Network (UMN) (Figure 2(a)), we train a pri-
mary model with a backbone and a classifer for the global cloud 
model development. Given a set of devices D = {� (� ) }

� 
N 
= 
� 
1 and 

( � ) ( � ) � (� )N
their corresponding history data S� (� ) = {� 

� (� ) 
, �

� (� )
} , the 
�=1 

goal of the proposed UMN can thus be formulated as the following 
optimization problem: 

NN� ∑� (� )∑ ( � ) ( � ) ; Θ� min L��� = ��� (� 
� (� ) 

, Ω(� � ); Θ�
�)), (2) 

Θ�
� ,Θ

� � (� )
� �=1 �=1 

where ��� (; Θ�
� ) denotes the cross-entropy between two probabil-

( � ) ; Θ� ity distributions. Ω(� 
� (� ) � ) is the backbone extracting features 

( � )from sample � 
� (� ) 

. Θ�
� and Θ�

� are the learnable parameters for the 
backbone and classifer, respectively. 

In our DMG setting, we decouple the joint backbone and classifer 
training scheme as modeling the “static layers” and “dynamic layers” 
to achieve the personalized model generalization: 

• Static Layers. The backbone with Θ�
� learned from global 

data can accurately map the user’s behavior into the feature 
space. We fxed the backbone as “static layers” to generate a 
generalized representation for any given input concerning 
the global data distribution. 

• Dynamic Layers. Depending on the user’s behavior, the per-
sonalized samples obtained from a specifc device are input 
to our proposed PPG to learn personalized classifer weights 
Θ� . The improvement of personalized generalization can be 
�

achieved by just adjusting the classifer. 

3.3 Personalized Parameters Generator. 
The Personalized Parameters generator (PPG) can generate the 
dynamic parameters for the personalized classifer with Θ� condi-

�
tioned on the real-time samples from a specifc device, which aims 
to improve the generalization to diferent distributions of data. We 
shall start by introducing the defnition of HyperNetwork [7] and 
then propose our DMG mechanisms of parameters generation. 

3.3.1 Retrospect of HyperNetwork. First, we will outline the proce-
dure for using a HyperNetwork to output the weights of a feedfor-
ward convolutional network that performs the learning task. The 
HyperNetwork regards the parameters � (�) for ��ℎ layer (� ∈ N� ) 
of the CNN flter as a matrix of R��� �� ×���� �ℎ , where N� is the 
depth of the main network, the convolutional kernel contains 
��� × ���� flters and each flter correspond the dimensions of 
�� × �ℎ . For ��ℎ layer, the HyperNetwork is a two-layer MLP �(·; Θ� )
with parameters Θ� receives a layer embedding � (�) ∈ R�� (�� ≪ 
��� �� × ���� �ℎ) as input to and predicts � (�) , which can be regard 
as the a matrix factorization scheme as follows: 

� (�) = �(� (�) ; Θ� ), ∀� = 1, · · · , N� . (3) 

In the training procedure, � (1) ∼ � (N� ) and �(·) are randomly ini-
tialized. As in a regular neural network, the network learns the map-
ping relationship between samples � to �. Notably, the gradients are 
returned to � (�) and �(·) instead of � (�) , which saves more space 
and computing power than storing parameters in � (1) ∼ � (N� ) . In 
the inference procedure, � (�) is generated in blocks. The base convo-
lution kernels � 

′ (�) of all convolutional layers to be generated are 
set as convolution kernels with a dimension of � 

′ 
�� 
′ × � ′ ��� � ′ ℎ .��

All convolutional layers to be generated need to conform that, (1) 
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′
�� and � ′ ℎ are required to be equal to �� and �ℎ , respectively. (2) 
��� and ���� are integer multiples of 

′  � and � ′��� , ��
respectively. 

Each base convolution kernel is generated by a base latent vector 
′ 

� 
′ (�) ∈ R�� . The modular generation is below: 

′ (�) ′ (�) ′ (�) ′© � · · · � ª © � · · · � (�)1,1 1­ , �  1,1 1® , � ª ­ ®(�) .  . .  .
� = ­ . ® .. . ® = � ­­ . ­ . . . ®

. . . . . . ®­ ′ ® ­ ® 
 (�) 

′ (�) ′ ) (4)� · · (�) ′ (�
1 · � �   « �,  �, � ¬ « �,1 · · · � �, � ¬ 
� ��� ���� 

≜ �(� ( ) ), � = ′ , � = ′ , ∀� = 1, · · · , N� . 
� � 
�� ��� 

After retrospecting characteristics of HyperNetwork, which seems 
naturally suitable for learning a diverse set of personalized models. 
As HyperNetwork dynamically generates target networks condi-
tioned on the input embeddings, i.e., the “Dynamic Layers” of the 
primary model can be modeled by HyperNetwork. However, our 
observation (in Appendix) indicates that directly utilizing the Hy-
perNetwork may not satisfactorily resolve the DMG problem for 
two key reasons: 

• Weak Correlation. The original HyperNetwork uses a ran-
dom latent vector � to initialize the model that lacks the 
strong correlation between parameters generation and a 
specifc device, which may yield a performance decay. 

• Unstable Prediction. The empirical experiments indicate 
that the performance of HyperNetwork is intuitively unsta-
ble during training and inference, mainly because a single 
HyperNetwork is hard to measure the parameters. 

To this end, we carefully design the Personalized Parameters 
Generator (PPG) and Stable Weight Adapter (SWA) to deal with the 
above limitations. 

3.3.2 Device-specific Parameters Generation. Considering the Weak 
Correlation between HyperNetwork and the random latent vector �, 
as shown in Figure 2(b), we propose to model the “Dynamic Lay-
ers” of the primary model by replacing the � with specifc samples 
from devices in inference. Further, to satisfy the architecture con-
sistency of pre-trained classifer and “Dynamic Layers”, we develop 
a hierarchical HyperNetworks to generate its parameters. 

In device inference, we use the real-time samples S  � (� ) =

( � ) N 
� � (� ){ }(� )  generate 

� 1 in  
=

each session to the model parameters. 
� 
To generate the parameters for ��ℎ layer of “Dynamic Layers” 

in the primary model, we develop a layer encoder to represent the 

��ℎ layer parameters as an embedding (�)� (� ) . To model relationships 
� 

of diferent layers, instead of constructing the one-to-one encoder-
layer correspondence, the (�)� (� ) share one encoder neck but use 

� 
diferent linear layers to change the real-time data features. 

 (�) =
(�)� ((� )  � �share (S  1, · · (� ) )), ∀� =  · , (5)lay � er N �  , �

where (�)
�share (·) represents the shared encoder neck. �layer (·) is a  

linear layer used to adjust the output of �share (·) to the ��ℎ dynamic 
layer features. 

We treat it as a matrix � (�) ∈ R��� ×���� , where ��� and ���� 
represent the number of input neurons and output neurons of the 
��ℎ FCL, respectively. Then we use the generator �(·) to convert the 
real-time data features into parameters of the primary models by 

 (�) (�) (�)
� ) ((� ) = � (� � )(� ) . Specifcally, we input � (� ) into the following 
� � 

two
�

 MLP layers to generate parameters according to the consistent 
structure of “Dynamic Layers” of the primary model. 

 (�) =  (�)� (�1� + �1) �  + �2,
� (� ) 2

� (� ) (6)
 (�) (�

= ) ( )�  �
� + � ,
� (� ) � (� ) � (� ) 

where weights of the two MLP layers are denoted by �1 and �2, 
respectively. �1 and �2 indicate the biases. 

In cloud training, all layers of the PPG are optimized together 
with the static layers of the primary model that are conditioned 

on global data
N

 the  history  =  ( � ) ( � )  S ) { (� � ,
�� ( )

� (� ) � }(� )  
� =1 , instead of 

optimizing
� � 

 the static layers of the primary model frst and then 
optimizing the PPG. The PPG loss function L��� is defned as 
follows: ∑N�  N∑� (� )

( � ) ( � ) ; Θ� (�)min L��� = �� ��� (� 
� (� ) 

, Ω(� 
� (� ) � ); �(� � (� ) ; Θ� ))), (7) 

Θ� 
� ,Θ� �=1 �=1 

where � is a hyperparameter used to adjust the training. When 
the � is closer to 1, the PPG considers all samples in each session 
as equally important. Otherwise, PPG pays more attention to the 
earlier samples in each session. 

Here we use a special group-wise convolution in PPG, so that the 
entire framework can generate parameters for the primary models 
during training and inference in parallel. This greatly improves 
PPG training and inference efciency and makes it easier to deploy 
in real environments. 

3.3.3 Stable Weight Adapter. As described in Sec. 3.3.1, directly 
using HyperNetwork often produces large oscillations during learn-
ing, and thus yields Unstable Prediction. To resolve this issue, we 
propose the Stable Weight Adapter (SWA) module to improve the 
prediction stability. 

First, we develop N� PPGs to generate a set of parameters rather 
than a single generator are trained in the same way, denoted by 

′ ′ ′ 
�1 . Then splicing multiple �1 into a matrix, denoted as � =1′ ′ ′ ′ {�1,1,�1,2, ...,� }. � denoted the �-th MLP layer of the �-th1,� �, � 

generator. Then we can get the similarity between � 
′ 
and � 

′ 
1,� 1, � , 

thus a self-similarity matrix � of dimension � × � is obtained by 
� = �1 

′ ∗ (�1 
′ )� . 

Summing � by row, we can get the weight vector � 
′ 

= 
′ ′ ′ {�1, �2, ..., �� } with dimension � × 1. Among them, �� can be re-

garded as the importance of � 
′ 
in the multiple generators. We 1,�

also set temperature to adjust the fnal weight vector �, 
′ 
� /� 
� 

�� = Sofmax( Í� ) (8) 
=1 � 

′ 
� � 

Then we can calculate the fnal �1 and �2 like, 
�∑ ′ 

�1 = �� ∗ � (9)1,� 
�=1 

Finally, we use Eq. (9) to get �1 and �2, and get the model 
parameters after replacing �1 and �2 in Eq. (6). 

4 EXPERIMENTS 
We conduct a range of sequential recommendation and facial ex-
pression recognition experiments on three public datasets to demon-
strate the efectiveness of the proposed DUET framework. 
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Table 1: Performance comparison of the proposed method and baselines on sequential recommendation datasets (Movielens-1M 
and Movielens-100k). ��∗ indicates that the DMG models require the label information of real-time data from device. ↑ and 
↓ respectively indicate a larger and smaller score has better performance. Acronym notations of baselines can be found in 

Sec. 4.1.2. We color each row as the best , second best , and third best . 

Baselines DMG Methods ��∗ 
Movielens-1M Dataset 

Time Delay 
Movielens-100k Dataset 

Time Delay 
AUC(mean) ↑ AUC(std) ↓ Param. FLOPs AUC(mean) ↑ AUC(std) ↓ Param. FLOPs 

DIN [41] 

- 0.9077 0.0006 

896.83K 1.82M 

0 0.8348 0.0045 

271.83K 0.60M 

0 

Fine-tuning ! 0.9080 0.0006 ≥60,000ms 0.8429 0.0045 ≥60,000ms 
DUET (w/o SWA) 0.9233 0.0008 ≥0.34ms 

0.8560 0.0030 ≥0.15ms
DUET 0.9230 0.0007 0.8581 0.0055 

SASRec [15] 

- 0.9280 0.0007 

888.63K 1.99M 

0 0.8721 0.0026 

263.63K 0.77M 

0 

≥60,000ms 0.8719 0.0027 

≥0.34ms 
0.8721 0.0027 

0.8723 0.0009 

Fine-tuning ! 0.9279 0.0006 ≥60,000ms 
DUET (w/o SWA) 0.9313 0.0007 ≥0.15ms

DUET ! 0.9326 0.0003 

GRU4Rec [10] 

- 0.9279 0.0016 

886.62K 1.94M 

0 0.8723 0.0017 

261.62K 0.72M 

0 

Fine-tuning ! 0.9286 0.0014 ≥60,000ms 0.8711 0.0019 ≥60,000ms 
DUET (w/o SWA) 0.9311 0.0014 ≥0.34ms 

0.8751 0.0055 ≥0.15ms 
DUET 0.9311 0.0004 0.8755 0.0017 

Table 2: Performance comparison of the proposed method 
and baselines on facial expression recognition datasets (CK+). 

CK+ Dataset 
Baselines DMG Methods Time Delay 

AUC(mean) ↑ AUC(std) ↓ Param. FLOPs 

- 76.97 2.76 0
MobileNetV3 

DUET SWA-Large [11]  (w/o ) 79.49 2.84 2.69M 0.27B
 ≥51ms 

DUET 82.45 2.67

- 67.88 2.15 0
MobileNetV3 

DUET-Small [11]  (w/o SWA) 71.82 2.91 1.24M 0.06B
  ≥31ms 

DUET 75.15 1.41

4.1 Experimental Setup 
4.1.1 Datasets. Sequential Recommendation. We evaluate 
DUET on Movielens-1M and Movielens-100k 2, two widely used 
public benchmarks in the recommendation tasks. Following con-
ventional practice, all user-item pairs in the dataset are treated 
as positive samples. In the training and test sets, the user-item 
pairs that do not exist in the dataset are sampled at 1:4 and 1:100, 
respectively, as negative samples [10, 15, 41]. Facial Expression 
Recognition. We evaluate our method on CK+ 3 [14, 17]. CK+ is 
a facial expression recognition dataset containing 593 videos of 
123 people, of which 327 videos are annotated with expressions. 
The labels contain seven basic emotions: anger, contempt, disgust, 
fear, happiness, sadness, and surprise. To simulate a real device-
cloud collaborative environment, we treat each video as a session 
and keep each video’s frst and last three frames. Since each video 
records a person from no expression to an exaggerated expression 
consistent with the label, we set the label of the frst three frames 
as natural and the label of the last three frames as the emotion label 
of the video. 

4.1.2 Baselines. In the sequential recommendation task, DIN [41], 
SASRec [15], and GRU4Rec [10], three of the most widely used meth-
ods in the academia and industry, are chosen as the baselines. In the 

2http://grouplens.org/datasets/movielens/ 
3https://www.jefcohn.net/Resources/ 

facial expression recognition task, we choose MobileNetV3 [11] as 
the baseline, which is one of the most popular lightweight networks. 

4.1.3 Implementation Details. Training Procedure. When train-
ing DUET, in the sequential recommendation task, we input the 
most recent click sequence as the real-time samples to PPG to get 
the dynamic layers’ parameters. Then we update the obtained pa-
rameters to the primary model’s dynamic layers and model the 
mapping relationship between samples and labels in this session. 
In the Facial Expression Recognition task, the frst frame of each 
video is set to a real-time sample. After updating the parameters 
similar to the above process, we model the mapping relationship 
between samples and labels in this video. Gradients are passed back 
to UMN’s static layers and PPG. 
Inference Procedure. The inference process of baselines is per-
formed on the device. Fine-tuning based DMG methods need to 
fne-tune the base model with real-time data and then make infer-
ences on the device. In the inference process of DUET, the device 
frst uploads real-time samples to the cloud. PPG then generates the 
parameters of dynamic layers in UMN according to the distribution 
information of real-time data samples and sends them to the device. 
The updated parameters of dynamic layers will be sent to devices, 
and make inferences together with static layers. The device only re-
quests model parameters at the beginning of each session/video. In 
the actual deployment, the recommendation task regards opening 
the APP and refreshing the page as the beginning of a session. The 
vision task’s content at a fxed time interval is regarded as a video. 
Table 5 in the Appendix shows the hyperparameters and training 
schedules of DUET on the three datasets. 

4.2 Experimental Results. 
Results of Sequential Recommendation. Table 1 summarizes 
the quantitative results of our framework and other DMG methods 
on Movielens-1M and Movielens-100k dataset. From this table, 
we have the following fndings: (1) Almost all DMG models can 
improve the baseline’s performance (AUC (std)) across the two 
datasets, which demonstrates the application value of model gen-
eralization on the device. (2) The efect of model fne-tuning is in-
signifcant, and we observe performance degradation in some cases, 
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SWA(-) SWA (×2) SWA (×3) SWA (×5)

(a) Accuracy of MobileNetV3-Large (b) Loss of MobileNetV3-Large

(d) Loss of MobileNetV3-Small(c) Accuracy of MobileNetV3-Small

Figure 3: Efects of the number of SWAs in training. 

Figure 4: Performance comparison on each session. 

e.g., fne-tuning for baseline SASRec (Row. 6). This phenomenon 
is reasonable as the fne-tuning model may encounter the over-
ftting issue when trained on limited real-time data. In addition, it 
also causes a high-time delay, which is impractical for applications 
on the device. (3) DUET and its variant DUET (w/o SWA) both 
outperform fne-tuning-based DMG model by a large margin, e.g., 
DUET (w/o SWA) improves 0.0153 AUC (mean) ( Row. 3) and 
DUET improves 0.0150 AUC (mean) (Row. 4) using DIN base-
line, respectively. Notably, it enables a real-time recommendation 
with an extremely low time delay. (4) DUET (w/o SWA) and DUET 
produce a similar performance in all datasets. However, Table 1 
suggests that DUET consistently maintains a stable performance 
across all the baselines, i.e., the AUC (std) of DUET is smaller than 
DUET (w/o SWA), e.g., Row. 7 vs Row. 8. These results indicate that 
the SWA can bring improved robustness for the DMG task. 

We also present the Param. (size of parameters) and FLOPs 
(foating-point operations per second) in Table 1. Intuitively, models 
with low FLOPs and parameters are easier to deploy on devices. 
Note that the Parameters and FLOPs shown in the table are the 
primary models that need to be deployed on the device. Since PPG 
is deployed on the cloud, the parameters and FLOPs of the primary 
model under DUET framework are the same as the baselines. 

w/o DMG DUET(w/o SWA) DUET

(a) Accuracy of MobileNetV3-Large (b) Loss of MobileNetV3-Large

(d) Loss of MobileNetV3-Small(c) Accuracy of MobileNetV3-Small

Figure 5: Training visualization of DUET and baselines. 

Mean Median Std. QuartilesMax/Min

(a) Error bar of MobileNetV3-Large (b) Error bar of MobileNetV3-Small

76.97

79.49

82.45

67.73

71.82
74.60

Figure 6: Detailed performance comparison of DUET and 
baselines. 

Results of Facial Expression Recognition. Table 2 reports the 
performance comparison between our model and the adopted base-
lines on the facial expression recognition task. The conclusions are 
generally consistent with the experiments on the recommendation 
task. The main diferences are: (1) Since the annotation of real-time 
on-device samples is not routinely available, the fne-tuning exper-
iments cannot be performed. (2) Compared with DUET (w/o SWA), 
the performance improvement of DUET on vision tasks is more 
signifcant than the recommendation task. Our intuition is that the 
real-time data distribution gap between real-time data in the com-
puter vision task is smaller than the recommendation task, where 
the SWA module can further boost the parameters generation-based 
DMG framework. 

Summing up, the results presented above confrm the superiority 
of the proposed tuning-free device-cloud collaborative parameters 
generation framework, which exhibits a faster and more accurate 
DMG paradigm simultaneously. 

4.3 In-Depth Analysis. 
We conducted the additional experiments on the CK+ dataset to 
verify the strength of the proposed DUET. 
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Table 3: Time delay caused by device-cloud communication, ⇑ and ⇓ represent upload (device → cloud) and download (cloud → 
device), respectively. Data transmission || embedding transmission indicates the diferent upload settings. 

Datasets Models Size 4G: 5MB/s 4G: 15MB/s 5G :50MB/s 5G: 100MB/s 

MobileNetV3- ⇑: 0.14MB || 0.25KB ⇑: 0.03s || 0.05ms ⇑: 0.01s || 0.017ms ⇑: 0.003s || 0.005ms ⇑: 0.001s || 0.003ms 
Large ⇓: 5.31MB ⇓: 1.06s ⇓: 0.35s ⇓: 0.10s ⇓: 0.05s 

CK+ MobileNetV3- ⇑: 0.14MB || 0.25KB ⇑: 0.03s || 0.05ms ⇑: 0.01s || 0.017ms ⇑: 0.003s || 0.005ms ⇑: 0.001s || 0.003ms 
Small ⇓: 3.06MB ⇓: 0.61s ⇓: 0.20s ⇓: 0.06s ⇓: 0.03s 

DIN ⇑: 25.63KB || 8.06KB ⇑: 5.13ms || 0.05ms ⇑: 1.71ms || 0.017ms ⇑: 0.51ms || 0.005ms : 0.26ms || 0.003ms 
Movielens-1M SASRec ⇑

 : 8.06KB : 1.60ms : 0.53ms : 0.16ms : 0.08ms GRU4Rec ⇓ ⇓ ⇓ ⇓ ⇓
 

DIN ⇑: 7.32KB || 0.25KB ⇑: 1.46ms || 0.05ms ⇑: 0.49ms || 0.017ms ⇑: 0.15ms || 0.005ms ⇑: 0.07ms || 0.003ms 
Movielens-100k SASRec ⇓: 8.06KB ⇓: 1.60ms ⇓: 0.53ms ⇓: 0.16ms ⇓: 0.08ms GRU4Rec 

Table 4: Efect of the number of SWAs on performance. The 
best results are highlighted in bold. 

Baselines DMG Methods N� Accuracy(%) Std(%)

- - 76.97 2.76 
- 79.49 2.84 

MobileNetV3-Large 2 80.40 4.26 DUET 3 81.88 2.81 
5 82.45 2.67 

- - 67.88 2.15 
- 71.82 2.91 

MobileNetV3-Small 2 73.11 3.80 DUET 3 73.74 2.19 
5 75.15 1.41 

Detail Performance Analysis. To further study the efectiveness 
of DUET, we visualize the accuracy and loss in training and in-
ference in Figure 5, the corresponding mean value, median value, 
standard derivation, maximum/minimum, and quartiles of real-time 
inference are shown in Figure 6. All experiments are repeated fve 
times. As shown in Figure 5, the loss of DUET and DUET (w/o SWA) 
decreases faster than baseline, demonstrating its superior conver-
gence speed in training. However, this fgure also indicates that 
the DUET (w/o SWA) brings a huge performance improvement but 
alone with the prediction oscillation problem. In addition, DUET 
with the SWA kindly solved this problem, resulting in a stable pre-
diction in training and inference, which verifes the efectiveness 
of the proposed SWA module. More analysis about the stability is 
shown in sec. 4.3. In Figure 6, the dark-colored line is the Mean 
value of the data, and the light-colored area is the fuctuation range, 
that is, the Maximum and Minimum values. For more clarity, the 
curves in the fgure are obtained by 1:25 sampling, i.e., one epoch in 
the fgure represents the actual 25 epochs. It also shows that DUET 
achieves consistent superiority in terms of all of the metrics. 
Generalizability. Figure 4 depicts the performance change of dif-
ferent architectures over distribution shifts. Specifcally, during 
two adjacent sessions (e.g., 1 & 2), we simulate the distribution 
shifts by selecting heterogeneous data samples. At the beginning 
of each session, we update the base models with DUET and DUET 
(w/o SWA). MobileNetV3-Large (w/o DMG) refers to the base model 
trained on the cloud with all device data without any DMG methods. 
According to the results, we observe that DUET shows consistent 

performance improvement over the baseline against distribution 
shifts, which demonstrate the high generalization capability of the 
proposed DUET. 
Prediction Stability of Diferent N� . To build insights of stabil-
ity on the SWA module, we perform the ablation study that sets 
diferent numbers N� of SWAs. Our experiments were repeated 
fve times to observe its efect on accuracy and loss. On the one 
hand, as shown in Table 4, the best performance is achieved with 
N� =5, both in accuracy and standard deviation. When the N� is 
smaller, the standard deviation higher - especially the DUET (w/o 
SWA) - produces a higher performance fuctuation than baseline 
(w/o DMG), which indicates that the SWA module can improve the 
stability in prediction. On the other hand, Figure 3 systematically 
presents the explicit benefts of the N� increase conditioned on 
two baselines. The fgure shows that as the number of SWAs in-
creases, the accuracy curve and loss curve are more stable, which 
also efectively accelerates the convergence speed and improves 
the performance in training. These results empirically verifed the 
robustness of the SWA module, which provides a reliable solution 
that guarantees prediction stability. 
Time Delay Analysis Table 3 shows the size and time delay of 
uploading real-time samples and downloading dynamic layer model 
parameters on the device. Across all settings, this table suggests that 
our method produces a low time delay from 0.08s ∼ 1.06s, which 
seems acceptable for real-time applications. It is noteworthy that 
if we upload the embedding of real-time samples, it can generate 
a faster DMG and protect the user privacy of these samples. The 
observation above and analysis verify the efectiveness of DUET in 
implementing the real-time requirement for applications, thereby 
rendering the practicability for on-device learning. 

5 CONCLUSION 
In this paper, we propose the DUET for efcient device model gen-
eralization by generating adaptive device model parameters from 
the cloud without on-device training. Our method efectively learns 
a mapping function from real-time samples to device model param-
eters, which yields a low-time delay and better device-specifc per-
sonalization. Extensive experiments conducted on Movielens-1M, 
Movielens-100k and CK+ show that DUET outperforms fne-tuning 
methods by a large margin in terms of accuracy and real-time perfor-
mance, which validates the potential value in practical applications. 
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