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Causal Distillation for Alleviating Performance
Heterogeneity in Recommender Systems
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Abstract—Recommendation performance usually exhibits a long-tail distribution over users — a small portion of head users enjoy
much more accurate recommendation services than the others. We reveal two sources of this performance heterogeneity problem: the
uneven distribution of historical interactions (a natural source); and the biased training of recommender models (a model source). As
addressing this problem cannot sacrifice the overall performance, a wise choice is to eliminate the model bias while maintaining the
natural heterogeneity. The key to debiased training lies in eliminating the effect of confounders that influence both the user’s historical
behaviors and the next behavior. The emerging causal recommendation methods achieve this by modeling the causal effect between
user behaviors, however potentially neglect unobserved confounders (e.g., friend suggestions) that are hard to measure in practice.
To address unobserved confounders, we resort to the front-door adjustment (FDA) in causal theory and propose a causal multi-teacher
distillation framework (CausalD). FDA requires proper mediators in order to estimate the causal effects of historical behaviors on the
next behavior. To achieve this, we equip CausalD with multiple heterogeneous recommendation models to model the mediator
distribution. Then, the causal effect estimated by FDA is the expectation of recommendation prediction over the mediator distribution
and the prior distribution of historical behaviors, which is technically achieved by multi-teacher ensemble. To pursue efficient inference,
CausalD further distills multiple teachers into one student model to directly infer the causal effect for making recommendations. We
instantiate CausalD on two representative models, DeepFM and DIN, and conduct extensive experiments on three real-world datasets,
which validate the superiority of CausalD over state-of-the-art methods. Through in-depth analysis, we find that CausalD largely
improves the performance of tail users, reduces the performance heterogeneity, and enhances the overall performance.

Index Terms—Recommender System; Performance Heterogeneity; Causal Distillation; Front-door Adjustment
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1 INTRODUCTION

Recommender systems alleviate the information overload
on the Web by providing personalized services for users
seeking information. It has become a default choice to learn
recommender models from user historical behaviors [2],
[3], [4], [5]. The model typically exhibits performance het-
erogeneity with significant divergence across different user
groups. Figure 1 provides empirical evidence where we
train a representative recommendation model DIN [1] on
the benchmark Amazon Review dataset [6] and evaluate the
performance over equally sized user groups. User groups
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Fig. 1: Recommendation performance over user groups clus-
tered by 1) user activeness, and 2) behavior consistency on
popular items. DIN [1] and DIN (Group-wise) are under
unified training and group-wise training, respectively. The
user number of each group remains the same.

can be divided according to diverse factors, and we take
two factors for illustration: 1) the activeness of users (i.e.,
the number of interactions during training); and 2) the
user behavior consistency on popular items1. In both cases,
it is observed that a small portion of head users receive
more accurate recommendation results than the others.
Moreover, head users enjoy significantly more performance

1We cluster items into eighteen groups by popularity, equally split
the behavior sequence of each user into two parts (past and now),
and represent each part with item distribution over the clusters. We
measure the behavior consistency on popular items of a user with
the KL divergence of these two distributions. Intuitively, recommender
models will perform better on users with consistent behaviors.
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gains under unified training (one model for all groups) than
group-wise training (one model for each group). This means
that the unified training might aggravate the performance
heterogeneity problem among users due to model biases.
In this work, we analyze and address the performance
heterogeneity issue in recommender systems, which has
thus far received little scrutiny.

There are indeed two sources of the performance het-
erogeneity issue from the data and model perspectives. A
natural source is the imbalance of training data distribution
over users. For instance, active users are likely to receive
relatively accurate recommendations owing to rich interac-
tion records and more comprehensive interest modeling. A
model source is that recommender models further amplify the
impact of data imbalance during training [7], i.e., the model
bias towards the head users. Accordingly, we set two targets
in addressing this performance heterogeneity issue: (1) we
want to preserve the natural heterogeneity since forcibly
removing it might hurt the overall performance [8]; and (2)
we would like to eliminate the model bias that amplifies
the heterogeneity. However, most existing methods either
neglect or eliminate the heterogeneity, such as the fairness
recommendation [9] that pursues equal performance across
different groups2.

To achieve the targets, we dive into the generation pro-
cess of interactions to uncover the causes of the model bias,
which is abstracted as a causal graph [10] as depicted in
Figure 2:

• X → Y . Recommendation models predict user next
behavior Y (e.g., clicking an item), based on user historical
behaviors X under the assumption that historical behav-
iors X are the cause of next behavior Y [2].

• U → X,U → Y . U represents a set of factors (e.g.,
user activeness, and user preference on popular items)
that directly influence user historical behaviors and next
behaviors apart from the effect X → Y . For instance,
user activeness will increase the size of historical records
U → X and encourage item exploration U → Y . User
preference on popular items will influence the distribution
of user historical behaviors U → X and the property of
the next item U → Y .

U is identified as a confounder between X and Y , which
will lead to spurious correlation X ← U → Y when rec-
ommendation models (e.g., sequential recommendation [11],
[12] and graph-based recommendation [13]) estimate the
correlation between historical behaviors and next behav-
iors [10]. The spurious correlation is the source of model
bias that amplifies the performance heterogeneity. For in-
stance, preferring popular items U = 1 will lead to next
behaviors Y linked with popular items that are not caused
by historical behaviors X . Such < historical behaviors, next
behavior > pairs are spuriously correlated and bias the
model to recommend popular items regardless of historical
behaviors. Note that such model bias might not do harm to
users that prefer popular items (head users). However, other
users might suffer from these spurious correlations under

2Note that recommendation methods enforcing fairness also re-
quires known sensitive features, which might be unavailable in the
performance heterogeneity problem.
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Fig. 2: Causal graph for illustrating the amplified perfor-
mance heterogeneity due to spurious correlation.

the unified training3 and receive low-quality recommenda-
tions (cf. Figure 2). As such, the performance heterogeneity
issue is amplified due to the confounding.

In this light, we focus on alleviating performance hetero-
geneity by blocking the spurious correlation X ← U → Y ,
i.e. modeling the causal effect X → Y . Intuitively, we
can achieve the target by applying the debiasing tech-
niques in recommendation that handles confounders such
as inverse propensity scoring (IPS) [14], [15], back-door
adjustment [16], [17], counterfactual inference [18], [19]. To
obtain accurate estimation, these methods require either
unbiased data or observations of confounders, which might
not be easily satisfied in real-world recommender systems.
For example, collecting unbiased data from random trials
(e.g. uniform exposure) is costly due to hurting user ex-
perience. Meanwhile, unobserved confounders are common
in recommendation, breaking the unconfoundedness as-
sumption [20]. For instance, social relationships (e.g., friends
and family members) are known to have significant impact
on recommender systems, i.e., bringing exposure to items
(U → Y ) when friends directly recommend items, and
conformity to the users (U → X). However, whether a click
happens due to the user’s inherent interests or the sugges-
tions/recommendations from the user’s friends or family
members is not routinely available for many recommender
systems. Another example of unobserved confounder is
user’s current mood, which would TODO

Hence, there is an urgent need for a debiasing method to
deal with unobserved confounders without costly unbiased
data.

Towards the goal, we propose to estimate the causal
effect P (Y | do(X)) in recommendation through the front-
door adjustment [10] (FDA) according to the latent repre-
sentation of user historical behaviors, which is a mediator
between X and Y (see Figure 3). The core idea of FDA is to
estimate the outcome of the intervention do(X) by adjusting
the distribution P (Y | do(M)) over P (M | X). FDA thus
takes a two-step estimation procedure: 1) sampling M = m
from P (M | X); and 2) estimating the causal effect from M
to Y , i.e. P (Y | do(M = m)). However, these estimations
are non-trivial in recommendation for two reasons: 1) the
deterministic encoder in many existing recommendation
models can only generate one latent user representation m,
failing to model the conditional distribution P (M | X)

3The spurious correlation scores in Figure 2 are correlated with the
results in Figure 1 where the experiments are conducted in the Amazon
Book dataset. Tail users obtain few gains in unified training due to
suffering more spurious correlations.
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and sample multiple m; and 2) under the strict latency
restrictions in recommender systems, the computation cost
of enumerating M and X is unaffordable during model
inference. To tackle these two challenges, we encapsulate
multi-teacher distillation into the instantiation of FDA, and
propose the causal distillation framework, named CausalD.
CausalD employs the pre-trained heterogeneous models to
perform sampling of M = m give X (Challenge 1). Upon
the model-based sampling, CausalD estimates the causal
effects based on user sampling and multi-teacher ensemble.
The estimated causal effects serve as the distillation label for
training an efficient student recommendation model, which
directly estimates the effect without modeling P (M | X)
and (Y | do(M = m)) per m (Challenge 2). In summary,
this work makes the following contributions:
• We analyze the performance heterogeneity issue of recom-

mender models from a causal view and address the issue
by modeling causal effect with front-door adjustment to
handle the unobserved confounders.

• We propose a causal multi-teacher distillation (CausalD)
framework, which realizes FDA to estimate the causal
effect and preserves the inference efficiency.

• We instantiate CausalD on DIN and DeepFM, and con-
duct extensive experiments on three real-world datasets,
validating the effectiveness of our analysis and CausalD.

2 PRELIMINARIES

Confounding is the distortion of the association between
two variables X and Y , which share a common cause,
namely the confounder U . The confounder will bring the
spurious correlation between X and Y (X ← U → Y ),
leading to the gap between P (Y | X) and the causal effect
of X on Y . To accurately estimate the causal effect, causal
inference performs interventions by introducing the do-
operator and estimates P (Y | do(X)) instead of P (Y | X).
There are mainly two deconfounding techniques that esti-
mate P (Y | do(X)) [10] from observed data, i.e., back-door
adjustment, and front-door adjustment. In this section, we
review the main idea of these techniques:

2.1 Back-door Adjustment
Back-door adjustment can handle observed confounders Z .
Note that U represents all confounders. Under Bayes Rule,
the posterior P (Y |X) can be written as:

P (Y | X) =
∑
z

P (Y | X,Z = z)P (Z = z | X). (1)

In this modeling, there is a back-door path between X
and Y , which refers to the indirect path from X to Y that
contains an arrow to X , i.e., X ← Z → Y . To block the
back-door path, back-door adjustment adjusts the parent
variables of X to make these variables independent of X
with the do-operator. As such, X ← Z is cut due to the
independence, i.e., forcibly assigning a target value to X
regardless of its parent Z . Formally,

P (Y | do(X)) =
∑
z

P (Y | do(X,Z = z))P (Z = z | do(X)),

=
∑
z

P (Y | X,Z = z)P (Z = z).

(2)

Confounding Back-door Adjustment
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Fig. 3: Causal graph for illustrating the back-door adjust-
ment and front-door adjustment.

The conditional probability P (Y | X,Z = z) is invariant to
adjustment since how Y responds to X and Z is regardless
of whether the change of X is independent of Z . As such,
P (Y | do(X,Z = z)) = P (Y | X,Z = z). In essence, back-
door adjustment computes the association between X and
Y for each value z of Z , and takes the average over the prior
probability P (Z = z). The transition from P (Z = z | X) to
P (Z = z) indicates that the change of X no longer affects
the distribution of choosing Z , thus obeying the randomized
experiments where we can accurately estimate the causal
effect of X on Y .

2.2 Front-door Adjustment
From Equation (2), we can find that the back-door adjust-
ment requires the knowledge of the confounder variable
Z , i.e., the detailed values z. However, there are many
unobserved confounders in U that are hard to measure in
practice, such as the social relationships that might bring
exposure to items (e.g., friends recommending items) and
conformity to users, in recommender systems. Fortunately,
front-door adjustment can estimate the causal effects by
introducing a proper mediator variable M between X and
Y . By Bayes Rule, with the mediator, the posterior with do-
operator can be written as:

P (Y | do(X)) =
∑
m

P (M = m | do(X))P (Y | do(M = m)).

(3)

Then, FDA can be decomposed into the following two steps:
1) Estimating P (M = m | do(X)). P (M = m | do(X)) =
P (M = m | X) since the back-door path X ← U →
Y ←M is naturally blocked thanks to the colliding effect
U → Y ← M . An uncontrolled collider variable Y will
block the effect from U to M [10].

2) Estimating P (Y | do(M = m)) w.r.t. the unblocked back-
door path M ← X ← U → Y . Similar to the back-door
adjustment, the remedy is to adjust the parents of M , i.e.,
X and make (X,M) independent so that we can block
the back-door path by cutting M ← X .

By the Bayes Rule, the original likelihood can be written as:

P (Y | X) =∑
m

P (M = m|X)
∑
x

P (X = x|M = m)[P (Y |M = m,X = x)].

(4)
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By adjusting X , FDA estimates the causal effects as follows:

P (Y | do(X)) =∑
m

P (M = m | X)
∑
x

P (X = x)[P (Y |M = m,X = x)].

(5)
For brevity, we omit the transition details which share sim-
ilar spirits to Equation (2). In essence, after adjustment, M
becomes independent of X and P (X = x | do(M = m)) =
P (X = x), thus blocking the path Y ← U → X → M .
More details of FDA can be found in [10]. To use FDA, a
proper M should satisfy the following three requirements:

(i) M intercepts all directed paths from X to Y ;
(ii) there is no unblocked back-door path from X to M ;

(iii) all back-door paths from M to Y are blocked by X .

3 METHOD

3.1 Problem Formulation

Recommendation. A recommendation dataset D contains
user-item interaction records {(xi, yi, oi)}i=1,...,|D| logged in
a recommender system. xi denotes the user data such as
user ID and user historical behaviors. yi denotes the item
data such as item ID. oi ∈ {0, 1} is a binary factor indicating
whether the user has interacted with the item. Given user
data x and item data y, a recommendation model is learned
to predict how likely the user will interact with the item,
and the prediction score is used for candidate item ranking.
Top-ranked items will appear in the recommendation list
and are sorted according to the ranking scores.

Performance Heterogeneity. We define the total perfor-
mance heterogeneity as the standard deviation of recom-
mendation performances on different user groups’ datasets
{De}e∈E under unified training, i.e.,

Sh =

√
1

|E| − 1

∑
e∈E

(S(De)− S̄)2, (6)

where S(De) denotes the recommendation performance on
the De dataset and S̄ denotes the average performance on
all datasets. Such performance heterogeneity includes the
natural heterogeneity due to data imbalance across user
groups, and the model bias that amplifies the natural het-
erogeneity and hurts the performance of unprivileged user
groups. We define the natural performance heterogeneity as
the standard deviation of recommendation performances on
different user groups’ datasets under group-wise training.
Specifically, we independently train and evaluate one model
per group where the performance is denoted as S∗(De). The
natural performance heterogeneity can be written as:

S∗
h =

√
1

|E| − 1

∑
e∈E

(S∗(De)− S̄∗)2, (7)

We define the performance heterogeneity brought by the
model bias, i.e., bias-amplified performance heterogeneity
as:

S◦
h = Sh − S∗

h. (8)

In this paper, we use capital letters (e.g., X) to denote
variables, lowercase letters (e.g., x) to denote particular
values of variables, and bold ones (e.g.,x) to denote the
vectorial representations.

3.2 Front-door Adjustment in Recommendation

In this subsection, we analyze the critical challenges in satis-
fying the three requirements of FDA and implementing FDA
in deep recommendation models. Recall that in recommen-
dation, X refers to the historical behaviors while Y refers
to the next behavior (c.f. Figure 3). Many recommendation
models follow the encoder-predictor structure where the
encoder transforms X into latent factors, and the predictor
determines the correlations between X and Y based on
the latent factors and the target-item feature. As such, it is
intuitive to view the latent factors obtained from X as the
mediator M , and the representation of latent factors as the
mediator feature. We analyze whether such M satisfies the
requirements one by one:

Requirement (i). M should intercept all directed paths from
X to Y . This means that there is no other information of X
that could contribute to the recommendation prediction but
is not encoded in M . Intuitively, if this requirement is not
satisfied, there are other direct or indirect effect of X on Y
besides X → M → Y , e.g., X → M∗ → Y or X → Y .
Then, front-door adjustment over each path (e.g., cutting
X → M for X → M → Y in step 2) would leave other
paths X → M∗ → Y or X → Y still confounded by U ,
thus failing to estimate the causal effects. In the encoder-
predictor recommendation architecture, the latent factors
M as a whole contain all the information of the historical
behaviors X which are used to make predictions. As such,
the latent factors M as a whole obtained from the encoder
satisfy the requirement.

Requirement (ii) & (iii). These requirements indicate that
there are no confounders affecting (X,M) and no con-
founders other than U affecting (M,Y ), which are mostly
satisfied if we use the latent factors obtained by the encoder
as the mediator. Specifically, the parameters of the encoder
and the predictor are randomly initialized, thus containing
no confounder-related information before training. During
training, the parameters are learned from (X,Y ) pairs from
the recommendation datasets, and can only encode con-
founders that affect (X,Y ), which are all included in U of
the back-door path X ← U → Y . As such, there are no
confounders other than U affecting (M,Y ). (X,M) are not
affected by the back-door path X ← U → Y ← M thanks
to the colliding effect (c.f. Section 2.2). In addition, we show
that we can improve the satisfaction of Requirement (ii) with
causal feature distillation in Section 3.3.3.

With the mediator, Equation (5) is an expectation over
the conditional distribution P (m | X), and the prior distri-
bution P (x). First, we should sample different values m of
M given X while a deterministic encoder can only output
onem given user data x. Therefore, the sampling ofM given
X remains a challenge (Challenge 1). Second, the sample
spaces of these two distributions are infinite, which makes
the expectation calculation intractable. Moreover, the calcu-
lation of P (Y | m,x) for each m and x is computationally
expensive. Therefore, how to derive a proper approximation
for expectation calculation, while preserving the inference
efficiency due to the latency restrictions in recommender
systems, presents the second challenge (Challenge 2).
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3.3 Causal Multi-teacher Distillation

The ultimate goal of our method is to learn a recommenda-
tion model that could efficiently estimate the causal effect of
user historical behaviors on the next behavior by handling
unobserved confounders with FDA. The implementation of
FDA faces the above two challenges in recommendation.
To address Challenge 1, we propose to incorporate hetero-
geneous recommendation models where each model yields
one mediator value m. As for challenge 2, we approximate
the computationally expensive expectation calculation (cf.
Equation (5)), which enumerates each sampled m and x
with knowledge distillation. That is, we first estimates the
causal effects using heterogeneous teacher models (com-
putationally expensive), and transfer the knowledge into
an efficient student model (computationally light-weight).
The student directly estimates the effect while trying to
approaching the causal effect estimated by teachers via
distillation losses. By unifying heterogeneous teachers and
knowledge distillation, we propose the causal multi-teacher
distillation framework, namely CausalD. In the following,
we dive into the technical details of constructing heteroge-
neous teachers, performing FDA with heterogeneous teach-
ers, and how we define the distillation losses. Key notations
are summarized in Table 1.

3.3.1 Constructing Heterogeneous Teachers

We can split training recommendation data samples D
into non-IID subsets {D1,D2, . . . ,DK} via biased selection
w.r.t. some user attributes or unsupervised clustering. For
example, we can select data samples linked with male and
female users into two subsets, which have different data
distributions due to the interest discrepancy between male
and female users. In an extreme case, the user attribute is
the user ID where each subset corresponds to a particular
user. In practice, we choose the attribute related to an
observed confounder of interest, such as user activeness
or user behavior consistency. We illustrate that such a split
could improve feature distillation in Section 3.3.3. We train
one teacher model per subset, resulting in K heterogeneous
teacher models that encode different data information. Each
teacher contains an encoder, which extracts latent factors
(mediator) from user historical behaviors, and a predictor,
which makes recommendation predictions based on the
latent factors and the target-item feature. We denote the
encoders of pre-trained heterogeneous teacher models as
Φ = {ϕk}k=1,...,K , which will be used for obtaining media-
tor values. In the experiments (cf. Section 5.4), we show that
the CausalD framework significantly benefits more from
heterogeneous teachers than homogeneous teachers trained
on IID subsets, validating the rationality of constructing
heterogeneous teachers for sampling mediator values.

The model architecture of each teacher remains the same
as the student model. Therefore, the models are unprivileged
teachers w.r.t. the student. A teacher is unprivileged if it has
the same model architecture as the student and is trained
on a subset of the dataset used to train the student. In
other words, unprivileged teachers will bring no additional
dataset knowledge nor model structure knowledge during
distillation. This design permits a fair comparison with
baseline models trained without distillation. In practice,

incorporating additional features or higher-capacity model
architectures are acceptable for FDA and might further im-
prove the recommendation performance, which is beyond
the scope of this paper.

3.3.2 Front-door Adjustment for Causal Label Distillation

To estimate the causal effect with FDA, we sample mul-
tiple mediator values m with heterogeneous teachers and
multiple x using the in-batch sampling strategy. We then
calculate the causal effect as the expectation of P (Y | M =
m,X = x), which is modeled as a neural network, over
sampled m and x (c.f. Equation (5)). The causal effect is the
distillation label for training the student recommendation
model. Specifically, the expectation calculation in Equation
(5) can be decomposed into the following sub-processes:

Sampling of M = m. We use heterogeneous teacher rec-
ommendation models to do the samplingM givenX . Given
input xi, the encoders Φ = {ϕk}k=1,...,K of heterogeneous
teacher models yield heterogeneous M = m:

m̃k,i = ϕk(xi), k = 1, . . . ,K, (9)

where m̃k,i is the feature of mediator value mk,i encoded
by ϕk given the input X = xi. As for the modeling of
P (M = mk,i | X), we take a parametric solution, i.e.,
attention mechanism, and view the attention weights of X
on multiple m as the conditional probability.

αk,i =
exp(W1m̃k,i ·W2m̂i)∑
k exp(W1m̃k,i ·W2m̂i)

, m̂i = ϕ∗(xi), (10)

where m̃k,i is the mediator feature for the i-th data extracted
by the k-th teacher model and is computed by Equation (9).
m̂i is the mediator feature of the i-th data computed by the
encoder of the student model, i.e., ϕ∗.

Sampling ofX = x. We take the in-batch sampling strategy
for efficiency. Specifically, for a given training sample xi,
we take other training samples {xj}j ̸=i in the batch as the
sampled X . For the prior probability of X = xj , we have
no access to the data generation process in the real world.
Alternatively, since each sample is randomly taken into the
batch, we take the uniform distribution for P (X = xj).

Modeling of P (Y | M = mk,i, X = xj). In recommender
systems, the final prediction is generally pair-wise match-
ing. For a user input xi and a target item Y = yi, the
recommendation prediction is mostly a binary classification
where the output ôi indicates whether the user will interact
with the item (e.g., click or purchase). Therefore, we can
parameterize P (Y = y | M = mk,i, X = xj) as a neural
network φ(·) followed by a sigmoid layer σ:

P (Y = yi | X = xj ,M = mk,i) = σ(φ(xj , m̃k,i,yi)), (11)

where m̃k,i and yi are the vectorial representations of mk,i

and yi. m̃k,i is extracted by the encoder of the k-th teacher
recommendation model. In recommendation models, m̃k,i

can be the user representation extracted from the i-th user
input data xi (e.g., user historical behavior sequence), and yi

can be the embedding of item yi obtained from a trainable
embedding look-up table. Since M intercepts all the direct
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TABLE 1: Notations

Notation Description

X,Y, Z,M variables denoting the historical behaviors,
next behavior, confounder, mediator

x, y, z,m particular values of X,Y, Z,M

x,y, z,m vectorial representation of x, y, z,m

ϕk, ϕ
∗ encoder of the k-th teacher / student rec-

ommendation model

m̃k,i, m̂i mediator feature extracted by ϕk and ϕ∗

that take xi as input

m̃◦
i mediator feature estimated by teachers

with back-door adjustment

o, õ, ô recommendation label (e.g., CTR), predic-
tion estimated by teachers with front-door
adjustment, prediction made by the stu-
dent

ψFDA fully-connected layers for estimating õ
with front-door adjustment

ψ∗ fully-connected layers for estimating ô

W1,W2 trainable matrices for estimating the con-
ditional probability P (M = m | X)

LBDA feature distillation loss with back-door ad-
justment

LFDA label distillation loss with front-door ad-
justment

LRec original recommendation loss (e.g., BPR
loss, Sampled Softmax loss)

λBDA, λFDA coefficients to control LBDA, LFDA

effects from X → Y , we can use the mediator mj to replace
xj and use the vectorial representation m̃j in the modeling:

P (Y = yi | X = xj ,M = mk,i) = σ(φ(m̃j , m̃k,i,yi)),
(12)

where m̃j = 1/K
∑

k m̃k,j is the mediator feature of data
xj by taking the average of the mediator features of all
teachers. Function φ can be modeled by any neural net-
work architecture that makes recommendation predictions.
Taking DIN [1] as an example, DIN uses fully-connected
layers (FCL) to make click-through-rate predictions with
concatenated user-item representations as input. Following
this work, we use a FCL network ψFDA to model φ:

φ(m̃j , m̃,y) = ψFDA ([m̃j , m̃k,i,yi]) , (13)

where [·] denotes vector concatenation operation.

Estimating P (Y |do(X)). With the sampling of M = m (cf.
Equation (9) - (10)), the sampling of X = x, the modeling
of P (Y | M = mk,i, X = xj) (cf. Equation (11) - Equation
(13)), we can estimate the causal effect of user data xi on
the next item yi by implementing FDA (cf. Equation (5)) as
follows:

õi =
∑
k

αk,i

∑
j

1

Nb
σ(ψFDA ([m̃j , m̃k,i,yi])), (14)

where αk,i is computed with Equation (10), and õi is the
causal recommendation prediction indicating the probabil-
ity of the interaction between xi and yi.

Causal Label Distillation. õi is predicted by all teacher
recommendation models, and serves as the causal label
guidance for training the student recommendation model.
The prediction of the student model is obtained as follows:

ôi = ψ∗([m̂i,yi]), (15)

where ψ∗ denotes the predictor of the student recommenda-
tion model, which is modeled as another FCL network. m̂i

is the mediator feature extracted by the student encoder ϕ∗.
Since the Equation (14) introduces trainable parameters i.e.,
W1, W2, and ϕ, we try to pull the prediction closer to the
ground-truth label oi. Then, the loss function of FDA can be:

LFDA =
∑
i

(Lkd(õi, ôi)︸ ︷︷ ︸
Distillation

+Lce(õi, oi)︸ ︷︷ ︸
Consistency

), (16)

where Lkd is the knowledge distillation criterion [21]. Lce is
the cross-entropy loss. It is noteworthy that the consistency
loss solely affects W1, W2, and ψFDA. The distillation loss
is computed when W1, W2, and ψFDA are fixed.

3.3.3 Feature Distillation
Besides label distillation, we also incorporate the feature
distillation loss for training the student recommendation
model. Note that the mediator values m extracted by teach-
ers are intermediate features, which can serve as the feature
guidance. The feature distillation loss can be defined as:

LFT =
∑
i

d(π({m̃k,i}Kk=1), m̂i), (17)

where π denotes the function that aggregates the intermedi-
ate features of teachers. d denotes a distance function such
as Euclidean distance. π is decided according to whether
we can observe the confounder of interest. That is, if the
confounder of interest is not observed, we take the vanilla
feature distillation. If the confounder of interest is observed,
we employ back-door adjustment to improve deconfound-
ing in the feature level, namely causal feature distillation.

Vanilla Feature Distillation. The aggregation function in
the vanilla feature distillation takes the average of all teacher
features, which can be written as follows:

π({m̃k,i}Kk=1) =
1

K

∑
k

m̃k,i. (18)

Causal Feature Distillation. Besides the vanilla feature dis-
tillation, we propose an optional causal feature distillation
to handle some confounders Z of interest that can be ob-
served in recommender systems with back-door adjustment
(c.f. Section 2.1). First, we can split the data w.r.t. different
confounder values. By taking user activeness as an example,
we can count the number of interactions and accordingly
split users into several groups. Since data samples in the k-
th group are selected when the confounder variable is set to
a particular value Z = zk, the parameters of the correspond-
ing models learn the knowledge under Z = zk. Then, teach-
ers can be regarded as the estimators P (M | X,Z = zk),
and together approximate P (M | do(X)) as the weighted
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sum of the estimation of different models according to
Equation (2). Formally, we have:

m̃◦
i = Ezk [ϕk(xi)] =

∑
k

m̃k,iP (zk). (19)

We set P (zk) to be proportional to the number of users of
the group where ϕk is trained. We take m̃◦

i as the causal
feature guidance for training the student as follows:

LBDA =
∑
i

d(m̃◦
i , m̂i). (20)

This modeling can better satisfy Requirement (ii) in FDA
by actively blocking back-door paths from X to M , to
meet the complex environments in real-world recommender
systems. We also replace the average mediator feature m̃j

in Equation (13) - (14) with m̃◦
j to improve deconfounding

since m̃◦
j represents the debiased mediator feature.

3.4 Model Training

In summary, we first split the recommendation dataset D
into non-IID subsets {D1,D2, . . . ,DK} with biased section
w.r.t. some user attributes. If we aim to address the model
bias caused by a particular confounder, we can split the
data according to the confounder values. We train one rec-
ommendation model per subset as one teacher, and obtain
their encoders {ϕ1, ϕ2, . . . , ϕK}. Given (xi, yi, oi), we first
obtain causal feature guidance m̃◦

i from all teachers with
Equation (19), and the mediator feature m̃i extracted by the
student encoder ϕ∗. As such, the causal feature distillation
loss LBDA is computed with Equation (20). We then obtain
the causal label guidance õi from all teachers with Equation
(14), and the prediction ôi of the student recommendation
model with Equation (15). The label distillation loss and
the consistency loss are given in Equation (16). Besides two
distillation losses, we also employ a widely used recommen-
dation objective LRec, such as BPR loss [22] or the sampled
softmax loss [23], to train the student recommendation
model, e.g.,

LRec =
∑

(xi,yi,oi)∈D

− lnσ (ôi − oi) + λ∥Θ∥22, (21)

where ôi denotes the prediction of the student model. ôi is
basically P (Y | X) but approximates P (Y | do(X)) with
causal label distillation (cf. Section 3.3.2). During inference,
we use the prediction ôi of the student model for recom-
mendation. Overall, the training objective can be written as:

LCausalD = LRec + λBDALBDA + λFDALFDA. (22)

The training algorithm of the causal multi-teacher distilla-
tion is summarized in Algorithm 1.

3.5 Method Analysis

3.5.1 Training Complexity
The computation complexity of CausalD mainly comes from
the following processes:
• Teacher Pre-training. Teachers are trained on non-

overlapping subsets of the whole recommendation
dataset. Each teacher is with the same neural network

Algorithm 1: Causal Multi-teacher Distillation
Input: Recommendation data D
Output: Student recommendation model {ϕ∗, ψ∗}
Split D into non-IID subsets {D1,D2, . . . ,DK}
for ( k = 1 to K ) {

Train one teacher on Dk and obtain encoder ϕk
}
Initialize Θ = {ϕ∗, ψ∗,W1,W2, ψFDA}
while not converged do

Sample a batch {(xi, yi, oi)}i=1,...,Nb
from D

for ( i = 1 to Nb ) {
m̂i = ϕ∗(xi)
m̃◦

i = Ezk [ϕk(xi)] ▷ Eq.(19)
Obtain õi with Eq. (14)
Obtain ôi with Eq. (15)

}
LBDA =

∑
i d(m̃

◦
i , m̂i) ▷ Eq.(20)

LFDA =
∑

i (Lkd(õi, ôi) + Lce(õi, oi)) ▷ Eq.(16)
Obtain LRec with BPR [22], etc.
Optimize Θ over Eq. (22)

end

architecture as the student. As such, supposing the num-
ber of epochs in training the teachers and the student
remains the same, the complexity of training all teachers
approximates the complexity of training the student.

• Feature encoding. Supposing that the encoding complexity
of the student is O(E), the encoding complexity of the
causal distillation framework will be O(KE + E) where
K denotes the number of teachers. Note that the teacher
encoder and the student encoder have the same structure.

• Prediction. Supposing that there are L∗ layers in ψ∗ and
the number of hidden units in the l-th layer is d∗l , the pre-
diction complexity of the student can be O(

∑L∗

l=1 d
∗
l d

∗
l−1).

Supposing that there are L̃ layers in ψFDA and the num-
ber of hidden units in the l-th layer is d̃l, the prediction
complexity of the teachers can be O(

∑L̃∗

l=1NbKd̃ld̃l−1).

In summary, the computation complexity in causal distil-
lation training can be O(KE + E + 2

∑L̃∗

l=1NbKd̃ld̃l−1 +∑L∗

l=1 d
∗
l d

∗
l−1). In practice, Nb samples can be processed in

parallel, and
∑L̃∗

l=1NbKd̃ld̃l−1 introduces acceptable com-
plexity when d̃l and L̃ are small, i.e., ψFDA is a light-weight
network compared to ψ∗. Empirically, with DIN [1] as the
Base model, the multi-teacher pre-training costs around 72s
per epoch on the MovieLens dataset. The causal multi-
teacher distillation training costs around 157s per epoch.
The Base model without distillation costs 64s per epoch
under the same experimental setting.

3.5.2 Inference Complexity

At inference, solely the student recommendation model
is used, and all teachers are discarded. Items are ranked
according to the student predictions ô. Therefore, the in-
ference complexity remains the same with the Base model
without distillation. Note that the Base model can be any
recommendation model with an encoder-predictor architec-
ture. In other words, the causal distillation framework can
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be plugged into existing recommendation models without
affecting the inference efficiency.

3.5.3 Connection between causal label distillation and
causal feature distillation
The underlying connections between causal label distillation
and causal feature distillation can be two-fold:
• Front-door adjustment and back-door adjustment are two

representative causal techniques for deconfounding with
unobserved and observed confounders, respectively. We
instantiate these two techniques in one unified neu-
ral model by identifying mediators and observed con-
founders. We empirically find that the joint modeling
contributes to the overall effectiveness.

• As described in Section 3.2, the requirement (ii) of apply-
ing front-door adjustment is that no confounders simulta-
neously affect X and M . We further apply the back-door
adjustment for deconfounding the estimation of causal
effects of X on M (cf. Figure 3 Back-door Adjustment).

4 RELATED WORKS

4.1 Debiased Recommendation

Biases are ubiquitous in the feedback loop (User → Data
→ Model → User) of recommender systems, including
(but are not limited to) exposure bias [24], [25], popular-
ity bias [26], conformity bias [27], position bias [28], and
selection bias [29]. One representative line of research to
alleviate these biases is to explicitly model or utilize these
biases [30]. Typically, they construct auxiliary models like
exposure models [25], [31], click models [32], and temporal
popularity models [33]. Another representative direction
is to leverage unbiased data [19], [34]. For example, [19]
collect uniform data by exposing randomly sampled items
to each user with a uniform distribution. Undoubtedly,
random exposure might hurt users’ experiences and the
uniform data is expensive to collect. More recently, there is
substantial and rapidly-growing research literature study-
ing embracing causal theory in bias alleviation [16], [18],
[31], [35], [36], [37], [38]. Among these, Inverse Propensity
Score [14], [39] is one of the most general and representative
methods in reducing confounding effects. In essence, IPS
re-weights training samples based on the estimated bias-
aware propensity scores. However, most existing decon-
founding works (including IPS) assume unconfoundedness
[20], which means the confounders are observable to the
model. However, in real-world recommender systems, con-
founders are too various to be modeled in one model, and
a considerable portion of them are even unobserved by the
system. Different from these works, we leverage front-door
adjustment technique from causality to handle unobserved
confounders, and derive an efficient approximation of it
using causal multi-teacher distillation.

It is noteworthy that we differ from fairness-related
works [9] both in motivation and technique. Our major fo-
cus is the model training bias that enlarges the performance
heterogeneity of different user groups. As shown in Figure
1, when users in different groups are trained all together,
and trained independently, a small portion of users benefit

TABLE 2: Statistics of the datasets.

Dataset #Users #Items #Interactions #Density

MovieLens 6, 040 3, 900 1, 000, 209 0.04246
Amazon 459, 133 313, 966 8, 898, 041 0.00063
Alipay 400, 594 19, 503 38, 710, 494 0.00495

more during the co-training of all users. Note that per-
formance heterogeneity still exists without co-training, and
such heterogeneity is not our major focus. Fairness-related
works typically penalize the prediction expectation (such
as the positive prediction rate) of different user groups,
ensuring the universal equality. For example, [9] work in
a post-processing manner with recommended Top-K items
and their ranking scores as input. They try to ensure equal
performance of different user groups by solving a 0–1 inte-
ger programming problem. Different from existing works,
we use causal techniques to deconfound model training.

4.2 Knowledge Distillation

Multi-teacher Distillation. Knowledge distillation is a
powerful tool for transferring knowledge between net-
works. The transferred knowledge takes the form of soft la-
bels [21], intermediate features [40], [41], and relations [42],
[43]. More recently, there is a rapidly-growing research
literature studying on multi-teacher distillation [44], [45].
Among them, MEAL [44] is one of the early works that train
multiple teachers. It measures the consistency between the
selected teacher and the student using adversarial learning.
[45] encapsulates multi-teacher distillation into multi-task
learning, and trains one teacher per task. EnsCTR [46] makes
the first attempt to ensemble multiple teachers for click-
through-rate prediction. They devise the Teacher Gating net-
work to assign weights to different teachers based on their
predictions. To the best of our knowledge, our work is the
first to consolidate causality into multi-teacher distillation.

Knowledge Distillation in Recommendation. In recom-
mender systems, there are some works that exploit a priv-
ileged teacher to enhance the student that is used for serv-
ing/inference [47], [48]. The privilege of teachers mainly
falls into two groups: 1) high-capacity in model’s architec-
ture [49], [50] where related works typically train a lighter-
weight student for efficiency; and 2) external knowledge
such as user reviews [51], on-device features [52], and unbi-
ased uniform data [19]. Largely different from these works,
we construct unprivileged teachers, which have the same
architecture as the student, and each of them is solely on a
subset of the training data used to train the student. Though
these teachers are unprivileged, we distill causal effects
from them and accordingly train a debiased student without
external unbiased data, which constitutes a novel paradigm
for leveraging distillation in recommender systems.

5 EXPERIMENTS

We conduct experiments on three real-world datasets to
answer the following research questions:
• RQ1: How does CausalD perform as compared to base-

lines concerning multi-teacher distillation, debiased dis-
tillation, and debiased recommendation?
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TABLE 3: Overall performance and performance heterogeneity comparison with DIN as the base model. p-value is from
the two-sided test between CausalD and the best-performing baseline. Higher values are better except for Heterogeneity.

Datasets Metric DIN KD IPS CausalRec DeRec DebiasD EnsCTR MEAL CausalD p-value

MovieLens

AUC 0.8185 0.8187 0.8034 0.8176 0.8227 0.8227 0.8257 0.8233 0.8329 1.36e-07
R@5 0.3102 0.3104 0.3066 0.3112 0.3260 0.3231 0.3354 0.3213 0.3556 3.55e-06
R@10 0.4682 0.4763 0.4652 0.4751 0.4892 0.4831 0.4930 0.4837 0.5170 4.67e-05
NDCG@5 0.2378 0.2382 0.2362 0.2400 0.2507 0.2485 0.2589 0.2492 0.2755 1.15e-06
NDCG@10 0.3145 0.3187 0.3136 0.3192 0.3300 0.3258 0.3355 0.3281 0.3538 5.53e-06
Heterogeneity ↓ 0.7291 0.4533 0.3056 0.7529 0.7893 0.6889 0.9531 0.7773 0.1086 1.54e-03

Amazon

AUC 0.8873 0.8704 0.8788 0.8899 0.8908 0.8954 0.8983 0.8867 0.9027 2.30e-07
R@5 0.5644 0.5336 0.5555 0.5790 0.5795 0.5886 0.5911 0.5698 0.6069 3.24e-04
R@10 0.6854 0.6515 0.6760 0.6956 0.6956 0.7060 0.7087 0.6863 0.7216 1.52e-05
NDCG@5 0.4794 0.4516 0.4706 0.4934 0.4939 0.5007 0.5038 0.4857 0.5190 3.71e-05
NDCG@10 0.5384 0.5092 0.5294 0.5503 0.5506 0.5580 0.5612 0.5426 0.5751 2.58e-05
Heterogeneity ↓ 2.4567 1.6847 1.4277 1.8765 1.6241 1.4747 1.5169 2.2083 1.3803 1.89e-02

Alipay

AUC 0.7691 0.7615 0.7623 0.7603 0.7738 0.7712 0.7700 0.7749 0.7777 3.08e-05
R@5 0.1669 0.1727 0.1778 0.1792 0.2039 0.2057 0.1831 0.2343 0.2547 5.73e-08
R@10 0.3518 0.3682 0.3953 0.3772 0.3947 0.3675 0.3689 0.3938 0.4457 2.22e-06
NDCG@5 0.1186 0.1221 0.1237 0.1255 0.1474 0.1532 0.1307 0.1745 0.1851 1.53e-06
NDCG@10 0.2076 0.2165 0.2289 0.2214 0.2407 0.2314 0.2204 0.2517 0.2779 1.86e-05
Heterogeneity ↓ 2.3419 2.3383 1.8455 1.5405 2.4671 2.1373 2.4441 2.1125 1.0207 3.39e-03

• RQ2: Does CausalD mitigate the performance heterogene-
ity problem amplified by confounders that are observed
or unobserved by the model?

• RQ3: How do different components (the back-door
and front-door adjustment loss) and different hyper-
parameter settings (e.g., loss coefficients, number of teach-
ers) affect the performance of CausalD?

5.1 Experimental Setup

Dataset Description. We use two public benchmark
datasets, i.e., MovieLens and Amazon Product Review,
and a challenging large-scale industrial dataset, i.e., AliPay.
Dataset statistics are summarized in Table 2.
• Amazon. We take the Book category from the Amazon

product review dataset4 for evaluation. We follow [1], [53]
to regard the interacted items for a given user as positive
items and pair the user with randomly sampled negatives
that the user did not consume before for training models.

• MovieLens. We use the widely used MovieLens-1M5 ver-
sion for evaluation. We generate positive and negative
pairs in a similar manner as the Amazon dataset.

• AliPay. AliPay dataset is collected from one of the world’s
largest mobile payment platforms, i.e., AliPay. Wherein,
the applets like mobile recharge services and government
services are viewed as items. In AliPay, we regard the
items that have been clicked as positives. Items that are
observed but not clicked are treated as negatives.

To ensure data quality, we take the 16-core setting where
each user/item has at least sixteen interactions.

Baselines. To demonstrate the effectiveness, we compare
CausalD with the following baselines:
• KD [21]: This model denotes the oracle knowledge

distillation. We train a single teacher on all users.

4http://jmcauley.ucsd.edu/data/amazon/
5https://grouplens.org/datasets/movielens/1m/

• IPS [39]:. It is a representative causal recommendation
method. In this work, we firstly measure P (ug|i) which
denotes the conditional probability of heterogeneous user
groups ug given items i. Then, for a given data sample
(u, i), we use the corresponding p(ug|i) as the propensity
score. We follow [39] to reduce propensity variance using
the propensity clipping technique. The clipping threshold
is searched in {1/2, 1/3, ..., 1/10}.

• CausalRec [54]: This method employs causal inference to
correct the exposure bias and technically constructs an
exposure model such that each click is weighted by the
inverse exposure probability predicted by the model.

• Deconfounded Rec (DeRec) [14]: The deconfounded rec-
ommendation technique uses Poisson factorization to in-
fer confounders, and augments the base recommendation
model to correct the confounding.

• DebiasD [55]: It is one state-of-the-art method that de-
biases single-teacher distillation at the class level. We
extend the framework to the multi-teacher distillation by
assigning adaptive mixing weights to multiple teachers.

• EnsCTR [46]: It is one state-of-the-art multi-teacher distil-
lation framework in the literature of recommendation.

• MEAL [44]: This baseline is a state-of-the-art ensemble
distillation in the generic domain. It incorporates discrim-
inators to evaluate to what extent the student’s output
differs from multiple teachers.

Implementation Details and Evaluation. Since CausalD
is designed as model-agnostic, we instantiate CausalD and
baselines on two representative base recommenders, i.e.,
Deep Interest Network (DIN) [1] and DeepFM [56]. All
models except for KD, which is a single-teacher distillation
baseline, share the same pre-trained multiple teachers. We
optimize all models with Adagrad [57] as the optimizer and
with the default choice of learning rate (i.e., 0.01). All models
are with batch size 4096, and user/item embedding size
8. For DIN and models constructed upon it, we consider
the last 50 items interacted to form the user sequence.
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TABLE 4: Recommendation performance and performance heterogeneity comparison with DeepFM as the base model.

Datasets Metric DeepFM KD IPS CausalRec DeRec DebiasD EnsCTR MEAL CausalD p-value

MovieLens

AUC 0.8142 0.8234 0.8113 0.8172 0.8142 0.8231 0.8241 0.8210 0.8320 4.68e-03
R@5 0.2867 0.3047 0.2867 0.3021 0.2902 0.3064 0.3142 0.3039 0.3249 3.88e-02
R@10 0.4463 0.4633 0.4469 0.4537 0.4509 0.4685 0.4787 0.4691 0.4916 2.66e-02
NDCG@5 0.2230 0.2362 0.2188 0.2338 0.2241 0.2348 0.2420 0.2354 0.2481 1.47e-02
NDCG@10 0.3005 0.3129 0.2967 0.3072 0.3019 0.3134 0.3216 0.3152 0.3290 2.62e-02
Heterogeneity ↓ 7.1753 5.8783 5.4983 5.7853 5.7893 6.4233 6.1513 5.9233 5.6333 -

Amazon

AUC 0.8941 0.8827 0.8886 0.8957 0.8956 0.8953 0.8913 0.8963 0.8977 3.39e-03
R@5 0.5693 0.5723 0.5568 0.5730 0.5718 0.5743 0.5855 0.5760 0.6039 6.62e-06
R@10 0.6877 0.6880 0.6775 0.6918 0.6904 0.6923 0.6934 0.6947 0.7087 1.89e-03
NDCG@5 0.4838 0.4876 0.4721 0.4869 0.4865 0.4886 0.5018 0.4904 0.5191 1.49e-04
NDCG@10 0.5416 0.5440 0.5310 0.5449 0.5444 0.5461 0.5544 0.5483 0.5716 6.94e-03
Heterogeneity ↓ 0.2224 0.1422 0.1082 0.1840 0.2350 0.1988 0.2376 0.1414 0.0762 5.10e-04

Alipay

AUC 0.8018 0.8006 0.8058 0.8058 0.8016 0.8017 0.8077 0.8016 0.8031 -
R@5 0.2094 0.2227 0.2253 0.2326 0.2281 0.2274 0.2612 0.2292 0.2909 2.61e-04
R@10 0.4177 0.4263 0.4276 0.4314 0.4298 0.4313 0.4492 0.4257 0.4657 2.16e-02
NDCG@5 0.1491 0.1615 0.1626 0.1674 0.1633 0.1637 0.1939 0.1661 0.2207 1.63e-05
NDCG@10 0.2501 0.2603 0.2607 0.2639 0.2614 0.2626 0.2848 0.2614 0.3053 1.06e-02
Heterogeneity ↓ 2.0041 2.0877 1.6609 1.6577 1.8715 1.6355 2.3579 1.5945 1.5747 2.31e-02

For loss coefficients of all models that introduce additional
loss functions (including LBDA and LFDA in CausalD), we
search in the range of {0.01, 0.1, 1, 10}. We run CausalD and
the best-performing baseline for five times independently,
and conduct two-sided tests.

It is known that industrial recommender systems typ-
ically consist of two phases, i.e., the matching phase (also
known as deep candidate generation) and the ranking
phase. In the literature, evaluation strategies for these two
lines of works are different. For example, ranking models
solely sort a small group of candidates rather than the whole
item gallery. Therefore, ranking models can incorporate
complex feature interactions between items and users. In
this paper, we focus on the ranking phase and obey the next-
item recommendation protocol to evaluate the performance
of models, which has been widely used in [1], [2]. Specifi-
cally, we chronologically order the interacted items for each
user to have a behavior sequence, and leave the last element
of the behavior sequence for testing. The testing target item
is paired with 100 randomly sampled negative items that the
user has not consumed. To have a comprehensive analysis
of models, we employ various evaluation metrics, including
Area Under the ROC Curve (AUC), Normalized Discounted
Cumulative Gain (NDCG), and Recall. We report metrics
computed on the top 5/10 items. Besides these widely used
metrics, we also evaluate the performance heterogeneity of
different users. The Heterogeneity metric is the mean of five
bias-amplified performance heterogeneity scores computed
according to Equation 8 over five metrics (AUC, R@5, R@10,
NDCG@5, NDCG10). The lower values, the better.

5.2 Overall Performance (RQ1)
We run CausalD and all baselines on three datasets. For each
model, we run it five times and take the average averaged
results. The results with DIN and DeepFM as base models
are shown in Table 3 and Table 4, respectively. Higher
values are better for AUC, NDCG, and Recall except for
Heterogeneity. From the comprehensive results, we have the
following observations:

• In summary, CausalD achieves the best performance and
the least performance heterogeneity in most cases. For
example, CausalD outperforms DIN and the best perform-
ing baseline EnsCTR by 15.85% and 6.41% (NDCG@5),
and reduces the performance heterogeneity by 8.14% and
11.09% on the MovieLens dataset. The performance gains
are statistically significant with p-value < 0.05 under two-
sided tests6. Improving the overall performance while
reducing the heterogeneity probably indicates that tail
users benefit more with CausalD compared to other base-
lines. We further reveal the rationality of this analysis in
Section 5.3. On the contrary, some other baselines (such
as IPS) achieve low heterogeneity and low performance
at the same time, which means that they might hurt the
performance of head users. The improvements are con-
sistent across different recommendation architectures and
different datasets, showing the merits of CausalD being
model-agnostic and domain-agnostic. On the larger-scale
dataset, Alipay, the improvements are even more substan-
tial. In essence, these results demonstrate the necessity of
reducing confounding effects for recommender systems,
and the effectiveness of the causal distillation framework.

• The oracle distillation framework (KD) obtains almost no
gains w.r.t. the base models. This indicates that when
the model capacity and the training data remain the
same, the unprivileged teacher might not be very useful
in recommender systems. This method can reduce the
heterogeneity to a limited extent. We attribute this result
to that soft labels produced by the teacher can probably
convey some confidence judgments on the predictions
for different users. For example, active users might get
smoother soft labels than inactive ones.

• IPS reduces the performance heterogeneity in many cases
by considering user-specific propensity scores. However,
it obtains almost no gains on recommendation perfor-
mance and sometimes does harm on MovieLens and
Amazon with DIN as the base model. One reasonable

6https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.ttest ind.html
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Fig. 4: Performance heterogeneity across different user groups w.r.t. two confounders, i.e., user activeness, and behavior
consistency. The performance heterogeneity over user groups is largely reduced compared to the base model DIN [1].

explanation is that IPS largely sacrifices the performance
of head users for the performance of long-tail users. Com-
pared to IPS, exposure-aware causal baselines CausalRec
and DeRec can consistently improve the Base model. By
correcting the exposure bias, these models are potentially
less affected by the spurious correlations between users
and frequently exposed items. Tail users could benefit
from the correction since they suffer more from spurious
correlations as illustrated in the Introduction. However,
they might not effectively handle other ubiquitous con-
founders (e.g., user activeness, item popularity) beyond
exposure. The debiased distillation baseline DebiasD can
also obtain some performance gains and reduces the per-
formance heterogeneity to some extent. It learns whether
we should trust teachers and how differently we should
trust different teachers in distillation. But still, its results
are inferior to CausalD in most cases.

• Muti-teacher distillation baseline EnsCTR achieves good
performance compared to other baselines. It leverages
multi-teachers to maximize the recommendation perfor-
mance. However, the heterogeneity is mostly worse than
other baselines and even worse than the base model
in some cases, which probably means EnsCTR further
sacrifices the performance of tail users. The performance
of MEAL seems to be less consistent in different experi-
mental settings. Unstable training caused by adversarial
learning is also found in many other research fields [58].

• We also notice that with DeepFM as the base model,
CausalD cannot beat other baselines in a few cases while
CausalD with DIN as the base model could consistently
achieve the best results. We attribute this phenomenon to
the two parallel components, i.e., the FM component and
the DNN component, of DeepFM. On the one hand, the
causal feature distillation that operates on intermediate
representations is mostly affecting the DNN component

while the FM component might still suffer from training
biases. On the other hand, two parallel components would
result in two independent predictions while their relative
importance might be hard to determine under causal label
distillation. Still, we observe that CausalD over DeepFM
could achieve the best results in most cases, demonstrat-
ing the model-agnostic effectiveness of CausalD.

5.3 Deconfounding Analysis (RQ2)
We are interested in whether CausalD reduces the per-
formance heterogeneity of users by deconfounding and
improving the performance of tail users with minor per-
formance sacrifice of head users. In this regard, we report
the recommendation performance of models on different
user groups split w.r.t. two confounders, i.e., 1) user ac-
tiveness, which is observed by the model, and 2) users’
behavior consistency on popular items, which is unobserved
by the model. We evaluate CausalD, a variant of CausalD
without loss LFDA (w.o. FDA), and the Base DIN model.
Figure 4a and Figure 4b show the results. We plot both
the recommendation performance (the lines) and the values
of confounders (the bars), including user activeness and
behavior inconsistency. According to the results, we have
the following observations:
• Overall, these results further show the effectiveness of

CausalD on improving recommendation performance and
reducing performance heterogeneity of different users.

• By analyzing the performance over different groups in
detail, we observe that CausalD improves the recommen-
dation performance by mainly and largely improving the
results of tail users that suffer from low-quality recom-
mendation while mostly preserving the recommendation
quality of head users. These results basically demonstrate
that CausalD reaches the major goal of this work, i.e.,
to alleviate model training bias that is in favor of head
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MovieLens Amazon AliPay

Fig. 5: Recommendation performance with loss coefficients (λBDA and λFDA) varying in range {0.01, 0.1, 1, 10}.

users, and to reduce performance heterogeneity by mainly
improving the performance of tail users that originally
benefit little from the co-training of all users. This merit
can be potentially of great value in real-world recom-
mender systems where tail users are the majority and
cold-start problems are ubiquitous.

• Although the DeRec causal recommendation baseline and
the DebiasD debiased distillation baseline can provide
some relief for performance heterogeneity issues in certain
scenarios, there remains a significant disparity in bias al-
leviation performance compared to causalD. These results
are consistent with those outlined in Section 5.2 and the
analytical observations was comparable.

• CausalD can successfully handle confounders (e.g., behav-
ior consistency) that are unobserved to the model. This
is technically critical merit of the CausalD framework. In
real-world scenarios, we cannot observe all confounders
that cause the spurious correlations of historical behaviors
and the next behaviors, resulting in inevitable perfor-
mance heterogeneity and non-robustness. Dealing with
unobserved confounders is enticing but challenging, and
this work demonstrates the front-door adjustment might
be a promising technique for recommender systems.

• We also notice that, in some cases, the performance of
CausalD on head users becomes worse than the Base
model. This phenomenon can be intuitive since by alle-
viating training bias brought by potential confounders,
the model might capture less biased prediction short-
cuts that are in favor of the majority user group. For
example, some active users might click a lot of popular
items disregarding their inherent interests, leading to bi-
ased records. Debiased models might recommend items
that are less affected by the item popularities, and thus
probably hurting the performance of the above users.
Still, CausalD achieves consistently better performance for
all user groups in most cases. We leave user-wise bias
exploitation as a potential future work.

esults of causal recommendation baseline DeRec and
debiased distillation baseline DebiaseD in Figure 4

5.4 In-depth Model Analysis (RQ3)

Ablation Studies. We are interested in whether the critical
components in CausalD all contribute to its effectiveness.
In this regard, we evaluate whether 1) heterogeneous teach-
ers outperform homogeneous teachers; and 2) whether the

TABLE 5: Ablation study with DIN as the base model w.r.t.
three critical components: 1) front-door adjustment (w.o.
FDA → CausalD); 2) back-door adjustment (Base → w.o.
FDA); and 3) heterogeneous teachers (Homogeneous (Ho)
Teachers→ CausalD).

Amazon Alipay

Model AUC NDCG Recall AUC NDCG Recall

DIN (Base) 0.8873 0.5384 0.6877 0.7691 0.2076 0.3518

Ho Teachers 0.8869 0.5429 0.6883 0.7723 0.2289 0.3953
w.o. FDA 0.8952 0.5527 0.7008 0.7727 0.2238 0.4168
CausalD 0.9027 0.5751 0.7216 0.7777 0.2779 0.4457

TABLE 6: Ablation study with DeepFM as the base model.

Amazon Alipay

Model AUC NDCG Recall AUC NDCG Recall

DeepFM (Base) 0.8941 0.5416 0.6877 0.8018 0.2501 0.4177

Ho Teachers 0.8550 0.4371 0.5817 0.7797 0.2669 0.4265
w.o. FDA 0.8860 0.5528 0.6953 0.7811 0.2817 0.4444
CausalD 0.8948 0.5638 0.7016 0.8031 0.3053 0.4657

TABLE 7: Recommendation performance of CausalD as
changing the number of heterogeneous teachers.

Amazon Alipay

#Teachers AUC NDCG Recall AUC NDCG Recall

2 0.8910 0.5304 0.6806 0.7866 0.2682 0.4171
4 0.8869 0.5429 0.6883 0.7775 0.2812 0.4351
8 0.8965 0.5652 0.7114 0.7834 0.2902 0.4498
16 0.8931 0.5615 0.7062 0.7723 0.2832 0.4514

back-door adjustment loss and the front-door adjustment
loss improve the performance. Specifically, we construct
w.o. FDA which denotes CausalD trained without front-
door adjustment loss. By removing the back-door adjust-
ment loss from w.o. FDA, we obtain the Base (DIN)
model. Model Ho Teachers means replacing the hetero-
geneous teachers in CausalD with homogeneous teachers,
which are pre-trained on randomly split data.

According to the results shown in Table 5, we observe
that removing any of these three components (heteroge-
neous teachers, BDA loss, FDA loss) will incur a perfor-
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mance degradation. Notably, removing FDA loss (CausalD
→ w.o FDA) leads to NDCG −19.5% relatively on the Ali-
Pay dataset. We attribute the result to the effective capability
of front-door adjustment in reducing confounding effects.
The performance drop caused by removing BDA loss (w.o
FDA → Base) demonstrates that the back-door adjustment
loss is helpful for causal intervention. Not surprisingly,
CausalD trained with homogeneous teachers achieves infe-
rior results, which show sampling heterogeneous mediator
values given the input is essential for FDA. These results
jointly demonstrate the rationality of our framework design.
We have mostly similar observations with DeeFM as the
base model, according to the results listed in Table 6.

Effect of the Teacher Number. To investigate how the
number of teachers affects the performance, we consider
some variants of CausalD trained with {2, 4, 8, 16} teachers,
respectively. Table 7 summarizes the results. By jointly ana-
lyzing Table 7 and Table 3, we have the following findings:
• Increasing the number of teachers mostly leads to per-

formance gain. A larger number of teachers means that
CausalD conducts more comprehensive sampling on the
counterfactual space and thus estimates the causal effect
in Equation (5) more accurately.

• When further increasing the number of teachers from 8
to 16, we observe little performance gain in many cases.
We attribute this phenomenon to that teachers themselves
might become less effective with smaller training datasets.
In larger dataset Alipay, CausalD achieves the best Recall.

• When varying the number of teachers, CausalD consis-
tently outperforms the base model DIN. These results
demonstrate that the front-door adjustment and the causal
distillation can facilitate recommendation.

Effect of the Loss Coefficients. CausalD introduces two
losses, i.e., the back-door adjustment loss, and the front-door
adjustment loss. To investigate how the loss coefficients
(λBDA and λFDA in Equation (22)) affect the performance,
we vary λBDA and λFDA among {0.01, 0.1, 1, 10}, and
test the performance. According to Figure 5, we can find
that 1) the recommendation performance is mostly insen-
sitive to these hyper-parameters. Directly leaving them as
λBDA = λFDA = 1 will achieve substantial improvements
over the base model; 2) increasing λFDA consistently leads
to performance gains, which again shows the merits of
front-door adjustment for recommender systems; and 3)
increasing λBDA are mostly helpful while relatively large
λBDA might be inferior. This is reasonable since LBDA is
an auxiliary loss for LFDA. Larger LBDA might incur less
model optimization on LFDA.

6 CONCLUSION AND FUTURE WORK

In this work, we study how to alleviate the performance
heterogeneity problem in recommender systems. Though
the natural source of this problem, i.e., imbalance of training
data distribution over users, is inevitable, we find that
model training enlarges the heterogeneity, i.e., a model source.
By analyzing the recommendation data generation process
with the causal graph, we find that there are unobserved
confounders that mainly mislead the estimation P (Y | X)
of tail users. Different from existing works that require

unbiased data or assume unconfoundedness, we handle
unobserved confounders using FDA. We propose the causal
multi-teacher distillation framework (CausalD) as an effi-
cient approximation of FDA by distilling causal effects es-
timated by heterogeneous teachers into a recommendation
model. We conduct experiments on three public datasets,
validating the effectiveness of CausalD on improving rec-
ommendation and alleviating performance heterogeneity.

To the best of our knowledge, this work takes the ini-
tiative to incorporate FDA into recommendation models.
FDA has the enticing merit to deal with observed con-
founders that cause the spurious correlation of historical
behaviors and next behaviors. Bias is ubiquitous and vari-
ous in kind, and we believe this new paradigm is general
for alleviating model training biases in a unified frame-
work. There are many research directions remaining for
exploration. Apart from performance heterogeneity, there
are more issues caused by biased model training, such as
filter bubble. We are interested in whether CausalD can
alleviate these issues in the future. Another future direction
relates to performing FDA on causally discovered causal
graphs. Lastly, we plan to extend CausalD to state-of-the-
art recommendation models that leverage various content
features and side information.
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