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Stable Prediction with Leveraging Seed Variable
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Abstract—In this paper, we focus on the problem of stable prediction across unknown test data, where the test distribution might be
different from the training one and is always agnostic when model training. In such a case, previous machine learning methods might
exploit subtly spurious correlations induced by non-causal variables in training data for prediction. Those spurious correlations can vary
across datasets, leading to instability of prediction across unknown test data. To address this problem, we propose an algorithm based
on conditional independence tests to screen out non-causal features and reduce spurious correlations by leveraging a seed variable.
We show, both theoretically and with empirical experiments, that our algorithm can precisely screen out the isolated non-causal
variables, which have no causal relationship with other variables, and remove the spurious correlations induced by them, increasing the
stability of prediction across unknown test data. Extensive experiments on both synthetic and real-world datasets demonstrate that our
algorithm outperforms state-of-the-art methods for stable prediction across unknown test data.

Index Terms—Stable Prediction, Seed Variables, Conditional Independence, d-separation

✦

1 INTRODUCTION

Many machine learning algorithms have been shown to
be very successful for prediction when test data have the
same distribution as the training data. In real-world scenar-
ios, however, test data is always agnostic in model training
and we cannot guarantee the unknown test data will have
the same distribution as the training data. For example,
different geographies, schools, or hospitals may draw from
different demographics, and the correlation structure among
demographics may also vary (e.g., one ethnic group may be
more or less disadvantaged in different geographies). The
model may exploit the subtle, but genuine, statistical rela-
tionships among predictors present in the training data to
improve prediction, resulting in the instability of prediction
across test data that differs from the training distribution.
Hence, how to learn a model for stable prediction across
unknown test data is of paramount importance for both
academic research and practical applications.

To address the stable/invariant prediction problem, re-
cently, many algorithms have been proposed, including
domain generalization [1], [2], causal transfer learning [3],
[4] and invariant causal prediction [5], [6]. The motivation
of these methods is to explore the invariant or stable struc-
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ture between predictors and the response variable across
multiple training data for stable prediction. But they cannot
handle the test data whose distribution are out of all training
environments. Kuang et al. [7], [8] and Shen et al. [9],
[10] proposed to recover causation between predictors and
response variable by global sample weighting, and separate
stable variables for stable prediction. However, they either
assume all predictors are binary or analyze based on linear
model, which are impractical in real scenarios.

In this paper, we focus on the problem of stable pre-
diction via separating causal and non-causal variables. In
the stable prediction problem [7], [8], all predictors X can
be separated into two categories, including causal (stable)
variables C and non-causal variables N, by whether it has
a direct causal link (causal effect) to the response variable Y
or not, that is X = {C,N}. For example, ears, noses, and
whiskers are casual variables of cats to identify whether
an image contains a cat or not, while the grass or other
backgrounds are non-causal variables to recognize the cat.
Then, the data generating process of the response Y can be
written as Y = f(X)+ϵ = f(C)+ϵ, where non-causal vari-
ables N should be independent with the response variable
Y conditional on the full sets of causal variables C. But they
might be spuriously correlated with either causal variables,
response variable or both because of sample selection bias in
data. For example, the variable “grass” would be spuriously
correlated with label “cat” and become a powerful predictor
if the training data has many images with “cat on the grass”.
Those spurious correlations between non-causal variables
and the response variable vary and are unstable across
datasets with different distributions, leading to instability
of prediction across unknown test data. Hence, to address
the stable prediction problem, one possible solution is to
screen out those non-causal variables and separate causal
variables for model training and prediction. However, in
practice, analysts always have no prior knowledge on which
variables are casual variables and which are non-causal
variables.
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Fig. 1: Structural causal model (SCM) in our problem. All
variables are categorized into three sets, including causal
variables C, which has a direct causal link1 to response
variable Y ; linked non-causal variables L, which have no
direct causal link to Y but might be causal linked with
causal variables C; and isolated non-causal variables I,
which have no direct causal link to Y and are also isolated
from (without causal link to) C and L. Under the sample
selection [11], [12] (indexed by variable S) between Y and
I, some isolated non-causal variables I might be highly
correlated with either response variable, causal variables,
or both2, leading to spurious correlation between Y and I,
and instability of prediction.

Variable/Feature selection plays a very important role
in machine learning. Traditional correlation based feature
selection methods utilize either the correlation criteria [13]
or mutual information criteria [14] without differentiating
causation from spurious correlation, leading to unstable pre-
diction across test data that are out of training distribution.
In the literature of causality, causal discovery and causal
estimation techniques can be adopted for causal variables
selection. PC [15], FCI [15] and CPC [16] are three of the
most prominent causal discovery methods based on condi-
tional independence (CI) tests, but their complexity grow
exponentially with the number of variables. Moreover, PC
method need assume causal sufficiency, i.e., the assumption
that all common causes of observed predictors are observed.
Causal inference [17], [18], [19] and treatment effect estima-
tion methods [20], [21], [22], [23] can approximately identify
causal variables via estimating the causal effect of each
variable, but they focused on binary predictors and required
the ignoriablity assumption that all causal variables are
observed.

Motivated by the practical scenarios that causal suf-
ficiency assumption is not met and some of the causal
variables are unobserved or unmeasured, in this paper, we
propose a novel CI test based non-causal variables screening
and causal variable separation method for stable prediction.
In our paper, we assume the non-causal variables N can
be separated into two sets: linked non-causal variables L,
which have no direct causal link to response variable Y
but might be causal linked with some causal variables; and

1. Variable “A” has a causal link to variable “B” refers to that “A” has
direct causal effect on “B”.

2. The distribution under sample selection is always conditioned on
sample selection variable S.

isolated non-causal variables I, which have no direct causal
link to Y and are also isolated from (without causal link to)
both C and L. Fig. 1 illustrates the structural causal model
(SCM) in our problem. Then, we theoretically prove that
one can screen out the isolated non-causal variable with a
single CI test per variable. Specifically, as shown in Fig. 1, if
we know a seed variable C0 is one of the causal variables,
then each isolated non-causal variable Ik should satisfy
that Ik ⊥⊥ C0 | Y , and each causal variable Ci should
satisfy that Ci ⊥̸⊥ C0 | Y . With those theoretical analyses,
we present a CI test based non-causal variables screening
method for stable prediction. At a first step, we apply our
non-causal variables screening method on synthetic data,
which leads to high precision on separation of isolated non-
causal variables. Screening out those isolated non-causal
variables help to reduce the spurious correlation in training
data and bring stability for model training and prediction.
In real-world applications, we also demonstrate that our
algorithm outperforms baseline algorithms in both causal
variable separation task and stable prediction task.

Comparing with previous CI based causal discovery
methods [15], [16], [24], [25], our method do not rely on
the assumption of causal sufficiency and remain unaffected
even some causal variables are unobserved. Moreover, our
algorithm screen out the isolated non-causal variables with
a single CI test per variable, scaling algorithmic complexity
from exponential to linear with the number of variables.
Comparing with sample based work on stable prediction [7],
[8], our method can be applied for continuous settings and
separate the causal variables without assumptions on re-
gression model. Our work is similar with a recent paper [26],
which also adopt CI for causal variable selection. But the
tailored problems are totally different in the following ways:
(i) [26] focused on detecting direct and indirect causes of a
response variable under i.i.d settings, while our algorithm
is designed for screening out a part of non-causal variables
under the biased settings with sample selection bias; (ii) [26]
is tailored for the problem in which a cause variable of each
candidate causal variable is known, while our algorithm
attempts to screen out those isolated non-causal variables by
leveraging a seed causal variable. Moreover, we applied our
method to address agnostic distribution shift issue between
training and unknown test data for stable prediction.

Our contributions are summarized as follows:

• We investigate the problem of non-causal variables
screening to improve the stability of prediction across
unknown test environments.

• We propose an elaborative but effective non-causal
variables screening algorithm based on conditional in-
dependence test for separating causal and non-causal
variables.

• We give theoretical analysis on our proposed algorithm
and proved that our algorithm can precisely screen out
the set of isolated non-causal features and select causal
features for stable prediction.

• Extensive experiments on both synthetic and real world
datasets demonstrate the superior performance of our
proposed algorithms on causal features selection and
stable prediction.

The rest of this paper is organized as follows. Section
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2 reviews the related work. Section 3 gives the notations
and formulates our problem. The details of our proposed
algorithm for non-causal features screening and stable pre-
diction are introduced in Section 4. Experimental results
and analyses are reported in Section 5. Finally, Section 6
concludes the paper.

2 RELATED WORK

There is a significant body on research related to our prob-
lem, which we categorize into three groups: correlation
based feature selection, causation based feature selection
and stable/invariant prediction.

Correlation based features selection: The focus of fea-
ture selection is to select a subset of features from the input
which can efficiently describe the input data while reducing
effects from irrelevant and noise features and still provide
good prediction results [27]. Traditional feature selection
method can be clustered into three categories: filter methods
[14], [28], [29], wrapper methods [30], [31] and embedded
methods [32], [33]. Here, we focus on filter methods, which
use features ranking techniques as criteria for features se-
lection by ordering, where correlation criteria [28], [34] and
mutual information criteria [14], [29], [35] are often used
to describe the dependency, relevancy and redundancy of a
feature to the data or the outcome variable for features selec-
tion. Traditional correlation based feature selection methods
are widely used and achieved good performance in many
applications. But their performance cannot be guaranteed
in non-stationary environments, where the correlations in
test data might be very different with the one on training.

Causation based features selection: Both causal dis-
cover methods and treatment effect estimation methods
in causal inference literature can be employed for causal
features selection. By causal discover methods [15], [25],
[36], one can identify whether a predictor is an cause of
outcome variable or not. But the complexity of these algo-
rithms grows exponentially as the dimension of features.
With methods for treatment effect estimation [20], [21], [22],
[23], one can estimate the causal effect of each predictor
on outcome variable for causal features selection, but these
methods required that all the causal features are observed.

Our work is very similar with a recent paper [26], which
is also adopts conditional independence test for causal fea-
ture selection. But the settings and main assumption are
totally different: (i) the main assumption in [26] is that
they can observe a cause for each possible causal feature
of outcome variable, while our method suppose that the
causal features are independent with non-causal features,
and (ii) the conditional variable in [26] is a predictor, while
our method is conditional on outcome variable. Comparing
with [26], our method has the following advantages: (i) our
method can be applied for stable prediction under non-
i.i.d settings; (ii) the causal sufficiency assumption is not
necessary for our algorithm; and (iii) our algorithm is not
affected by the unobserved causal variables, but missing
some causal variables would decrease the performance of
predictive model on prediction.

Stable/Invariant prediction: Many methods have been
proposed from different aspects for enhancing the stability
and robustness of AI, such as artificial general intelligent

[37], adversarial learning [38], [39], [40], and distributional
robustness optimization [41]. In this paper, we focus on
stable/invariant prediction across unknown data. Recently,
some works have been proposed to address the stable pre-
diction problem by either invariant component learning or
causation recovery. Kuang et al. [7], [8] defined the problem
of stable prediction, and proposed novel sample reweight-
ing methods for isolating the effect of each predictor, which
help to recover the causation between predictors and out-
come variable, and finally identify the causal features for
stable prediction. To achieve uniformly error on any data
point, Shen et al. [42] proposed a sample reweighted decor-
relation operator to decorrelate the predictors for stable
prediction. Peters et al. [5] proposed invariant causal pre-
diction algorithm to identify causal features by exploring
the invariance of the conditional distribution of outcome
variable across multiple training data. Domain generaliza-
tion [1] methods estimate an invariant representation of data
by minimizing the dissimilarity among multiple training
data. These methods are facing the challenges from either
non-convex optimization, high dimensional predictors, un-
accepted complexity, or strong prior knowledge.

Out-of-distribution (OOD) Generalization: Improving
the generalization capability of a learning model is a long-
standing problem ranging from statistical analysis to ma-
chine learning area (e.g., Distributionally robust optimiza-
tion (DRO), techniques such as Dropout and Mixup, and
settings with explicit distributional shift such as Domain
adaptation and Domain Generalization, and heterogeneous
risk minimization) [43], [44], [45], [46]. Original attempt to
OOD generalization can be attributed to the robust machine
learning, which aims to improve the model performance
towards the outliers or hard samples. Then researchers
are not satisfied to deal with hard samples or perturbed
samples: they turn to force the learning model generalize
well on “hard” or shifted distribution, which results in the
propose of transfer learning, domain generalization, and
OOD generalization.

Retraining model might be a possible solution of OOD
generalization in a few cases, while it is not practical for
the most of real-world scenes. Retaining model requires the
knowledge of new testing data to fine-tune the pretrained
model for address the problem of OOD generalization. In
practice, however, the bottleneck for retraining the model
is the cost to collect and annotate the new test dataset
(sometimes data for retrain is even not accessible) and the
computational resource (“high performance computing and
accelerators (GPU, FPGA etc)”) for quickly fine-tune.

3 PROBLEM AND NOTATIONS

Let X denote the space of observed features and Y denote
the space of response variable. We define an environment
to be a joint distribution PXY on X × Y , and let E denote
the set of all environments. In each environment e ∈ E , the
dataset De = (Xe, Y e) is sampled from the corresponding
distribution P e

XY , where Xe ∈ X are predictor variables
and Y e ∈ Y is a response variable. Let P e

XY denote the joint
distribution of features and outcomes on (X, Y ) in environ-
ment e. The joint distribution of features and outcomes on
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(X, Y ) can vary across environments: i.e., P e
XY ̸= P e′

XY for
e, e′ ∈ E .

In this paper, we consider a setting where a researcher
has a single data set (data from one environment), and
wishes to train a model that can then be applied to other
environments. This type of problem might arise when a
firm creates an algorithm that is then provided to other
organizations to apply, for example, medical researchers
might train a model and incorporate it in a software product
that is used by a range of hospitals; academics might build a
prediction model that is applied by governments in different
locations. The researcher may not have access to the end
user’s data for confidentiality reasons. The problem can be
formalized as a stable prediction problem [7] as follows:

Problem 1. (Stable Prediction). Given one training environment
e ∈ E with dataset De = {Xe, Y e}, the task is to learn a
predictive model that can stably predict across unknown test
environments E .

In this problem, let X = {C,N}, we define C as causal
variables, and N as non-causal variables with the following
assumption [7]:

Assumption 1. There exists a stable probability function P (y|c)
such that for all environment e ∈ E , P (Y e = y|Xe = x) =
P (Y e = y|Ce = c,Ne = n) = P (Y e = y|Ce = c) =
P (y|c).

Assumption 1 illuminates that the non-causal variables
N do not affect the response variable during the data
generation processing (i.e., Y = f(X) + ϵ = f(C) + ϵ),
but it might be spuriously correlated with either response
variable, causal variables, or both since sample selection
bias problem as shown in Fig. 1. These spurious correla-
tions might vary across environments. Hence, to make a
stable prediction, one should guarantee the prediction only
depending on the causal variables. Thus, one can address
the stable prediction problem by separating causal variables
C and learning the stable function P (y|c). But, in practice,
we have no prior knowledge on which variables are causal
and which are non-causal.

In this work, we further divide the non-causal variables,
which have no direct causal link to Y , into two categories
as shown in Figure 1: linked non-causal variables L, which
might be causal linked with causal variables C; and isolated
non-causal variables I, which are isolated from (without
causal link to) both C and L. Here, we focus on screening
out those isolated non-causal variables, hence reduce part
of spurious correlations in training data and improving the
stability of prediction.
Notations. In our paper, n refers to the sample size, and p
is the dimensions of variables. For any vector v ∈ Rp×1,
let ∥v∥22 =

∑p
i=1 v

2
i , and ∥v∥1 =

∑p
i=1 |vi|. For any matrix

A ∈ Rn×p (e.g., X, C, N, I, L in our problem), we let Aj

represent the jth variable in A.

4 METHODS

In this section, we first give the background of causal graph,
then introduce the details of isolated non-causal variable
screening algorithm with single conditional independence
(CI) test per feature for stable prediction.

4.1 Background on Causal Graph
Firstly, we revisit key concepts and theorems related to d-
separation and CI in causal graph.

Let G = {V,E} represents a causal directed acyclic
graph (DAG) with nodes V and edges E, where a node
denotes a variable and an edge represents the direct depen-
dence or causal direction between two variables. In a DAG,
Vi → Vj refers to that Vi is a cause of Vj and Vj is an
effect of Vi.

Definition 1 (d-separation [18]). In a DAG G, a path π is said
to be d-separated by a set of nodes Z if and only if (i) π contains
a chain Vi → Vk → Vj or a fork Vi ← Vk → Vj such
that the middle node Vk is in Z, or (ii) π contains a collider
Vi → Vk ← Vj such that the middle node Vk is not in Z and
such that no descendant of Vk is in Z.

Definition 2 (Conditional Independence). Given two distinct
variables Vi,Vj ∈ V are said to be conditionally independent
given a subset of variables Z ⊆ V \ {Vi,Vj} (i.e. Vi ⊥
⊥ Vj |Z), if and only if P (Vi,Vj |Z) = P (Vi|Z)P (Vj |Z).
Otherwise, Vi and Vj are conditionally dependent given Z (i.e.
Vi ⊥̸⊥ Vj |Z)).

The connection between d-separation and CI is estab-
lished through the following lemma:

Lemma 1 (Probabilistic Implications of d-Separation [18],
[47]). If variables Vi and Vj are d-separated by Z in a DAG
G, then Vi is independent of Vj conditional on Z in every
distribution compatible with the DAG G. Conversely, if Vi and
Vj are not d-separated by Z in a DAG G, then Vi and Vj are
dependent conditional on Z in at least one distribution compatible
with G.

4.2 Isolated Non-Causal Variables Screening
Based on lemma 1, in this paper, we propose an elaborative
but effective algorithm to screen out the isolated non-causal
variables by combining the mechanisms of d-separation and
causality with the following assumption.

Assumption 2. We have prior knowledge on one causal variable
as seed variable. Formally, we know C0 ∈ C.

Under assumption 2, we have the following theorem to
support for precisely screening out those isolated non-causal
variables and reduce the spurious correlation in training
data, hence improving the stability of model training and
prediction across unknown test data.

Theorem 1. Given a causal variable C0, observed variables X
and response variable Y , and assuming 1 and 2, then, for each
causal variable Ci ∈ C, we have Ci ⊥̸⊥ C0 | Y ; and for each
isolated non-causal variable Ik ∈ I, we have Ik ⊥⊥ C0 | Y .

Proof. Assumption 1 implies that non-causal variables N =
{L, I} are not direct causes of response Y , but causal vari-
ables C are the direct causes. Hence, in our causal DAG,
there exists a direct edge from each causal variable Ci to
response Y , but N have no any edges that directly point
to Y . With the definition of linked and isolated non-causal
variables, we know the linked non-causal variables L might
be causally linked with causal variables, whiling the isolated
non-causal variables I have no causal link with both C
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Fig. 2: Causal paths between a known causal variable C0

and other variables, including isolated non-causal variable
Ik and other causal variable Ci. The dash line between
two variables refers to the causal path between them is
unknown.

and L. The inner causal structure in each variables set (i.e.,
C, L, and I) might be very complex and unknown. With
considering the sample selection bias is generated based on
the response Y and part of isolated non-causal variables I,
the structural causal model (SCM) in our problem is shown
in Figure 1.

From Figure 1, the path between the seed causal variable
C0 and any isolated non-causal variable Ik can be repre-
sented as Figure 2a, where the causal links between Ij and
Ik are unknown, could be very complex or could be that Ij
is exactly Ik if sample selection is based on Ik and Y . With
the definition of d-separation, we have that C0 and Ik are d-
separated by variable Y . Hence, Ik ⊥⊥ C0 | Y for any Ik ∈ I
guaranteed by the lemma 1.

On the other hand, the path between the seed causal
variable C0 and any other causal variable Ci can be repre-
sented as Fig. 2b, where the causal links between C0 and Ci

are unknown. Similarity, with the definition of d-separation,
we know that the response variable Y is a collider and
cannot d-separate C0 and Ci. Therefore, with the lemma
1, we have Ci ⊥̸⊥ C0 | Y for any Ci ∈ C.

Overall, we can screen out the isolated non-causal vari-
ables from the causal variables by a single CI test per
variable.

Based on theorem 1, we know that a very simple condi-
tional test can help to screen out the isolated non-causal
variables since the p-value of CI test between I and C0

conditional on Y would be significantly higher than the one
of causal variables C. Thus, we propose a causal variables
selection algorithm via one single CI test per variable to
screen out the isolated non-causal variables. The details
of our algorithm are summarized in Algorithm 1. With
screening out the isolated non-causal variables and selecting
top-k causal variables, we can learn a more stable predictive
model for prediction across unknown test data.

Remark 1. From the proof of theorem 1, we know that our
algorithm only need a single CI test of that variable and a
known causal variable conditional on the response variable, with
no need to know the other causal variables or common causes
of observed variables. Then, we conclude that (i) the causal
sufficiency assumption is not necessary for our algorithm; and (ii)
our algorithm is not affected by the unobserved causal variables,
but missing some causal variables would decrease the performance
of predictive model on prediction.

4.3 Discussion and Analysis
Complexity Analysis. Note that our algorithm requires only
a single CI test per variable. Therefore, it speeds up the

causal variables separation as it scales almost linearly with
the number of variables. Specifically, the time complexity of
the proposed algorithm (see Algorithm 1) consists of two
main components: the for loop (statements 1-3 in Algo-
rithm 1) for calculating p-value of CI test on each variable,
and ranking the p-value (statement 4 in Algorithm 1) of
all variables. From the calculation of p-value of CI test,
we know the complexity of each single CI test should be
related with the number of sample size. Different CI test
methods can be applied in our algorithm for causal variable
selection, and different CI test methods might be slightly
different on the time complexity. Therefore, we use t(n) to
denote the complexity of a single CI test in the statement
2 in our algorithm 1, where n refers to the number of
sample size. Then, the for loop (statements 1-3) in algorithm
1 requires the complexity of O(t(n)p), where p refers to
the dimension/number of variables. The ranking/sorting
procedure (statement 4) in algorithm 1 requires O(p log p).
Overall, the time complexity of the proposed algorithm 1
is O(t(n)p) +O(p log p). More details about the complexity
and analysis on a single CI test can be found in [48], [49].

Discussions on assumptions. Assumption 1 refers to
that the underlying predictive mechanism is invariant
across environments, which is the basic assumption for
causal variables identification and stable/invariant predic-
tion [5], [7]. As for assumption 2, we think it is reasonable
and acceptable in real applications. For example, if we want
to predict the crime rate, we could know the income is one
causal variable. Moreover, one can identify a causal variable
as the seed variable by estimating its causal effect [20], [21],
[22], [23]. In this paper, we employ causal effect estimator
[21] to identify one causal variable as seed variable without
assumption 2.

Discussion on non-causal variables. Throughout our
paper, we indeed achieves a trade-off between the compu-
tational feasibility and the complexity of causal structure,
by making a mild assumption that no causal relationship
exists between linked non-causal variables L and the sample
selection S. With such an assumption, the feasibility of
computation can be promoted towards some specific real-
data with appropriate prior knowledge. Considering the
general cases without any constrains on causal relationship,
we require exponential skeleton search methods (e.g., PC,
FCI) to first recover the total causal structure and make fur-
ther inference. However, such methods designed in general
cases requires strict assumptions (e.g., causal sufficiency)
and are sensible towards high-dimensional data due to the
large number of statistical CI tests. By the assumption on
independence between L and S, our method could get rid
of the untestable causal sufficiency assumption and only
require linear number of CI tests with respect to the number
of features. On the other hand, there indeed exists realistic
cases which mirror our assumption. An classical example is
presented in the field of non-invasive brain stimulation [26],
where the independence between biased non-causal vari-
ables and causal variables can be provided by prior. On the
contrary, once this assumption is violated, we could not con-
clude that Ik ⊥⊥ C0 | Y , as some path through C between
Ik and C0 cannot be blocked by only conditioning on Y.
In the empirical results, we demonstrate the effectiveness of
the proposed algorithm even this assumption is violated.
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Algorithm 1 top-k Causal Variables Selection

Require: X ∈ Rn×p, Y ∈ Rn, C0 and parameter k
Ensure: top-k casual variables

1: for each variable Xi ∈ X do
2: Calculate p-value of CI test: pvi = CI-test(Xi ⊥⊥ C0 |

Y )
3: end for
4: Xranking = Ranking(X,pv) ▷ Ranking Xi ∈ X by

their p-value pvi in ascending order
5: return top-k ranked variables in Xranking

Discussions on the spurious correlation. Under the
SCM shown in Fig. 1, there are many kinds of spurious
correlations between non-causal variables and response
variable such as spurious correlation between L and Y from
confounding bias, and spurious correlation from sample
selection between I and Y (also can be from sample selection
between L and Y ). In this paper, we focus on addressing
the spurious correlation from sample selection between I
and Y with theoretical guarantee. Although it is only a
part of spurious correlation in data, removing it can still
improve the stability of prediction as we will demonstrate
in experiments. In the future, we will try to address other
spurious correlations.

5 EXPERIMENTS

In this section, we evaluate the performance of our algo-
rithm on both synthetic and real world datasets.

5.1 Baselines

We adopt the following variable selection methods as base-
lines. (i) Correlation based methods, including minimal
Redundancy Maximal Relevance (mRMR) [14], Random
Forest (RF) [34] and LASSO [28], they would be affected
by the spurious correlation between non-causal variable
and the response variable, and select non-causal variables
for prediction. (ii) Causation based methods, including
PC-simple1 [24] and causal effect (CE) estimator [20], [21],
[22], [23], they need to assume all causal variables are ob-
served, moreover, PC-simple requires causal sufficiency and
with curse of dimensionality. (iii) Stable/Invariant learning
based methods, including invariant causal prediction (ICP)2

[5] and global balancing algorithm (GBA) [7], [8], [9], ICP
need multiple training environments for reveal causation
and GBA requires tremendous training data for global sam-
ple weighting.

We do not compare with a recent causal variable se-
lection method [26], since it requires the knowledge of a
cause variable of each candidate causal variable, which is
not applicable in our problem.

1. Previous CI based methods either need observe all causal vari-
ables, or assume causal sufficiency, moreover, with curse of dimen-
sionality. So, we only compare with PC-simple, a prominent CI based
method.

2. ICP method cannot be applied for variables ranking, but selecting a
subset of variables for prediction, where the size of that subset variables
is determined by its algorithm. Hence, the experimental results of ICP
reported in this paper is based on its unique subset of selected variables.

In our algorithm, we employ causal effect estimator [21]
to identify one causal variable as seed variable without
assumption 2. Then, we execute CI test with the bnlearn
method [50], denoted as Our+BNCI, and the RCIT [51]
method, denoted as Our+RCIT. More specifically, the BNCI-
CI test algorithm we used in this paper is derived from the
information-theoretical approach with mutual information,
which is proportional to the log-likelihood ratio test G2 [50].
Meanwhile, the RCIT method for fast CI testing is based
on random Fourier Operator Approximation, which aims to
accelerate the computation of large-size kernel matrix. Based
on the selected variables from each algorithm, we apply a
linear model3 for prediction to check their stability across
unknown test data.

5.2 Evaluation Metrics

In this paper, we have two main tasks, including causal
feature separation/selection and stable prediction with the
selected causal variables.

To evaluate the performance of causal variable separa-
tion/selection, we use precision@k and ranking index of
unstable non-causal variable as evaluation metrics. Preci-
sion@k refers to the proportion of top-k selected variables
that are hitting the true causal variables set as follows:

Precision@k =
|{xi|xi ∈ Ĉ, index(xi) < k, xi ∈ C}|

k
,

where Ĉ and C refer to the set of selected causal variables
and true causal variables, respectively. index(xi) is the
ranking index of variable xi in the selected variables Ĉ.

To evaluate the stable prediction with the selected causal
variables, similar to [7], we also adopt Average Error and
Stability Error to measure the performance of stable predic-
tion with the following definition:

Average Error =
1

|E|
∑
e∈E

RMSE(De),

Stability Error =
√

1
|E|−1

∑
e∈E

(RMSE(De)−Average Error)2,

where RMSE(De) represents the Root Mean Square Error
on dataset De with following definition:

RMSE =

√√√√ 1

n

n∑
i=1

(Ŷi − Yi)2, (1)

where Ŷi and Yi refer to the predicted and true outcome of
sample i, and n is the sample size.

5.3 Experiments on Synthetic Data

In this section, we check the performance of our algorithm
with extensive simulations.

3. For simplification, we use a linear model to evaluate the selected
variables, other models can also be applied.
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5.3.1 Dataset
To generate the synthetic datasets, we consider the sam-
ple size n = 2000 and dimension of observed vari-
ables p = {10, 20, 40, 80}. We first generate the ob-
served variables X = {C,L, I} based on our SCM
as shown in Fig. 1. Specifically, we generate X =
{C1, · · · ,CpC

,L1, · · · ,LpL
, I1, · · · , IpI

} with the help of
auxiliary variables ZC and ZI with independent Gaussian
distributions as:

ZC1, · · · ,ZCp
iid∼ N (0, 1);

Ci = 0.8 ∗ ZCi + 0.2 ∗ ZCi+1, i = 1, 2, · · · , pC
Lj = 0.1 ∗Cj + 0.3 ∗Cj+1 +N (0, 1), j = 1, 2, · · · , pL
ZI1, · · · ,ZIp

iid∼ N (0, 1);

Ik = 0.8 ∗ ZIk + 0.2 ∗ ZIk+1, k = 1, 2, · · · , pI ,

where the number of causal variables pC = 0.3 ∗ p, number
of linked non-causal variables pL = 0.3 ∗ p and the number
of isolated non-causal variables pI = 0.4 ∗ p. Ci, Lj and Ik
represent the ith, jth and kth variable in C, L and I, and
i, j, k are given by i = mod(i, pC), j = mod(j, pL), k =
mod(k, pI), respectively. The function mod(x, y) returns the
modulus after division of x by y.

Then, we generate the response variable Y from a non-
linear function as:

Y =

pC∑
i=1

αi ·Ci +

pC∑
j=1

βj · eCjCj+1Cj+2 + ε,

where αi = (−1)i · pC/i, βj = I(mod(j, 3) ≡ 1) and
ε = N (0, 0.3). It is also noteworthy that the index of Cj

for generating Y is given by j = mod(j, pC). The I(·) is
the indicator function and function mod(x, y) returns the
modulus after division of x by y.

5.3.2 Generating Environments via Biased Sample Selec-
tion
From the generation of Y , we know that Y is only affected
by the causal variables C, and independent with the non-
causal variables N = {L, I}. In real applications, however,
some non-causal variables might be spuriously correlated
with Y since sample selection bias as shown in Fig. 1, and
their correlation might vary across datasets. To check the
stability of algorithms under that practical setting, we gen-
erate a set of environments, each with a stable probability
P (Y |C), but a distinct spuriously correlation P (Y |N). For
simplification, we only set one isolated non-causal variable
IpI as the unstable non-causal variable, and change its spuri-
ously correlation P (Y |IpI) across environments.

Specifically, we vary P (Y |IpI) via biased sample selec-
tion with a bias rate r ∈ [−3,−1) ∪ (1, 3] based on IpI and
Y as shown in Fig. 1. For each sample, we select it with
probability Pr = |r|−5∗Di , where Di = |Y − sign(r) ∗ IpI |.
If r > 0, sign(r) = 1; otherwise, sign(r) = −1.

Note that r > 1 corresponds to positive spurious correla-
tion between Y and IpI , while r < −1 refers to the negative
spurious correlation between Y and IpI . The higher value
of |r|, the stronger correlation between IpI and Y . Different
value of r refers to different environments. All methods are
trained with rtrain = 2.0, but tested across environments
with different rtest ∈ [−3,−1) ∪ (1, 3]. To screen off the

TABLE 1: Results of precision@k, where k equals the
number of stable variables and linked non-causal features,
namely k = pC + pL = 0.6 ∗ p. ICP method cannot be
applied for selecting variable with specific size. Results are
averaged on 50 generated synthetic datasets for each p with
different random seeds. We denote the best and the second
best method with bold and underscore, respectively.

Dimension p=10 p=20 p=40 p=80
mRMR 0.500 0.583 0.586 0.598

RF 0.640 0.668 0.594 0.592
LASSO 0.693 0.706 0.622 0.601

PC-simple 0.663 0.636 0.598 0.616
CE 0.643 0.688 0.689 0.665
ICP - - - -

GBA 0.640 0.660 0.655 0.669
Our+BNCI 0.910 0.827 0.774 0.713
Our+RCIT 0.900 0.820 0.767 0.703

TABLE 2: Ranking index of the unstable non-causal variable
IpI , where “Y” denotes that the unstable non-causal variable
is in the selected subset in ICP method. Results are averaged
on 50 generated synthetic datasets for each p with different
random seeds. we denote the best and the second best
method with bold and underscore, respectively.

Dimension p=10 p=20 p=40 p=80
mRMR 1 1 1 1

RF 1 1 1 1
LASSO 2.42 1 1 1

PC-simple 1 1 1 1
CE 3.48 2.08 2.32 2.28
ICP Y Y Y Y

GBA 3.54 3.5 2.06 1.24
Our+BNCI 8.34 14.64 27.92 53.48
Our+RCIT 8.2 14.7 28.04 49.24

randomness, we generate 50 datasets for each number of
dimension p with different random seeds and report their
average results.

5.3.3 Results on Causal Variables Separation/Selection
We report the results on causal variable selection from
two aspects, including the ranking of causal variable with
precision@k in Tab.1 and ranking of unstable non-causal
variable in Tab. 2. The ranking of stable variables determines
the average error of prediction across environments, the
closer to 1 of precision@k, the better; while the ranking of
unstable non-causal variable determines the stability error
of prediction across environments, the lower ranking, the
better. From Tab. 1 and 2, we conclude that: (i) Traditional
correlation based variables selection methods, including
mRMR, Random Forest and LASSO cannot precisely select
the stable variables (with lower precision@k) and rank the
unstable non-causal variable with a higher ranking. The
main reason is that the spurious correlation from non-causal
variable IpI is more significant than causation from causal
variables under the sample selection bias. (ii) The perfor-
mance of PC-simple is similar to correlation based method,
since it’s hard to search the optimal solution for PC-simple
via naively random search, moreover, it relies on the causal
sufficiency assumption and needs to observed all causal
variables. (iii) The performance of causation based methods,
including CE and GBA, is better than those correlation
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TABLE 3: Results of Average Error and Stability Error with different dimension p. For each performance under different
p, we denote the best and the second best method with bold and underscore, respectively. Results are averaged on 50
generated synthetic datasets for each p with different random seeds.

Dimension p=10 p=20 p=40 p=80
Metrics Average Error Stability Error Average Error Stability Error Average Error Stability Error Average Error Stability Error
mRMR 1.055 0.540 1.144 0.602 1.175 0.621 1.183 0.625

RF 0.988 0.501 1.103 0.575 1.170 0.618 1.184 0.626
LASSO 0.988 0.501 1.056 0.545 1.165 0.614 1.184 0.626

PC-simple 1.020 0.522 1.125 0.590 1.173 0.620 1.183 0.625
CE 0.662 0.230 1.084 0.559 1.150 0.604 1.176 0.621
ICP 0.697 0.319 1.062 0.547 1.185 0.630 1.167 0.573

GBA 0.611 0.191 1.034 0.520 1.135 0.595 1.174 0.620
Our+BNCI 0.410 0.026 0.827 0.097 0.942 0.136 1.030 0.200
Our+RCIT 0.512 0.042 0.820 0.096 0.949 0.138 1.040 0.247
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Fig. 3: Prediction results across unknown test data with
n = 2000, p = 20. All methods are trained with rtrain = 2.0,
but tested across test environments with different rtest ∈
[−3,−1) ∪ (1, 3]. Results are averaged on 50 generated
synthetic datasets for each p with different random seeds.

based methods with higher precision@k and lower ranking
of unstable non-causal variable. Since by revealing part
of causations among variables, they can reduce spurious
correlations in training data. But their performances are still
worse than our methods in high dimensional settings, since
they need enough training data for a better sample rewight-
ing, moreover, they need to observe all causal variables. (iv)
Our methods achieve the best performance for the selection
of stable variables (with highest precision@k) and screening
of unstable non-causal variables (with lowest ranking of
unstable non-causal variable).

5.3.4 Results on Stable Prediction.
With the variable ranking list from each algorithm, we
select top-k ranked variables to evaluate their performances
on stable prediction across unknown test environments,
where k is set as the number of causal variables (i.e.,
k = pC = 0.3∗p. Different k is with similar results, here, we
only report the results when k = pC for saving space). Fig.
3 and Tab. 3 demonstrate the experimental results on stable
prediction. From Fig. 3, we find that (i) the performance of
our methods are worse than baselines when rtest > 1.5. This
is because the spurious correlation between unstable non-
causal variable and the response variable are highly similar
between training data (rtrain = 2.0) and test data when
rtest > 1.5, and that spurious correlation can be exploited
for improving predictive performance; (ii) the performance
of our methods are much better than baseline when rtest <
−1.3, where that spurious correlation are totaly different
between training (rtrain = 2.0) and test data rtest < −1.3,

leading to under-performance of baselines on prediction;
(iii) our methods achieve the most stable prediction (with
smallest Average Error and Stability Error) across all test
data, since our algorithm can precisely select the causal
variables and achieve the lowest ranking of unstable non-
causal variable as reported in Tab.1 and Tab. 2.

To clearly demonstrate the advantages of our algorithm
on stable prediction, we report the detail results under
different synthetic settings in Tab. 3. From the results, we
can conclude that our algorithm can make stable predic-
tion across unknown environments via non-causal variables
screening and causal variables selection.

5.4 Experiments on Real-World Data

To evaluate the performance of our algorithm in real-
world datasets, we apply it to a Parkinson’s telemonitoring
dataset4 and a House Pricing prediction dataset 5.

5.4.1 Parkinson’s Dataset.

Parkinson’s dataset was wildly used for the problem of
domain generalization [1], [52] and other regression tasks
[53]. This dataset consists of biomedical voice measurements
from 42 patients with early-stage Parkinson’s disease re-
cruited for a six-month trial of a telemonitoring device for
remote symptom progression monitoring. For each patient,
there are about 200 recordings, which were automatically
recorded in the patients’ home. The task is to predict the
clinician’s motor UPDRS scoring of Parkinson’s disease
symptoms from patients’ features, including their age, gen-
der, test time and many other measures.

5.4.2 Experimental Settings on Parkinson’s dataset.

In our experiments, we set the motor UPDRS scoring as the
response variables Y . To test the stability of all methods, we
generate different environments by biased data separation
based on different patients. Specifically, we separate the
whole 42 patients into 4 patients’ groups by their order in
data, including group 1 (G1) with recordings from 21 pa-
tients6, and other three groups (G2, G3 and G4) are all with
recordings from different 7 patients, where the different

4. https://archive.ics.uci.edu/ml/datasets/parkinsons+
telemonitoring

5. https://www.kaggle.com/c/house-prices-advanced-regression-
techniques

6. Data in group 1 would be continuous separate into training data
and test data by patients id, hence, we set 21 patients in group 1.
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Fig. 4: Results of RMSE with top-k selected variables on different environments. All algorithms are trained with data from
environment G1, but tested on the data from each environment. When the test environment is different from the training
one (e.g., G2, G3, and G4), our algorithm achieves better performance than baselines.
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Fig. 6: Prediction across patients’ group with the selected
top-7 features for each model. Models are trained on
datasets where patients are from “G1”, but tested on
datasets across patients’ groups.

groups correspond to different environments7. Considering
a practical setting where a researcher has a single data set
and wishes to train a model that can then be applied to other
environments, in our experiments, we trained all models
with data from environment G1, but tested them on all 4
groups.

7. We separate the data by patients id, different patients would have
different features distribution and 7 patients in each group cannot
guarantee fully randomness, leading to different environments. The
best way is to consider each patient as a environment, but it make
the sample size of each environment is too small. Hence, we set each 7
patients as an environment.

5.4.3 Experimental Results on Parkinson’s dataset.

Before reporting the results of causal feature selection and
prediction, we compute the distribution discrepancy8 be-
tween the training and test environments as shown in Fig.
5. From this result, we can find that the G1 test environment
is with very small discrepancy (0.039) with the training en-
vironments, but G2, G3 and G4 are with heavy discrepancy
with the training environment. Figure 4 demonstrates the
experimental results of RMSE with top-k ranked variables
with 10 times independent experiments by independent re-
selections on test data9. Figure 4a shows that correlation
based methods (LASSO, mRMR and RF) outperform causa-
tion based methods (GBA and our method), this is because
the training and test have the similar distribution (small
discrepancy) on environment G1, hence the spurious corre-
lation between non-causal variables and response variable
can bring positive power for prediction. The main reason
might be that the test environment has small discrepancy
with training one, thus the spurious correlations might be
similar on the training and test data. Hence, the correlation
based methods can exploit those spurious correlations to
improve their prediction on test data, while the causation
based methods reduced those spurious correlation thus
achieved poor performance. Moreover, we find ICP method
achieves good performance in environment G1 since it
cannot differentiate the spurious correlation from only one
training environment. Fig. 4b, 4c and 4d demonstrate that
causation based methods are better than correlation based
methods when the test distributions are out of the training
one, and our method, especially the method “our+RCIT”,
can almost achieve the best performance. The main reason
is that spurious correlation on training could be different
on testing, while causation based methods could discover
causal variables for more stable prediction across environ-
ments, and our method performs the best on causal vari-
ables ranking and separation. In addition, we observed that
in non-i.i.d settings10, the prediction performance might se-
riously decrease as inputting more selected variables, since

8. Here, we compute the distribution discrepancy between two envi-
ronments by directly comparing their difference over the mean value
of variables.

9. The variance of RMSE over 10 times independent experiments is
about 0.1-0.2 for all algorithms, and we do not plot the variance in
Figure 4 for easy reading.

10. The test distribution is different from the training one.
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some selected variables could be spuriously correlated with
the response and unstable across environments.

Fig. 6 shows the prediction results across patients’
groups with the top-7 features from each method. From
the results, we can have the similar observations that (i)
correlation based methods achieve better performance than
causation based method on G1 where training and test data
have similar or even the same distribution; (ii) causation
based methods (i.e., GBA) obtain better performance on G2,
G3 and G4 where the test distribution might be different
from the on on training; (iii) our methods achieve the best
performance when the test data is from different patients’
group of the training.

Moreover, by combining Fig. 4 and Fig. 5, we can find
that as the increasing of the discrepancy between test and
training environments, the relative improvement of our
method is more significant (i.e., the relative improvements
of our method on G4 is more significant than G3 and G2 as
shown in Fig. 6).

5.4.4 House Pricing Dataset.
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(b) Stability Error on House Pricing

Fig. 7: RMSE and stability error of House price prediction
across groups with the selected top-6 features for each
model. Models are trained on dataset where the built year
of samples falls in [1960,1979] (“G4”), but tested on datasets
across other year intervals.

House pricing dataste is a real world regression dataset
(Kaggle) of house sales prices from King County, USA,
which includes the houses sold between May 2014 and
May 2015. We aim to predict the outcome variable as the
transaction price of the house, with each sample containing
16 predictive variables (e.g., the built year of the house,
number of bedrooms, number of bathrooms, and square
footage of home etc).

5.4.5 Experimental Settings on House Pricing dataset.

In our experiments, we set the transaction price of the house
as the response variables Y . Similar to aforementioned
approach in Parkinson’s dataset, we create heterogeneous
environments via biased data separation. More specifically,
we split the total dataset into 6 groups/periods with each
group approximately covering over a time span of two
decades on the built year variable. Consequently, we refer
the 6 generated environments as G1 to G6, and we trained
all models on samples from environment G4 with built year
falling in [1960,1979] (”G4”), but tested them on all 6 groups.

5.4.6 Experimental Results on House Pricing dataset.

We first report the prediction results on RMSE and stabil-
ity error with top-6 features for each method in Fig. 7a
and 7b (Prediction results with other number of top features
are omitted since the prediction fluctuation comparing to
their magnitude is small). Specifically, Fig. 7a explicitly
shows that under Out-of-distribution setting, our method
dominates others, especially when the testing distribution
shift far away from training environment (G4). The com-
parison on the stability performance also coincides with
our motivation: selection causal variables promotes stable
prediction towards varying testing environments.

5.5 Discussion on the experimental results

Importantly, our experiments indicates an interesting phe-
nomenon that prediction performance by causal predictors
is not as good as some naive regression methods (e.g.,
LASSO, CE) when the distribution discrepancy between
training and testing environments is small, which is shown
in Fig. 3a, Fig 7a and Fig 6. The underlying reason re-
flects that causal prediction achieves trade-off between
i.i.d performance and Out-of-distribution (OOD) perfor-
mance (which is suitable for any OOD prediction meth-
ods). In other words, causal prediction is “stable but con-
servative”, which indeed sacrifices some i.i.d performance
as the compensation for promotion on OOD performance.
More specifically, if the training distribution Pte is i.i.d or
very close to testing distribution Ptr, then straightforward
prediction will outperform causal prediction, as the bias
itself is informative for i.i.d prediction. In such cases, biased
estimator (naive prediction) overfits on biased data and
of course outperforms other methods. In contrast, most
realistic cases indicate that Pte shifts away from Ptr and
the causal prediction methods could dominate non-causal
estimators. This is achieved by using stable causal features
for prediction, where the unstable bias is eliminated during
causal feature selection. For the theoretical guarantee behind
this phenomenon, we refer readers to one recent paper [54],
which characterizes this phenomenon using worst-case op-
timization.

5.6 Robustness Verification

It is noteworthy that our method has to rely on the structural
assumption that the causal and non-causal features should
be marginally independent. However, we also note that
fact that every robust/OOD method have their own prior
assumption: there is no method can generalize on arbi-
trary latent data for testing. For instance, the well-known
Invariant Risk Minimization (IRM) [55] assumes a linear
classifier on top of the representations with enough number
of training domains. Meanwhile, the long-standing problem
named Distributionally Robust Optimization (DRO) [45]
also assumes a pre-defined uncertainty set of distributions
and generalization only happens when testing distribution
is in/close to such uncertainty set. Concerning causal model
for OOD generalization, the famous invariant causal predic-
tion (ICP) [56] also assumes the linear structural equation
and enough interventional training domains.
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Fig. 8: Robust test on RMSE across unknown test data with n = 2000, p = 20 and pL = 10. All methods are trained with
rtrain = 2.0, but tested across test environments with different rtest.
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Fig. 9: Robust prediction on average and stability error across unknown test data with n = 2000, p = 20 and pL = 10. All
methods are trained with rtrain = 2.0, but tested across test environments with different rtest.

To further analyze the robustness of our method when
confronting with moderate violation of our prior assump-
tion, we perform robustness analysis on synthetic data.
Specifically, we generate more challenge data by inducing
correlation between a subset of linked non-causal variable
L and selection bias S, where the size of subset is controlled
by varying its proportion γ to the total set L (Here we
set pL = 10). We report the results averaged for 50 times
when p = 20 and n = 2000 in Fig. 8 and Fig 9. These two
figures clearly reflects two facts: (a) The prediction error
of each method increases as the proportion γ of biased L
enlarges. (b) When the number of biased L is smaller than
0.5, our method still outperforms other methods, especially
when distributional shift is large (rtest ≤ −1.3). (c) When γ
increases, the performance margin between our method and
other decreases (from over 1 to less than 0.5).

6 CONCLUSION

In this paper, we focus on the problem of stable prediction
with leveraging a seed variable for non-causal variables
screening and causal variable selection. We argue that most
of traditional prediction methods and variable selection
methods are correlation based, resulting in instability prob-
lem on prediction across unknown environments. Based
on conditional independence (CI) test techniques, we pro-
posed a causal variable selection algorithm via screening
out isolated non-causal variables with a single CI test per
variable, and provide a series of theorems and empirical
experiments to prove that our algorithm can precisely screen
out the isolated non-causal variables to increase the stability
of model on prediction across unknown test data. The ex-
perimental results on both synthetic and real-world datasets
show that our algorithm outperforms the baselines for stable
prediction across unknown test data.

ACKNOWLEDGMENT

This work was supported in part by National
Key Research and Development Program of China
(No.2018AAA0101900), the Young Elite Scientists
Sponsorship Program by CAST (No. 2021QNRC001), Key
R&D Projects of the Ministry of Science and Technology
(No.2020YFC0832500), National Natural Science Foundation
of China (No.62006207, No. 62037001, No.72171131), the
Tsinghua University Initiative Scientific Research Grant
(No.2019THZWJC11), Project by Shanghai AI Laboratory
(P22KS00111), Technology and Innovation Major Project
of the Ministry of Science and Technology of China
(No.2020AAA0108400, No.2020AAA0108403).

REFERENCES

[1] K. Muandet, D. Balduzzi, and B. Schölkopf, “Domain generaliza-
tion via invariant feature representation,” in International Confer-
ence on Machine Learning, 2013, pp. 10–18.

[2] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Deeper, broader
and artier domain generalization,” in Proceedings of the IEEE inter-
national conference on computer vision, 2017, pp. 5542–5550.

[3] M. Rojas-Carulla, B. Schölkopf, R. Turner, and J. Peters, “Invariant
models for causal transfer learning,” The Journal of Machine Learn-
ing Research, vol. 19, no. 1, pp. 1309–1342, 2018.

[4] J. Zhang and E. Bareinboim, “Transfer learning in multi-armed
bandit: a causal approach,” in Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, 2017, pp. 1778–1780.
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