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Abstract—Domain generalization (DG) aims to learn from multiple known source domains a model that can generalize well to
unknown target domains. The existing DG methods usually exploit the fusion of shared multi-source data to train a generalizable
model. However, tremendous data is distributed across lots of places nowadays that can not be shared due to privacy policies. In this
paper, we tackle the problem of federated domain generalization where the source datasets can only be accessed and learned locally
for privacy protection. We propose a novel framework called Collaborative Semantic Aggregation and Calibration (CSAC) to enable this
challenging problem. To fully absorb multi-source semantic information while avoiding unsafe data fusion, we conduct data-free
semantic aggregation by fusing the models trained on the separated domains layer-by-layer. To address the semantic dislocation
problem caused by domain shift, we further design cross-layer semantic calibration with an attention mechanism to align each
semantic level and enhance domain invariance. We unify multi-source semantic learning and alignment in a collaborative way by
repeating the semantic aggregation and calibration alternately, keeping each dataset localized, and the data privacy is carefully
protected. Extensive experiments show the significant performance of our method in addressing this challenging problem.

Index Terms—Domain generalization, Federated learning, Semantic aggregation, Semantic calibration, Attention mechanism.

✦

1 INTRODUCTION

R ECENTLY, deep learning has made revolutionary ad-
vances to visual recognition [22], under the i.i.d. as-

sumption that training and test data is sampled from the
same distribution. Since the adopted datasets could be very
distinct in many real-world applications, the performance
of deep models learned from one training (source) dataset
may drop rapidly on another test (target) dataset. To address
this dataset/domain shift [63] problem, domain generalization
(DG) [4], [77], [100] is introduced to train a generalizable
model to unknown target domains by learning from multi-
ple semantically-relevant source domains.

Numerous DG methods [5], [12], [99] have been pro-
posed recently. They popularize a variety of favorable
strategies for training generalizable models by (indirectly)
exploiting the fusion of “shared” multi-source data. For
example, some alignment-based methods [33], [40], [99]
match source data distributions in latent space for gener-
ating domain-invariant feature representations. Some meta-
learning based strategies [12], [32], [42] utilize meta-train
and meta-test datasets built by sampling from multi-source
data for training a stable model to unknown domains.
However, these methods may seriously violate data privacy
policies, as tremendous data is stored locally in distributed
places nowadays which may contain private information,
e.g., the patient data from hospitals and the video recording
from surveillance cameras. Therefore, a dilemma is encoun-
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tered: The requirements of learning from shared multi-
source data for training a highly generalizable model may
hard to be met in many real scenarios due to the privacy is-
sues. Meanwhile, without simultaneous access to the source
datasets for obtaining adequate information of multi-source
distribution, identifying and learning domain invariance for
improving model generalization might be led astray.

In this paper, we tackle the problem of federated domain
generalization [48] (see Fig. 1), where the source datasets are
separated and can only be accessed and learned locally. It
enables privacy preserving of sensitive data when employ-
ing them for improving model generalization. However, it
is much more challenging than the conventional domain
generalization task as: (1) The separated source datasets are
private and may not be directly fused, hence the simul-
taneous learning of the multi-source semantic information
is greatly hindered, making the identification of domain
invariance tricky. (2) The heterogeneous source datasets
with distinct data distributions may constitute enormous
obstacles for training a generalizable model as the model
is allowed to access only one local dataset each time, while
the accessed dataset could contain particularly unusual bias
and even bring negative gain for model generalization.

We propose a novel method called Collaborative Seman-
tic Aggregation and Calibration (CSAC) to enable federated
domain generalization. We begin by hypothesizing that the
deep models extract semantic information layer-by-layer,
and the model parameters in each layer are related to the
corresponding level as well as the training data distribution
(proof-of-concept experiments are provided to verify it in
Sec. 4). In light of this, to fully absorb multi-source semantic
information while avoiding risky data fusion, a data-free
semantic aggregation strategy is devised to fuse the models
trained on the separated domains layer-by-layer. Then a
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Fig. 1. Comparison of the conventional domain generalization (left) and the federated domain generalization (right). The latter trains generalizable
models while protecting privacy for many real-world scenarios.

semantic dislocation problem has arisen: Due to domain
shift, the same level of semantic information from differ-
ent domains could distribute across model layers during
the aggregation. To this end, we further design cross-layer
semantic calibration with an elaborate attention mechanism
for precise semantic level alignment and domain-invariance
enhancement. We unify the multi-source semantic learning
and alignment in a collaborative way by repeating the se-
mantic aggregation and calibration alternately. Each source
dataset contributes semantic information locally for boost-
ing model generalization during this process, resulting in a
high-quality generalizable model under privacy protection.

Our main contributions are summarized as: (1) We tackle
a practical problem of federated domain generalization for
addressing the dilemma between model generalization and
privacy protection. This problem is important for training
generalizable models in many privacy-sensitive scenarios
but lacks extensive research to our knowledge. (2) To enable
federated domain generalization, we propose a novel frame-
work called Collaborative Semantic Aggregation and Cali-
bration (CSAC) to unify the multi-source semantic learning
and alignment in a collaborative way by repeating seman-
tic aggregation and calibration alternately. (3) Extensive
experiments on benchmark datasets show the significant
performance of our method in addressing federated domain
generalization, which is even comparable to the previous
DG methods with shared source data.

The rest of the paper is organized as follows. In Sec.
2, some related works about domain adaptation, domain
generalization, federated learning, and distributed domain
adaptation and generalization are introduced. In Sec. 3, the
problem definition of the federated domain generalization
and our proposed CSAC framework and algorithm are
stated. In Sec. 4, the results of the experiments on benchmark
datasets as well as ablation studies and discussions are
provided. We discuss the investigation of the federated
domain generalization with a future outlook in Sec. 5.

2 RELATED WORK

2.1 Domain Adaptation

To address the widespread domain shift problem, remark-
able progress [3], [9], [27], [35], [36], [39], [47], [49], [50], [59],

[61], [82], [86], [89] has been made in domain adaptation
task. It aims to adapt a model trained on source domains to
target domains by exploiting target data/information. One
prevailing direction for this task is to employ adversarial
learning [9], [39], [61] for reducing domain gap and gen-
erating domain-agnostic representations. Meanwhile, some
algorithms [36], [49], [50] are put forward to directly min-
imize domain divergence with distance metric like Max-
imum Mean Discrepancies (MMD). However, the target
data/information is assumed to be available in this task,
which greatly limits its implementation in many real-world
applications since collecting adequate target data and infor-
mation might be extremely expensive and laborious.

2.2 Domain Generalization
Domain generalization (DG) [4], [11], [32], [34], [42], [53],
[60], [77], [93], [94], [99], [100] aims to train a stable model to
unknown target domains by learning invariant knowledge
from multiple source domains. A direct idea for DG is
to align multi-source data distributions in latent space for
generating invariant semantic representation [33], [34], [40],
[41], [53], [60], [62], [99]. For example, Li et al. [41] ex-
tract domain-invariant representations of multi-source joint
distributions through a conditional invariant adversarial
network. Another set of works [2], [12], [30], [32], [42] are
based on meta-learning, they employ an episodic training
paradigm that trains the model and improves its out-of-
distribution generalization ability on meta-train and meta-
test datasets, respectively, which are built by the shared
multi-source data. For instance, Dou et al. [12] present a
model-agnostic meta-learning training paradigm with two
complementary losses to consider both global knowledge
and local cohesion. Data augmentation [5], [66], [74], [80],
[101], [102], [103] for DG is also popular which trains the
model on generated novel domains for improving model
generalization. Among them, JiGen [5] is a representative
work that utilizes the data with disordered patches to train
the model for solving a jigsaw puzzle. Some other works
[6], [24], [65] optimize the regularization terms of the data or
networks to obtain generalization performance gain. These
methods are mostly in thrall to shared multi-source data for
identifying domain invariance and boosting model general-
ization, while concerns about data privacy are thus raised
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as tremendous private data might be distributed across
separated places in many real scenarios. In comparison, we
investigate a more practical setting of federated domain
generalization towards privacy-preserving model training
by accessing and learning each source dataset locally.

2.3 Federated Learning
As an active research field towards modern privacy protec-
tion, federated learning (FL) [16], [23], [37], [45], [55], [91],
[92], [97], [104] makes local clients jointly train a model
with a central server and keeps data decentralized. Take
a representative paradigm FedAvg [55] as an example. In
each communication round, a subset of the clients is chosen
to receive the parameters of a global model from the server
and trains it on their local data. The trained models are then
transmitted back to the server for updating the global model
with data-size based weights. Our investigated federated
domain generalization task is closely related to federated
learning as the data is decentralized, but the former is
much more challenging: FL mainly focuses on guaranteeing
model convergence when training on non-i.i.d. data [91],
and improving model performance on the “known” clients.
In contrast, our goal is to capture domain invariance from
the separated source domains and train a generalizable
model for the “unknown” out-of-distribution target domains.

2.4 Federated Domain Adaptation and Generalization
Source-free domain adaptation [29], [38] improves perfor-
mance on the target domain by using a source pretrained
model. Federated learning-based domain adaptation [26],
[58] adapts models from distributed source domains to
target domains. However, these methods are limited to the
strong assumption of available target data/information, as
we discussed previously. To tackle this issue, lots of fed-
erated learning-based domain generalization methods [7],
[8], [10], [13], [21], [57], [67], [69], [71], [73], [79], [83], [85],
[87], [96] have been proposed. [57] aims to learn simple
representation of the distributed data with L2-norm and
conditional mutual information constraints. FedDG [48] is
a representative method, which augments the distributed
data in frequency space. However, it builds an amplitude
spectrum distribution bank from the source data and shares
it to all the clients, which might be time-consuming and
needs high communication costs. Meanwhile, it shares the
amplitude spectrum of the source data to all the clients
that may increase the risks of data privacy leakage. In
comparison, our proposed method do not have extra time-
consuming procedures like building such a distribution
bank. More importantly, we do not share any data (or parts
of its information) during training for efficient communica-
tion and effective data privacy protection.

Beyond computer vision, distributed training a gener-
alizable model has also been explored in other fields, like
natural language processing [20], [44], [46], [76], [84], recom-
mender system [25], [78], [90], speech recognition [64], edge
computing [68], etc. For example, [76] proposes a plug-and-
play knowledge composition module to share knowledge
across clients for non-i.i.d. multilingual natural language
understanding. [78] proposes a recommendation model on
decentralized domains, which learns data from user devices

and trains a robust model by clipping training gradient.
Compared with these works, we aim to solve the visual
federated domain generalization problem by distributed
learning invariant semantics of images through semantic ag-
gregation and calibration processes for privacy protection.

3 METHOD

We begin with the problem definition of the federated
domain generalization and its challenges for generalizable
model learning. We then introduce our method CSAC (see
Fig. 2) for addressing this challenging problem in detail.

3.1 Federated Domain Generalization

In federated domain generalization, given source datasets
{D1, ..., DH} from H distributed domains. There are Nh

data sampled from domain-specific distribution P (Xh, Y h)

in each dataset Dh, i.e., Dh = {(xh
i , y

h
i )}N

h

i=1, defined on
image and label spaces X ×Y . The goal is to utilize the dis-
tributed source datasets for training a generalizable model,
which can perform well on unknown target domains.

The challenges of this task are: (1) The source datasets are
separated and can only be utilized locally, which greatly hin-
ders the simultaneous learning of the multi-source semantic
information and even leads to invalid domain invariance
identification; (2) The heterogeneous source datasets with
distinct data distributions constitute enormous obstacles
for generalizable model learning, since the model can only
access one local dataset each time. That is, if the exploited
dataset contains unusual domain-specific bias, the trained
model may even exhibit a negative generalization gain.

3.2 Overview of Our Method

The key idea of our method CSAC (Fig. 2) is to fully absorb
multi-source information and precisely align semantic lev-
els, which contains three main processes: (1) Local semantic
acquisition for learning distribution information of local data.
(2) Data-free semantic aggregation for semantic information
gathering from the trained models. (3) Cross-layer semantic
calibration for semantic level alignment and domain invari-
ance enhancement. After obtaining local distribution infor-
mation in process (1), the latter two processes are repeated
alternately, unifying the multi-source semantic learning and
alignment in a collaborative way for generalizable model
training. Note that by following the algorithms of feder-
ated learning [16], [45], [55], [91], [92], we only transmit
models among the distributed domains, and neither data
nor its information is shared, which adequately preserves
privacy. To our knowledge, the practice of using the same
model structure for heterogeneous data is widely adopted
in domain generalization and federated learning researches,
like [48], [70], [92]. Therefore, we argue that it is feasible for
our method to adopt the same model architecture for het-
erogeneous source data due to the powerful representation
learning ability of deep models, as demonstrated by both
the previous works and our experiments.
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Fig. 2. Overview of the proposed framework of Collaborative Semantic Aggregation and Calibration (CSAC). Left: To learn data distribution
information of the local data, one model is trained on each source domain to extract semantics layer-by-layer, i.e., ▲, ⋆, and ■. Middle: The
trained models are fused layer-by-layer with semantic divergence based weights for data-free semantic gathering. Right: Cross-layer feature pairs
between the fused model and a local model are matched with attention on each source domain for semantic level alignment and domain invariance
enhancement. After semantic acquisition, the semantic aggregation and calibration processes are repeated alternately.

3.3 Local Semantic Acquisition

Before gathering and aligning the multi-source semantic
information, we need to fully obtain the data distribution
information of the separated source datasets. To avoid
unsafe data fusion, we assign one model on each of the
separated domains to impose data distribution learning.
Given H separated source datasets, yh with C categories is
the groud-truth label of the image xh in dataset Dh, where
h ∈ {1, ...,H}. Let {Gh}Hh=1 be the trained models, each
model Gh can be optimized on the local source data Dh

with the following cross-entropy loss:

Lh
CE = −E(xh,yh)∈Dh [

C∑
c=1

1(yh = c) logGh,c(xh)], (1)

where Gh,c is the c-th dimension of the output of model Gh.
1(·) is an indicator function that equals to 1 for the correct
condition and 0 for the rest. To facilitate the following
semantic aggregation and calibration processes, we further
introduce label smoothing [43], [56] to encourage data rep-
resentations to group in tight evenly clusters, preventing
the trained models from being over-confident. The updated
learning loss for each trained model Gh is

Lh
LS = −E(xh,yh)∈Dh [

C∑
c=1

ph,c logGh,c(xh)], (2)

where ph,c = (1−α)1(yh = c)+α/C is the smoothed label.
α is a smoothing hyper-parameter empirically set to 0.1 [56].

3.4 Data-Free Semantic Aggregation

After acquiring distribution information of local data, we
devise a data-free semantic aggregation strategy with the
trained models {Gh}Hh=1. Inspired by recent researches [81],
[98] on the interpretability of deep neural networks, we
hypothesize that the deep models extract semantic informa-
tion layer-by-layer, and the model parameters in each layer
are related to the corresponding semantic level as well as
the training data distribution (proof-of-concept experiments

are shown in Sec. 4). To this end, we propose to fuse the
trained models layer-by-layer for gathering different levels
of semantics from the separated source domains. Since each
model Gh trained on the data Dh, it extracts hierarchical
semantics from distribution of Dh. Let Gh

l be the l-th layer
of Gh, we have the average model parameter distribution in
the l-th layer, that is,

GAVG
l =

1

H

H∑
h=1

Gh
l . (3)

We find that if a source data have a distribution far from the
others, the parameters of the model trained on it would be
distinct from the parameters of the other models. Therefore,
this model would be considered less as it is far from the
average distribution GAVG

l if we directly use GAVG
l as the

final model. To fairly fuse the information of the source
datasets for precise semantic calibration, we assign weight
to each model based on its semantic divergence to GAVG

l :

Ml =
H∑

h=1

dist(Gh
l , G

AVG
l )∑H

h=1 dist(G
h
l , G

AVG
l )

Gh
l , (4)

where Ml is the l-th layer of the fused model M , dist(·, ·) is
distance metric and we empirically use L2 distance (more
discussions about it are in Sec. 4). Models with distinct
parameters, or training data distributions, will be paid more
attention to by being given a large weight. As the trained
models are fused layer-by-layer, different levels of seman-
tics from the separated source domains are aggregated for
domain invariance learning in the semantic calibration.

3.5 Cross-Layer Semantic Calibration
Due to the different data distributions of the source datasets,
i.e., domain shift, the same level of semantic information
from different domains could be distributed across the lay-
ers of the fused model M during the aggregation process,
which we call the semantic dislocation problem. To calibrate
each level of semantic information for improving model
generalization, we align each cross-layer semantic feature
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pair between the fused model M and a local model Lh

(trained on each local source domain like Gh). Take Fig. 2
(right) as an example. The second layer of each local model
mainly contains the second level of semantic information,
i.e., ⋆. We match it with each layer of the fused model to
align the second semantic level, i.e., match ⋆ in different
layers of the fused model, where each cross-layer pair is
weighted by their semantic similarities. Since the hierar-
chical semantic features may have different size, we first
project them to the same size (we use the size of the semantic
features in the last adopted layer in the experiments):

Ml(fl)
′ =Proj(Ml(fl)),

Lh
m(fh

m)′ =Proj(Lh
m(fh

m)),
(5)

where Proj(·) is the projection function with one convolu-
tion layer (see experiments for details), fl and fh

m are the
input features for the l-th of the fused model and the m-th
layer of the local model, respectively. We align each cross-
layer semantic feature pair (l,m) after projection:

Lh
AL =

∑
l∈R

∑
m∈R

αl,mD(Ml(fl)
′, Lh

m(fh
m)′), (6)

where D(·, ·) is used to measure the distribution discrep-
ancy. We minimize Lh

AL to optimize the fused model M on
each domain h for performing semantic feature alignment.
We adopt Maximum Mean Discrepancies (MMD) [19] for
D(·, ·) by following [51], [72]. The set of layers R for align-
ment is given in experiments. A dynamic weight αl,m for the
layer pair (l,m) is based on the semantic similarity learned
by the attention mechanism introduced in the following.

Attention mechanism. To encourage the cross-layer
pairs with larger semantic similarity to be matched for
precise semantic level alignment and domain invariance
enhancement, meanwhile, weakening the pairs with less
similarity for avoiding further semantic dislocation, we then
introduce a semantic similarity based attention mechanism
for the dynamic weight αl,m. Attention [1] is a widely
adopted technique [14], [75], [95] for deciding which parts
of the input features should be paid more attention to.
Here, we consider the semantic inter-dependencies in both
position and channel dimensions. Let c, g, and w be the
channel, height, and width of the semantic features after
projection, respectively. We first reshape Ml(x)

′ ∈ Rc×g×w

and Lh
m(x)′ ∈ Rc×g×w to Al ∈ Rc×d and Bm ∈ Rc×d,

respectively, where d = g × w is the number of pixels in an
image. Then, we have a position-wise weight

αp
l,m =

exp
(
avg

(
A⊤

l Bm

))∑
m∈R exp

(
avg

(
A⊤

l Bm

)) , (7)

where A⊤
l Bm is the position-wise attention map, measuring

the response of Al to Bm, i.e., the l-th layer of the fused
model Ml to the m-th layer of the local model Lh

m. The
operator Avg(·) averages the attention map to a real num-
ber, and the weight αp

l,m is the normalization of the average
position-wise semantic similarity. Similarly, we then have

αc
l,m =

exp
(
avg

(
AlB

⊤
m

))∑
m∈R exp (avg (AlB⊤

m))
. (8)

αc
l,m measures the channel-wise semantic similarities. We

average them to get the final weight for each pair (l,m):

αl,m =
1

2

(
αp
l,m + αc

l,m

)
. (9)

αl,m characterizes the inter-dependencies between the fused
model Gl and each local model Lh

m in both position and
channel dimensions, weighting cross-layer pairs for calibrat-
ing semantic levels and boosting model generalization. We
adopt attention to help the model identify which feature
pairs are semantically-related and which are unrelated by
calculating their semantic inter-dependencies in both po-
sition and channel dimensions. Through this design, the
features from different layers between the global and the
local model, which have similar semantic representation,
would be automatically given a larger weight for alignment,
and vice versa. Therefore, we argue that our method would
not mix-ups the semantic features of different layers, but
align and calibrate the semantics of different layers through
the dynamic attention mechanism. Extensive experiments
and ablation studies also demonstrate its effectiveness.

Since the semantic information from each domain is
aggregated with others, the fused model may suffer from
the catastrophic forgetting problem [18], [54], i.e., knowledge
from one domain in the model is gradually forgotten when
incrementally updating models with knowledge from other
domains. We thus employ an auxiliary retraining loss Lh

AR

for the model M on each source dataset Dh, that is,

Lh
AR = −E(xh,yh)∈Dh [

C∑
c=1

1(yh = c) logM c(xh)], (10)

where M c is the c-th dimension of the output of the model
M . Then we have the calibration loss on each dataset Dh:

Lh
CB = λLh

AL + Lh
AR, (11)

where λ is a hyper-parameter for semantic calibration. We
minimize Lh

CB to optimized M on each domain h. Note
that optimizing the retraining loss of Lh

AR on each client
(domain) is the common practice of federated learning,
like FedAvg. Therefore, we keep this loss unchanged, i.e.,
without using a hyper-parameter, such that we can conduct
a clear ablation study and make a fair comparison with
FedAvg. In addition, we try to avoid using more hyper-
parameters to simplify our method.

3.6 Model Optimization
We first perform local semantic acquisition by training the
models {Gh}Hh=1 with Equation (2). The trained models are
employed to calculate the fused model M for semantic ag-
gregation through Equation (4). We then copy and transmit
M to each domain and optimize it through Equation (11) for
semantic calibration, then fuse the calibrated fused models
again. We repeat the semantic aggregation and calibration
alternately to gather semantic information from the dis-
tributed source domains and calibrate it to enhance domain-
invariant information, resulting in a highly generalizable
model M̂ for inference on unknown target domains.

Remark. In practice, we assign the parameters of the
fused model M to each trained model Gh for simultaneous
semantic calibration on each domain h, and fuse them again.
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Fig. 3. Some example images of the adopted datasets for experiments, i.e., PACS (a), VLCS (b), Office-Caltech-Home (c), and Rotated MNIST (d).

4 EXPERIMENTS

4.1 Setup

In this section, we evaluate the proposed CSAC method
for the federated domain generalization task on multiple
datasets, and give in-depth ablation studies and discussions.

Benchmark datasets. We first adopt two popular
datasets of object recognition. One is PACS [31] that covers
7 categories within 4 domains, i.e., Art, Cartoon, Sketch, and
Photo. Another is VLCS [15] that contains 5 classes from 4
domains, i.e., Pascal, LabelMe, Caltech, and Sun. A simulated
digit dataset Rotated MNIST [15] is then employed. It has 6
domains, i.e., M0, M15, M30, M45, M60, and M75 through
clock-wise rotation of the original images (M0) five times
with fifteen degree intervals. We use 100 images per class for
Rotated MNIST dataset by following [15], [99]. We process
the data by following the previous works [24], [99]. To
evaluate the performance under the scenarios with more
domains, we further construct a dataset Office-Caltech-Home
[93] by choosing the common classes from Office-Caltech
[17] and Office-Home [72] datasets, and merge them to get
7 domains (the domain DSLR is discarded since it only
contains a few images), i.e., Amazon (Am), Webcam (We),
Caltech (Ca), Art (Ar), Clipart (Cl), Product (Pr), and Real-
World (Rw). Some representative example images of these
adopted datasets are shown in Fig. 3. We conduct leave-one-
domain-out experiments, i.e., choosing one domain from
each dataset to hold out as the target domain, the others
are used as the (distributed) source domains. We train the
model on each domain, and only transmit model parameters
among domains by following [16], [45], [55], [91], [92].

Baseline methods. We compare our method CSAC
against the representative federated learning method Fe-
dAvg [55] and the federated learning based generalizable
model learning method FedDG [48] in the separated domain
generalization task. We also show the performance of the
state-of-the-art DG methods (see Table 1, 2, and 3) intro-
duced in the Sec. 2 for the domain generalization task with
shared source data. Following the previous works [5], [12],
[99], we implement a baseline method DeepAll by employing
the fusion of the shared source datasets for model training.

TABLE 1
Accuracy (%) on PACS dataset. “Sep.”: whether using separated

source datasets. “*”: the methods implemented by us. The best results
are emphasized in bold.

Methods Sep. Art Cartoon Photo Sketch Average

DeepAll* % 78.95±0.48 74.90±1.82 94.08±0.55 73.02±0.80 80.24±0.50
JiGen [5] % 79.42 75.25 96.03 71.35 80.51
MASF [12] % 80.29 77.17 94.99 71.69 81.04
DGER [99] % 80.70 76.40 96.65 71.77 81.38
DMG [6] % 76.90 80.38 92.35 75.21 81.46
FACT [88] % 85.37 78.38 95.15 79.15 84.51
Epi-FCR [32] % 82.1 77.0 93.9 73.0 81.5
MixSyle [103] % 84.1 78.8 96.1 75.9 83.7
EISNet [80] % 81.89 76.44 95.93 74.33 82.15

FedADG [96] ! 77.8±0.5 74.7±0.4 92.9±0.3 79.5±0.4 81.2
FedCMI [57] ! 80.8±0.4 73.7±0.2 92.8±0.5 79.5±0.2 81.7
FedSR [57] ! 83.2±0.3 76.0±0.3 93.8±0.5 81.9±0.2 83.7
FedL2R [57] ! 82.2±0.4 75.8±0.3 92.8±0.4 81.6±0.1 83.1
FedAvg* [55] ! 77.49±0.10 77.21±0.52 93.56±0.38 81.19±0.80 82.36±0.44
FedDG* [48] ! 78.46±0.20 75.98±0.28 93.23±0.43 80.92±0.72 82.15±0.35
CSAC* (ours) ! 81.98±0.87 76.41±0.49 95.20±0.29 81.64±0.49 83.81±0.33

Implementation details. We use the pretrained ResNet-
18 network [22] for PACS, VLCS, and Office-Caltech-Home
datasets and also use the AlexNet network [28] for VLCS
by following [5], [12], [24]. We use standard MNIST CNN
architecture with two convolution layers and two fully-
connected layers for Rotated MNIST dataset by following
[15], [99]. We extract the convolution layers of the last three
blocks of ResNet-18, or the last three convolution layers of
AlexNet, or the last two convolution layers of MNIST CNN,
as the layer set for semantic calibration. We implement the
methods according to their public code, where the boundary
component (it is used for segmentation task) of FedDG
is discarded for fair comparison. We use SGD optimizer
with learning rate 0.01 and momentum 0.5 for ResNet-18
and MNIST CNN, and learning rate 0.001 for AlexNet. The
training epochs for semantic acquisition are set to 30, col-
laboration rounds for aggregation and calibration are set to
40, for all the datasets. In each round, the calibration epochs
are set to 5 and 10 for the Rotated MNIST and the other
datasets, respectively. The hyper-parameter λ is set to 0.6
for all the experiments, its sensitivity is further analyzed. We
run the experiments on a device with CPU Xeon Gold 6254
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(a) (b) (c)

Fig. 4. Results of proof-of-concept experiments. 50 models with ResNet-18 architecture are randomly run on each domain of Digits-DG (domains:
MNIST, MNIST-M, SVHN, and SYN) and VLCS datasets (domains: Pascal, LabelMe, Caltech, and Sun). (a): the model parameters of the last
convolution layer of the four blocks of the trained models are extracted to be layer {1, 2, 3, 4} and their intra- and inter-domain L2 distance are
calculated. (b): the calculated intra- and inter-domain L2 distance of the model parameters in each layer (above: Digits-DG, below: VLCS). (c):
t-SNE visualization [52] of the model parameters (each point represents a trained model) in each layer (above: Digits-DG, below: VLCS).

TABLE 2
Accuracy (%) on VLCS dataset. “Sep.”: whether using separated

source datasets. “*”: the methods implemented by us. The best results
are emphasized in bold.

Methods Sep. Pascal LabelMe Caltech Sun Average

AlexNet

DeepAll* % 71.67±0.26 59.64±0.81 97.48±0.14 67.58±0.68 74.09±0.17
Epi-FCR [32] % 67.1 64.3 94.1 65.9 72.9
JiGen [5] % 70.62 60.90 96.93 64.30 73.19
MASF [12] % 69.14 64.90 94.78 67.64 74.11
DGER [99] % 73.24 58.26 96.92 69.10 74.38
EISNet [80] % 69.83 63.49 97.33 68.02 74.67

FedAvg* [55] ! 67.92±0.26 60.23±0.81 96.85±0.26 66.88±0.22 72.97±0.16
FedDG* [48] ! 67.27±0.07 58.48±0.04 96.83±0.47 68.20±0.12 72.69±0.16
CSAC* (ours) ! 70.21±0.32 58.99±0.29 97.13±0.35 67.27±0.54 73.40±0.17

ResNet-18

DeepAll* % 71.40±0.32 59.77±0.95 97.54±0.54 69.01±0.25 74.43± 0.25
JiGen* [5] % 73.97±0.21 61.94±0.74 97.40±1.03 66.90±0.64 75.05±0.26

COPA [85] ! 71.50±1.05 61.00±0.89 93.83±0.41 71.72±0.74 74.51
FedAvg* [55] ! 71.95±0.06 63.29±0.06 96.48±0.18 72.37±0.06 76.02±0.08
FedDG* [48] ! 72.59±0.30 60.33±0.07 96.70±0.20 73.61±0.17 75.81±0.16
CSAC* (ours) ! 71.97±0.56 63.45±0.73 97.24±0.57 72.06±0.80 76.18±0.42

TABLE 3
Accuracy (%) on Rotated MNIST dataset. “Sep.”: whether using

separated source datasets. “*”: the methods implemented by us. The
best results are emphasized in bold.

Methods Sep. M0 M15 M30 M45 M60 M75 Average

DeepAll* % 86.73±0.45 98.27±0.40 98.63±0.15 97.50±0.89 97.47±0.25 87.20±0.95 94.30±0.29
CrossGrad % 86.03 98.92 98.60 98.39 98.68 88.94 94.93
MetaReg [2] % 85.70 98.87 98.32 98.58 98.93 89.44 94.97
FeaCri [42] % 87.04 99.53 99.41 99.52 99.23 91.52 96.04
DGER [99] % 90.09 99.24 99.27 99.31 99.45 90.81 96.36

FedAvg* [55] ! 82.60±0.44 98.56±0.27 98.97±0.29 93.66±0.03 95.78±0.27 86.30±0.10 92.65±0.08
FedDG* [48] ! 73.07±0.67 94.37±1.03 95.60±0.19 89.43±0.38 94.61±0.39 84.50±0.10 88.60±0.30
CSAC* (ours) ! 84.57±0.31 98.87±0.23 98.63±0.15 95.06±0.48 96.57±0.40 90.73±0.25 94.07±0.02

× 2, and GPU Nvidia RTX 2080 TI × 4. We report the mean
and standard error of the classification accuracy over five
runs with random seeds for the experiments implemented
by us (marked with *). And we cite other results of the DG
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Fig. 6. Sensitivity analysis of the hyper-parameter λ for semantic cali-
bration on VLCS (left) and PACS (right) datasets.

methods from the published papers like the previous works.

4.2 Proof-of-Concept Experiments

We first provide proof-of-concept experiments to verify our
hypothesis: the deep models extract semantic information
layer-by-layer, and the model parameters in each layer are
related to the corresponding level as well as the training
data distribution. We randomly run 50 models with ResNet-
18 architecture on each domain of VLCS [15] and Digits-
DG [101] datasets. After training, we extract the model
parameters of the last convolution layer of the four blocks
of the trained models to be layer {1, 2, 3, 4}. We calculate
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TABLE 4
Effect of semantic aggregation with semantic divergence (strategy) and L2 distance (metric). The best results are emphasized in bold.

Type Case PACS VLCS
Art Cartoon Photo Sketch Average Pascal LabelMe Caltech Sun Average

Strategy Semantic similarity 79.22±0.19 72.44±0.53 93.00±0.14 74.34±0.37 79.75±0.22 70.80±0.16 62.86±0.39 96.61±0.26 69.49±1.03 74.94±0.46
Semantic average 80.25±0.36 74.54±0.44 93.74±0.15 77.88±0.69 81.85±0.07 72.44±0.17 61.20±0.32 96.54±0.30 70.83±0.45 75.25±0.21

Metric Cosine distance 80.89±0.23 73.57±0.41 94.43±0.03 76.59±1.31 81.37±0.41 72.27±0.11 62.94±0.44 97.05±0.15 71.41±0.06 75.92±0.11
L1 distance 81.75±0.51 74.93±0.09 94.45±0.28 77.63±0.42 82.19±0.27 72.16±0.16 64.11±0.28 96.64±0.13 71.67±0.21 76.15±0.04

CSAC 81.98±0.87 76.41±0.49 95.20±0.29 81.64±0.49 83.81±0.33 71.97±0.56 63.45±0.73 97.24±0.57 72.06±0.80 76.18±0.42

TABLE 5
Effect of semantic calibration with cross-layer alignment (strategy) and MMD discrepancy (metric). The best results are emphasized in bold.

Type Case PACS VLCS
Art Cartoon Photo Sketch Average Pascal LabelMe Caltech Sun Average

Strategy

Without alignment 80.34±0.24 76.07±0.14 95.45±0.49 81.11±0.12 83.24±0.15 70.11±1.21 65.73±2.31 97.03±0.15 71.39±0.16 76.06±0.75
Same-layer alignment 80.49±0.23 74.19±0.11 94.85±0.55 80.34±0.44 82.46±0.17 73.51±0.21 62.26±0.14 97.38±0.08 71.38±0.14 76.14±0.12
Without attention (position) 79.57±0.44 73.57±0.61 94.46±0.12 79.66±0.47 81.82±0.16 72.57±0.12 63.85±0.78 96.09±0.26 69.16±0.21 75.42±0.31
Without attention (channel) 79.80±0.58 73.77±0.03 94.43±0.09 79.32±0.19 81.83±0.14 72.40±0.52 63.54±0.52 95.92±0.30 69.24±0.12 75.27±0.20
Without attention 80.35±0.87 76.27±0.11 93.59±0.24 77.88±1.53 82.02±0.58 71.63±0.06 64.48±2.46 96.27±0.40 67.67±1.03 75.01±0.44
Without label smoothing 81.78±1.00 76.37±0.43 95.00±0.71 81.46±0.80 83.65±0.52 71.70±0.78 63.33±0.82 97.17±0.61 71.34±1.18 75.89±0.54
Without cross-entropy 81.35±0.09 76.04±0.17 94.98±0.39 82.60±0.50 83.74±0.13 72.12±0.23 62.70±0.16 97.55±0.21 71.76±0.23 76.03±0.10

Metric Mean Square Error (MSE) 77.08±0.28 71.05±1.26 94.61±0.14 75.99±0.33 79.68±0.49 72.10±0.79 62.17±0.19 96.47±0.35 71.09±0.14 75.46±0.26

CSAC 81.98±0.87 76.41±0.49 95.20±0.29 81.64±0.49 83.81±0.33 71.97±0.56 63.45±0.73 97.24±0.57 72.06±0.80 76.18±0.42

TABLE 6
Run time (hours) on PACS and VLCS datasets.

Methods PACS VLCS
Photo Art Cartoon Sketch Average Pascal LabelMe Caltech Sun Average

FedAvg [55] 3.85 3.95 4.03 4.32 4.04 3.03 3.10 3.08 3.11 3.08
FedDG [48] 11.65 11.84 11.92 12.01 11.86 10.81 10.43 10.50 10.19 10.48

CSAC (ours) 4.81 4.81 4.48 4.34 4.61 3.61 3.61 3.57 3.59 3.60

intra-domain distance, i.e., the L2 distance of the model pa-
rameters between each pair of the models trained on the
same domain, and inter-domain distance, i.e., the L2 distance
of the model parameters between each pair of the models
trained on different domains, as shown in Fig. 4 (a). From
the distance results in Fig. 4 (b), we observe that the models
trained on the same domain have closer parameter distance
than the models trained on different domains, which is also
verified by the t-SNE visualization [52] in Fig. 4 (c) that
the points of the model parameters from the same domain
gather together. It verifies that the model parameters are
related to the distributions of training data. Meanwhile, we
find that the inter-domain distance becomes closer to the
intra-domain distance in the high layers in Fig. 4 (b) and
the points with different colors cluster together in the high
layers in Fig. 4 (c). It indicates that the model parameters are
not only related to the training data distributions but also
the corresponding semantic level, since the lower semantic
level is more related to the data distribution while the higher
level is more related to the object categories that is invariant
to the domains. We argue that it is also the latent assumption
of domain generalization task that one can extract high-level
discriminative yet domain-agnostic semantics for training a
highly generalizable model.

4.3 Main Results

We first report the results on PACS dataset in Table 1.
We observe that our method CSAC achieves the highest

average accuracy for the federated domain generalization
task. Moreover, CSAC with separated source data even out-
performs the domain generalization methods (except FACT)
with shared source data on the average accuracy. It shows
the effectiveness of our collaborative semantic aggregation
and calibration strategy. Moreover, it indicates that we may
learn a generalizable model by sharing information among
domains through the model parameters. In this way, we
can improve generalization performance of the model under
careful data privacy protection, which is important for many
privacy-sensitive real-world scenarios.

We further use models with AlextNet and ResNet-18
architecture for the experiments on VLCS dataset and report
the results in Table 2. In the experiments of the two network
architecture, our method CSAC surpasses the FedAvg and
FedDG methods. It shows excellent generalization learn-
ing ability of CSAC with separated source data. With the
AlexNet network architecture, CSAC slightly outperforms
Epi-FCR and JiGen methods with shared source data. How-
ever, by using the larger network ResNet-18, CSAC per-
forms better than DeepAll and JiGen. We attribute it to the
semantic calibration process and the attention mechanism
which may need large network to show their advantages.

We report the results on Rotated MNIST dataset in Table
3. It demonstrates that our method CSAC defeats FedAvg
and FedDG methods for the distributed domain generaliza-
tion task. We also observe that CSAC achieves slightly worse
performance than the domain generalization methods with
shared data. It is probably because we use a much smaller
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Fig. 7. Semantic divergence based weight for the last layer of the four blocks of ResNet-18 of each trained model (marked with the corresponding
domain) during training on VLCS (above) and PACS (below).

Fig. 8. T-SNE visualization of the learned semantic feature distributions of the data points on PACS dataset (target domain is photo). Different colors
represent different classes (above) or domains (below).

network here for the Rotated MNIST dataset. It is similar to
our previous conclusion that CSAC needs large network to
unleash the potential of domain invariance learning.

In order to evaluate the methods under the scenarios
with more domains, we further conduct experiments on the
Office-Caltech-Home dataset with 7 domains. We let domain
Rw be the target domain, and add one source domain each
time from a source domain set {Am, Cl, Pr, We, Ar, Ca},
i.e., using 1 source domain: {Am}, using 2 source domains:
{Am, Cl}, and so on. The results are shown in Fig. 5. We
have two observations: (1) Our method CSAC surpasses
other methods when given more than two source domains.
(2) Giving more source domains enable CSAC to achieve

much better performance. We argue that it is because the
adequate semantic information provided by multiple source
domains facilitate the semantic level alignment and invari-
ance enhancement in the CSAC framework.

4.4 In-Depth Ablation Studies

Semantic aggregation. Table 4 reports ablation results for
semantic aggregation. By replacing the strategy with seman-
tic similarity (larger weights for the models that are closer
to the average distribution) and average (equal weights), we
find that it is important to pay more attention to the domain
with the semantic distribution far from the others for fairly
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Fig. 9. Accuracy (on all the domains) of the model trained on domain Art (a), Cartoon (b), and Photo (c), and the fused model (d), during the training
process, i.e., semantic acquisition and the repeat of semantic aggregation and calibration. The adopted dataset (target domain): PACS (Sketch).

absorbing knowledge from all the source domain, facilitat-
ing valid domain invariance learning. The experiments with
other metrics show the effectiveness of the used L2 distance.

Semantic calibration. Table 5 reports the ablation results
for semantic calibration. We compare the results without
alignment and using the same-layer alignment and find
that it is necessary to consider cross-layer semantic rela-
tionships for addressing the semantic dislocation problem.
By conducting the attention ablations, we demonstrate the
attention mechanism with both position and channel inter-
dependency consideration is important for precise semantic
level alignment. The label smoothing is showed useful for a
final generalizable model learning, which is may because it
leads to more smooth models for stable model fusion. Cross-
entropy displays its importance for catastrophic forgetting.
The MMD metric is more effective for alignment than the
MSE, which may also be the reason that MMD is widely
adopted in alignment-based domain adaptation works.

Sensitivity analysis. Fig. 6 shows that CSAC is generally
robust to the weight of semantic calibration, i.e., hyper-
parameter λ. CSAC might be practical and effective without
the time-consuming hyper-parameter fine-tuning.

4.5 Run Time
We report the run time of the methods (implemented lo-
cally) in Table 6. FedDG is computationally inefficient by
using about three times the run time of FedAvg and CSAC,
which is may because of the time-consuming process of the
distribution bank building. Besides, FedDG transmits the
bank to all the domains, which needs high communication
costs and might increase the risks of privacy leakage (al-
though we can not verify it with experiments).

4.6 Why Does CSAC Work?

In Fig. 7, we observe that the weight curves have the similar
trend, i.e., the four extracted layers of each model have the
similar semantic divergence to others, which indirectly ver-
ifies our hypothesis that parameters are related to the data.
The model with divergent semantics is given large weight
layer-by-layer for adequate semantic gathering, facilitating
the semantic calibration as shown in ablation studies.

Fig. 8 shows comparisons on the learned semantic fea-
ture distributions. CSAC obtains more discriminative and
domain-agnostic information and generates class clear and
domain compact semantic feature representations. We at-
tribute it to the effectiveness of the collaborative semantic
aggregation and calibration strategy for domain invariance
learning with distributed source domains.

We then present insights on the proposed CSAC via
showing the accuracy curves of the models on all the source
datasets during training in Fig. 9 (note that the target dataset
is only used for testing the model performance). During
semantic acquisition, each trained model is assigned to
each separated domain for data distribution learning, and
its accuracy on the learned domain improves rapidly (see
the parts before model fusion in the subfigures (a-c)). The
accuracy of the trained models assigned to Art, Cartoon,
and Photo domain, on the target dataset, i.e., Sketch (red
curve at dotted line), is 52.74%, 68.47%, 32.02%, respectively,
before model fusion. Then, the trained models are fused for
semantic aggregation, each domain knowledge is fully gath-
ered. The parameters of the fused model are then assigned
to each trained model again for semantic calibration with
local datasets. We unify semantic learning and alignment by
repeating semantic aggregation and calibration alternately,
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the domain invariance from the separated domains is indi-
rectly captured, making the accuracy of the fused model
(subfigure (d)) on all the datasets improve gradually. By
comparing the results before model fusion, the accuracy of
the trained local model on the target dataset finally reaches
improvement of more than 29%, 13%, and 50%.

5 CONCLUSIONS

Training a generalizable model is a vital issue for the
deep learning community. However, common practices of
domain generalization rely on shared multi-source data,
which may violate privacy policies in many real-world ap-
plications. This paper tackles the privacy-preserving prob-
lem of federated domain generalization, and presents a
novel method for this challenging task with collaborative
semantic aggregation and calibration. Our method unifies
multi-source semantic learning and alignment in a collab-
orative way, distributed improving model generalization
under careful privacy protection. In future, one may be
demanded to collaboratively train a generalizable model by
exploiting thousands of separated source datasets. Thus, our
work sheds some light on this promising direction which
lacks extensive research. It is important for many privacy-
sensitive scenarios like finance and medical care.
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