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Abstract—In observational studies, confounder separation and balancing are the fundamental problems of treatment effect estimation.
Most of the previous methods focused on addressing the problem of confounder balancing by treating all observed pre-treatment
variables as confounders, ignoring confounder separation. In general, not all the observed pre-treatment variables are confounders that
refer to the common causes of the treatment and the outcome, some variables only contribute to the treatment (i.e., instrumental
variables) and some only contribute to the outcome (i.e., adjustment variables). Balancing those non-confounders, including
instrumental variables and adjustment variables, would generate additional bias for treatment effect estimation. By modeling the
different causal relations among observed pre-treatment variables, treatment variables and outcome variables, we propose a
synergistic learning framework to i) separate confounders by learning decomposed representations of both confounders and
non-confounders, ii) balance confounder with sample re-weighting technique, and simultaneously iii) estimate the treatment effect in
observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets demonstrate that the
proposed method can precisely decompose confounders and achieve a more precise estimation of treatment effect than baselines.

Index Terms—Treatment Effect, Decomposed Representation, Confounder Separation and Balancing, Counterfactual Inference.

✦

1 INTRODUCTION

CAUSAL inference is a powerful statistic modeling tool
for explanatory analysis and plays an essential role in

the decision-making process [1], [2], [3], [4], [5], [6] and
one of the important components of interpretable artifi-
cial intelligence [7], [8], [9], [10], [11]. One fundamental
problem in causal inference is treatment effect estimation.
For example, in the medical scenario, accurately assessing
a particular drug’s treatment effect on each patient will
help doctors decide which medical procedure (e.g., taking
the drug or not) will benefit a specific patient most. The
gold standard approach for treatment effect estimation is
to perform Randomized Controlled Trials (RCTs), where
different treatments (i.e., medical procedures) are randomly
assigned to units (i.e., patients). However, fully RCTs are of-
ten expensive [12], unethical or even infeasible [13]. Hence,
it is incredibly imperative and highly demanding to develop
automatic statistical approaches to infer treatment effect in
observational studies.

In observational studies, we denote the causal frame-
work among the observed pre-treatment variables X , the
treatment T and the outcome Y , shown in Figure 1. With-
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out loss of generality, we assume that the pre-treatment
variables X can be decomposed into three kinds of latent
variables {I, C,A} under an unknown joint distribution
Pr(X) = Pr(I, C,A), where I denotes the instrumental
variables that only affect the treatment, C refers to the
confounding variables (confounders) that are the common
cause of the treatment and the outcome, and adjustment
variables A only determine the outcome. Taking the medical
scenario as an example, we might collect lots of historical
data from patients, including the treatment T (taking a
particular drug or not), the outcome Y (state of health)
and patient’s features X (e.g., age, gender, income, gene,
etc.). Among the patient’s features, age and gender would
simultaneously affect the treatment (doctor would consider
the patient’s age and gender when choosing the treatment)
and the outcome (patient’s age and gender would also
affect his/her recovery rate), hence belonging to the set of
confounding variables (confounders) C ; while the income
and doctor-in-charge would only affect the treatment, but
have no effect on the outcome, hence belonging to the set
of instrumental variables I ; gene and environment belong
to the set of adjustment variables A, since they would only
affect the outcome but have no effect on the treatment.

Different from RCTs, the treatment T in the observa-
tional studies is not randomly assigned. Instead, it depends
on some or all attributes of unit X (i.e., the variables I and
C in Figure 1). This change could result in confounding
bias, i.e., Pr(T |X) ̸= Pr(T ). To eliminate the bias, previous
methods, such as propensity score-based methods [14], [15],
[16] and variables balancing methods [17], [18], [19], simply
treated all observed pre-treatment variables as confound-
ing variables for balancing. However, back-door criteria
[20], [21] demonstrated that controlling the confounding
variables is sufficient for removing that bias. In contrast,
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Fig. 1. The intuitive illustration of our proposed causal framework w.r.t a medical scenario. Here, the historical data includes patients’ pre-treatment
variables X, the treatment T and the final outcome Y . Among these historical data, age and gender would simultaneously affect the treatment
(doctors’ decision) and the outcome (patients’ physical differences), hence belonging to the set of confounding variables (confounders) C; while the
income and doctor-in-charge would only affect the treatment variable, hence belonging to the set of instrumental variables I; gene and environment
belong to the set of adjustment variables A, since they would only affect the outcome. Our proposed algoritm intends to decomepose the pre-
treatment variables X into the three kinds of latent variables {I, C,A} for confounder separation and balancing.

controlling the instrumental variables invariably leads to
increased confusion bias, if it exists. Moreover, [22], [23]
demonstrated that separating confounding variables and
adjustment variables would reduce the estimated treatment
effect variance. Overall, balancing the variables that mixed
with non-confounders (i.e., instrumental and adjustment
variables in Figure 1) would increase the bias and variance
of treatment effect estimation [24], [25], [26]. Therefore, it
is indispensable to decompose the three kinds of latent
variables for reducing the bias and variance of treatment
effect estimation.

Recently, [22], [23] proposed a data-driven variable de-
composition method to separate adjustment variables from
all observed pre-treatment variables and achieved lower
variance on treatment effect estimation. Nevertheless, it
ignored the decomposition of instrumental variables, which
led to entanglement between instrumental and confounding
variables. Moreover, it only focused on the settings with
linear assumptions. [27] proposed to roughly separate the
pre-treatment variables into three sets {I, C,A} with a
disentangled representation learning framework (similar to
Figure 1). However, it could not guarantee the separation
between the instrumental and the confounding variables
(discussed in detail in the following section), leading to
the entanglement among those three latent factors {I, C,A}.
Hence, how to precisely decomposing the instrumental, con-
founding and adjustment variables for confounder balanc-
ing and treatment effect estimation is still an open problem
in observational studies.

In this paper, we are interested in the case of a binary
treatment (i.e., T ∈ {1, 0}). With considering the causal
relationships among pre-treatment variables X = {I, C,A},
treatment T and outcome Y , we propose the following
preliminary propositions for decomposing latent variables
{I, C,A} from pre-treatment variables X as shown in Fig-
ure 1: (i) Decomposing A from X : (i.a) the adjustment
variables A should be independent of the treatment variable
T , i.e., A ⊥ T ; and (i.b) A should predict Y as precisely
as possible. Condition (i.a) constraints other variables’s in-
formation (e.g., I and C) not be embedded into A, while
(i.b) restrains A from embedding into other variables. (ii)

Decomposing I from X : (ii.a) By learning sample weights ω
[28], [29], we can well balance the confounding variables C ,
that is, one can break the dependency between C and T with
sample weights ω (i.e., C ⊥ T | ω). After that we can achieve
the conditional independence between instrumental vari-
ables I and outcome variable Y given the treatment variable
T . Formally, if C ⊥ T | ω then I ⊥ Y | T ; and (ii.b) I should
also predict T as accurately as possible. Condition (ii.a) con-
straints other variables not be embedded into I , while (ii.b)
restrains I from embedding into other variables. (iii) Bal-
ancing Confounders C : re-weighting certain data instances
to balance the representations of confounders could reduce
confounding bias [27], [28], [29], [30], [31]. Instead of relying
on the explicit propensity score, we directly optimize the
global sample weight ω for each unit to balance confounder
distributions between the treated and control populations,
i.e., C ⊥ T | ω. (iv) Predicting factual and counterfactual
outcomes {Y T , Y 1−T }: the decomposed representations of
confounding variables C and adjustment variables A help to
predict both factual Y T and counterfactual outcome Y 1−T .

Guided by these preliminary propositions, we further
propose a synergistic learning algorithm, named Decom-
posed Representations for CounterFactual Regression (DeR-
CFR), to jointly 1) learn and decompose the representa-
tions of the three latent factors {I, C,A} for feature de-
composition, 2) optimize sample weights ω for confounder
balancing, and 3) learn a counterfactual regression model
to predict the counterfactual outcome Y 1−T (or the po-
tential outcome {Y 0, Y 1} on out-of-distribution data) for
treatment effect estimation in observational studies. Our
DeR-CFR algorithm is based on the standard assumptions
[32] for treatment effect estimation in observational studies,
including stable unit treatment value assumption (SUTVA),
unconfoundedness assumption, and overlap assumption.
The main contributions in this paper are as follows:

• We propose a novel DeR-CFR algorithm to jointly
decompose instrumental, confounding, and adjust-
ment variables accurately, and learn counterfactual
regression to estimate treatment effect in observa-
tional studies.
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• We empirically demonstrate that our algorithm can
precisely decompose the latent factors, and almost
all decomposed features correspond to their real
semantics, which any other method can not achieve.

• Extensive experiments show our approach achieves a
better performance of treatment effect estimation in
observational studies with both synthetic and real-
world datasets, the error metric PEHE is reduced by
10% on average compared with the best baseline and
the ATE bias is reduced by up to 30 %. Especially in
IHDP dataset, the error metric PEHE is reduced by
26% and the ATE bias is reduced by 32.5%.

The rest of the paper is organized as follows. Section
2 reviews the related work. Section 3 gives the notations
and propositions for confounder separation and balancing.
The details of our proposed algorithm for decomposed
representations for counterfactual regression are introduced
in Section 4. Experimental results and analyses are reported
in Section 5. Finally, Section 6 concludes the paper.

2 RELATED WORK

To address the confounding bias in observational studies,
most of the previous methods either employ propensity
score, including matching, stratification, weighting, and
doubly robust [16], [33], [34], [35], [36], [37]; or optimize
sample weight by entropy balancing, residual balancing
and stable balancing [17], [18], [38], [39]. Those existing
methods focus on confounder balancing alone, while ig-
noring the importance of confounder separation. Recently,
[25], [26] pointed out the necessity of confounder separation
and selection for causal inference, due to the fact that the
control of some non-confounders (e.g., variables related to
the instrumental variables) would generate additional bias
and amplify the variance. Besides, many methods [4], [20],
[40] have been proposed for confounder selection, but most
assume the causal structure is known prior.

[28], [29] proposed a representation learning method
for confounder balancing by minimizing the distribution
difference between different treatment arms in embedding
space. Based on these works, [41] proposed to optimize a
context-aware importance sampling weight with representa-
tion learning jointly. Rather than taking the ITE estimators to
balance distribution globally, [30] proposed a local similarity
preserving approach for representation learning. In this
paper, we propose a decomposed representation learning
approach for confounder separation along with a model-
free weight schema for confounder balancing.

Our work is related to (N-)D2VD [22], [23] and DR-
CFR [27]. (N-)D2VD [22], [23] proposed a data-driven vari-
ables decomposition algorithm to automatically separate
confounder and adjustment variables for treatment effect
estimation. The main limitation is that they ignored the
differentiation between instrumental variables and con-
founders, leading to imprecise confounder separation and
failing to provide a precise estimation of ITE. Aiming at
disentangling the three latent factors {I, C,A} from the pre-
treatment variables X , DR-CFR [27] proposed disentangled
representations for counterfactual regression. However, the
algorithm cannot guarantee to clearly decompose I , C and
A. Extremely, I(X)⋆ = ∅, C(X)⋆ = {I, C,A}, A(X)⋆ =

∅ could be a possible solution of their algorithm. They
cannot guarantee accurate learning disentangled represen-
tations of the confounders, which may introduce addi-
tional bias. Moreover, DR-CFR [27] relied on the correct
model specification (propensity score) on treatment for con-
founder balancing with the importance sampling weights.
Our proposed algorithm is different from these methods
in two ways: (i) Confounder Separation: we propose a se-
ries of decomposition regularizers to guarantee the explicit
fine-grained decomposition among the instrumental, con-
founder, and adjustment variables; (ii) Confounder Balanc-
ing: we adopt a model-free confounder balancing method to
remove the confounding bias in observational data.

3 NOTATIONS AND PROPOSITIONS

In this section, we first give the notations and assumptions
for treatment effect estimation in observational studies, then
propose a series of propositions to decompose instrumental,
confounding and adjustment variables with representation
leaning for treatment effect estimation.

3.1 Notations and Assumptions
In this paper, we focus on treatment effect estimation from
observational data D = {xi, ti, y

ti
i }ni=1, where n refers to

the number of units. For each unit (e.g., patient) indexed by
i, we observe its context characteristics xi ∈ X , its choice
on treatment ti ∈ T from a set of treatment options (e.g.,
{0:placebo, 1:drug}), and the corresponding outcome (e.g.,
{0:not recovery, 1:recovery }) ytii ∈ Y as a result of choosing
treatment ti.

In our context, we focus on the case of the binary
treatment, and the Individual Treatment Effect (ITE) of each
unit i:

ITEi = y1i − y0i (1)

With ITE of each unit, one can easily estimate the Average
Treatment Effect (ATE) as:

ATE = E[y1 − y0] =
1

n

n∑
i=1

ITEi (2)

From the definition of ITE and ATE, there are two poten-
tial outcomes y0i and y1i for each unit i, however, dataset D
only contains the observed outcome ytii that corresponds
to the treatment ti, and the outcome of the alternative
treatment (a.k.a. counterfactual outcome: y1−ti

i ) is missing.
This is treated as the counterfactual problem of treatment
effect estimation with observational data. To address this
problem, we propose a counterfactual inference framework
for predicting the potential outcomes {y0i , y1i }to inference
the counterfactual outcome y1−ti

i .
Our analysis in this paper relies on the following stan-

dard assumptions [32] for treatment effect estimation.
Assumption 1: Stable Unit Treatment Value. The distri-

bution of the potential outcome of one unit is assumed to be
independent of the treatment assignment of another unit.

Assumption 2: Unconfoundedness. The distribution of
treatment is independent of the potential outcome when
given the pre-treatment variables. Formally, T⊥

(
Y 0, Y 1

)
|X .

Assumption 3: Overlap. Every unit should have a
nonzero probability to receive either treatment status. For-
mally, 0 < p(T = 1|X) < 1.
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3.2 Preliminary Propositions
As shown in Figure 1, we assume that any dataset of
the form {X,T, Y } is generated from three latent factors
{I, C,A}. Inspired by the causal framework and the causal
relationships among pre-treatment variables X = {I, C,A},
treatment T and outcome Y , we further generate the follow-
ing preliminary propositions to support decomposition and
representation learning of these three latent factors.

Proposition 1: The adjustment variables would be inde-
pendent of the treatment variable. Formally, A ⊥ T .

Proposition 2: Under the unconfounderness assumption,
confounder balancing with a global sample weight ω [28],
[29] can help to break the dependence between the con-
founding variables and the treatment variable. Formally,
C ⊥ T | ω.

Proposition 3: After confounder balancing with sample
weight ω, the instrumental variables would become con-
ditional independent of the outcome, given the treatment
variable. That is, if C ⊥ T | ω, we have I ⊥ Y | T .

Proposition 1 can be easily understood by the definition
of adjustment variables. We can denote the path between
adjustment variables and treatment variable as the collider
structure at Y : A → Y ← T , hence A ⊥ T . Under
the unconfounderness assumption, C is a sufficient set to
block all information from T to Y except T → Y after
decomposing A and I . Obviously, proposition 2 can be
guaranteed by the back-door criterion [20]. By balancing the
confounders, the path between instrumental variables and
outcome can be denoted as I → T → Y , hence I ⊥ Y | T, ω
in proposition 3. Note that these three propositions are in no
particular order, we will simultaneously optimize the above
objectives.

Decomposing A: Proposition 1 can only constrain that
the information of other variables (i.e., I and C) would not
be embedded into A, but A might be embedded into other
variables, resulting in information leaking of A. To address
this problem, we propose to simultaneously maximize the
predictive power of A on outcome Y to precisely decompose
the adjustment variables A.

Decomposing I : Similarly, proposition 3 only constrain
that other variables (i.e., C and A) would not be embedded
into I , but cannot guarantee that the information of I would
not be represented into other variables. In our context, we
propose to jointly maximize the predictive power of I on
treatment T for the precise decomposition of instrumental
variables I .

Balancing C : By decomposing I and A from X , we
separate and balance confounder C , i.e., C ⊥ T | ω.

Then, with the decomposed C and A, we can accurately
estimate the treatment effect via potential outcomes regres-
sion.

4 DER-CFR ALGORITHM

Guided by the above preliminary propositions and analyses,
we propose a novel model, named Decomposed Represen-
tations for CounterFactual Regression (DeR-CFR), to learn
the decomposed representations of instrumental, confound-
ing, and adjustment variables for confounder separation
and balancing, and simultaneously learn a counterfactual
regression model for treatment effect estimation. The overall
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Fig. 2. Overview of DeR-CFR Architecture.

architecture (Figure 2) of our model consists of the following
components:

• Three decomposed representation networks for
learning latent factors, one for each underlying fac-
tor: I(·), C(·), A(·). We use Î = I(X), Ĉ = C(X)
and Â = A(X) to denote the learned representa-
tions of instrumental variables I , confounders C , and
adjustment variables A. Two regression networks
maximize the predictive power of I(X) on T and
A(X) on Y : gI(I(X)) and gA(A(X)).

• Three decomposition and balancing regularizers
for confounder separation and balancing: the first
is for decomposing adjustment variables A from
X with considering A(X) ⊥ T and A(X) should
predict Y as precisely as possible; the second is for
decomposing instrumental variables I from X via
constraining I(X) ⊥ Y | T, ω, and I(X) should
be predictive to T ; the last is designed for simul-
taneously balancing confounder C(X) in different
treatment arms, i.e., C(X) ⊥ T | ω.

• Two regression networks for potential out-
comes prediction, one for each treatment arm:
h0(C(X), A(X)) and h1(C(X), A(X)).

Our model’s core components are the decomposition
and balancing regularizers from preliminary propositions,
which help the representation networks learn the decom-
posed representations {I(X), C(X), A(X)} for confounder
separation, and also to improve the precision of regression
networks via accurate confounder balancing with identified
C(X). The decomposition and balancing regularizers are
the keys to bridge the representation networks and regres-
sion networks for treatment estimation with observational
data.

Next, we will describe each component of our DeR-CFR
algorithm in detail.

4.1 Decomposing A

From the preliminary proposition, we know the adjustment
variables should be independent of the treatment variable,
A(X) ⊥ T . Considering the treatment is binary, we propose
to learn the decomposed representation of adjustment vari-
ables A(X) by constraining the discrepancy of its distribu-
tion between treatment arms T = 1 and T = 0. Moreover, to
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prevent the information of adjustment variables from being
embedded into other variables, we adopt a regression model
gA to maximize the predictive power of A(X) on Y . Here,
we use LA to denote the loss of decomposing adjustment
variables as:

LA = disc({A(xi)}i:ti=0, {A(xi)}i:ti=1) +
∑

i l[yi, gA(A(xi))] (3)

where l[yi, gA(A(xi))] would be an l2-loss for continuous
outcomes or a log-loss for binary outcomes. {A (xi)}i:ti=k
denotes the distribution of adjustment variables represen-
tation A(X) with respect to the treatment arm t = k.
Function disc(·) denotes the discrepancy of adjustment
variables distribution between different treatment arms.
Many integral probability metrics (IPMs) [42], [43], such as
Maximum Mean Discrepancy (MMD) [44] and Wasserstein
distance [45], can be used to measure the discrepancy of
distributions. In this paper, we use the MMD to calculate
disc(·).

Data Flow: For representation network A and regression
network gA, we input the observed variables X and use
the latent representation A(X) to predict the outcome, i.e.
E[Y |X] = gA(A(X)). By minimizing the above term LA,
our model can ensure the information of the instrumental
variables I and the confounding variables C would not be
embedded into A(X), since I and C are associated with the
treatment variable. Moreover, vice versa with maximizing
the predictive power of A(X) on Y , we can ensure all the
information of adjustment variables would embed to A(X),
hence would not be embedded into other representations.
Hence, the regularizer can help to decompose the adjust-
ment variables, A = A(X).

4.2 Decomposing I and Balancing C

From preliminary propositions, we know that if one can
balance confounders with a global sample weights ω (i.e.,
C(X) ⊥ T | ω), the instrumental variables would be
conditional independent of the outcome variable given the
treatment variable.

Firstly, we introduce the loss function of confounder
balancing in our model. Most previous work [14], [16],
[41] achieved confounder balancing by learning propensity
score and their performance relied on the correctness of the
specified propensity score model. Here, we propose to adopt
a model-free method for confounder balancing. The purpose
of confounder balancing is to break the causal link from the
confounding variables C to the treatment variable T , that
is, to make C(X) become independent of T . Assuming that
we have got the decomposed representation of confounding
variables C(X) after joint-training, we propose to achieve
confounder balancing1 by directly learning sample weight
ω with minimizing the following objective function:

LC B = disc
(
{ωi · C (xi)}i:ti=0 , {ωj · C (xj)}j:tj=1

)
(4)

where {ωi · C (xi)}i:ti=0 refers to the weighted distribution
of C(X) on the samples with t = 0.

1. Recently, [46], [47] proposed alternatives for IPM (e.g., counterfac-
tual variance) as a measure of imbalance, arguing that distributional
distances are unnecessarily substantial. Therefore, there is still room for
further improvement on confounder balancing.

Data Flow: For representation network C , we input
the observed variables X and get the latent representation
C(X). To avoid all the sample weights to be zero or model
only focuses on some samples and ignores others, we con-
strain the sample weight

∑
i:ti=0 ωi =

∑
j:tj=1 ωj = 1, ωi >

0, ωj > 0. Under the overlap assumption, if LC B can be
minimized to be zero, it means that the distribution of C(X)
between different treatment arms is consistent, on the case
of the binary treatment T = {0, 1}. Then, we can achieve the
independence between C(X) and T by sample reweighting
with the learned weight, C(X) ⊥ T | ω.

Based on the property of the sample weight ω (i.e.,
C(X) ⊥ T | ω), we can decompose the instrumental
variables by conditional independence I(X) ⊥ Y | T, ω.
Moreover, to prevent the information of instrumental vari-
ables from being embedded into other variables, we adopt
a regression model gI to maximize the predictive power of
I(X) on T . Then, the objective function, denoted as LI for
decomposing instrumental variables is:

LI=
∑

k={0,1}disc
(
{ωi ·I (xi)}i:yi=0 , {ωj ·I (xj)}j:yj=1

)
j:tj=k

+
∑

i l[ti, gI(I(xi))] (5)

where disc({ωi · I (xi)}i:yi=0 , {ωi · I (xi)}i:yi=1)i:ti=k con-
strains the learned representation of instrumental variables
I to be independent of the outcome Y given the treatment
arm t = k and sample weight ω. Here, we assume the
outcome variable is binary, i.e., yi ∈ {0, 1}. For continuous
or multi-valued outcome, we can approximately achieve the
conditional independence I(X) ⊥ Y | T, ω by minimizing
the mutual information between I(X) and Y [49]:

LI =
∑

i l[ti, gI(I(xi))] +
∑

k={0,1}MI (I (xi) , yi)i:ti=k

+
∑

i l[ti, gI(I(xi))] (6)

where MI(a, b) refers to the mutual information of distri-
bution a and b.

Data Flow: For representation network I and regression
network gI , we input the observed variables X and use
the latent representation I(X) to predict the treatment,
i.e. E[T |X] = gI(I(X)). By minimizing the term LI , our
model can ensure the information of confounding variables
C and adjustment variables A would not be embedded
into I(X), since C and A are associated with the outcome
even given the treatment variable. Moreover, vice versa
with maximizing the predictive power of I(X) on T , we
can ensure all instrumental variables information would
be embedded into I(X), hence would not be embedded
into other representations. Hence, this regularizer helps to
decompose the instrumental variables accurately.

4.3 Deep Orthogonal Regularizer

Although the representation learning based on the pro-
posed propositions mainly contributes to the decomposi-
tion of the feature information of instrumental variables
I , confounding variables C and adjustment variables A,
data-driven neural networks tend to overfit the training
data and lead to unclean disentanglement (like DR-CFR).
Inspired by the orthogonal regularizer in [22], [23], [48]
for variable decomposition, in this paper, we employ a
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deep orthogonal regularizer among the three representa-
tion networks {I(X), C(X), A(X)} for decomposing the
variables {I, C,A}. We take the representation network for
instrumental variables I(X) as an example. Assuming it
is with l layers and let Wk refer to the weight matrix on
kth layer of the network. Then, we can approximate the
contribution of each variable in X on each dimension of
representation I(X) by computing W1×W2× · · ·×Wl, de-
noted as WI ∈ Rm×d, where m and d refer to the dimension
of X and I(X), respectively. By averaging each row of WI ,
we obtain W̄I ∈ Rm, denoting the average contribution of
each variable in X on the representation I(X). Similarly, we
calculate the contribution of each variable in X on C(X)
and A(X), denoted as W̄C and W̄A.

We consider the three representation networks have the
same structure. Hence, W̄I , W̄C and W̄A are the vectors that
have the same dimensions. Then, we propose to achieve
hard decomposition by constraining orthogonality on each
pair of them. The loss is as follow:

LO = W̄T
I · W̄C + W̄T

C · W̄A + W̄T
A · W̄I (7)

Data Flow: For representation network {I, C,A}, we
input the observed variables X and get the latent represen-
tation {I(X), C(X), A(X)}. To guarantee the information
flows of the representation networks, we softly constrain the
total contribution of each W̄I , W̄C and W̄A to approximately
1, that can be found in tht regularization term Reg (Section
4.5). The orthogonal regularizer ensures each variable’s in-
formation in X is either discarded or can only flow into
one representation network for a explicit decomposition. It
can also reduce the influence of irrelevant variables on the
prediction and prevent each representation network from
overfitting.

4.4 Outcome Regression
With the decomposed representations, we propose to learn
the outcome regression model for estimating the treatment
effect. Similar to [27], [28], [29], we also train two regression
networks for each treatment arm, h0(·) and h1(·), based
on the observed outcomes of samples with ti = 0 and
ti = 1, respectively. As guided by the graphical model in
Figure 1, we train these regression models only based on
the decomposed representations of C(X) and A(X).

LR =
∑
i

ωi · l
[
yi, h

ti (C (xi) , A (xi))
]

(8)

where the sample weight ω is learned from confounder
balancing with Eq. 4.

Data Flow: For potential outcomes prediction network
h0 and h1, we input the observed variables X to obtain
the latent representation C(X) and A(X), and then use
them to predict the potential outcomes, i.e. E[Y 0|X] =
h0(C(X), A(X)) and E[Y 1|X] = h1(C(X), A(X)).

4.5 The Regularization Term on DeR-CFR Parameters
In the DeR-CFR Algorithm, Reg refers to the regularization
term on network parameters:

Reg = RW +RC B +RO (9)

Next, we describe each component of Reg in detail.

4.5.1 The regularization on the network parameters.
In the DeR-CFR Algorithm, we add l2 regu-
larization on the parameters of subnetworks
{I(·), C(·), A(·), h0(·), h1(·), gI(·), gA(·)} to prevent over-
fitting:

RW = l2
(
W(I, C,A, h0, h1, gI , gA)

)
(10)

The regularization term is generally a monotonically
increasing function of the model complexity. We believe that
the model will have lower complexity and better robustness
when the model’s parameter value is small enough. To
prevent overfitting, we penalize the immense value in the
network parametersW(I, C,A, h0, h1, gI , gA) by l2 regular-
ization.

4.5.2 The regularization on the sample weight.
RC B restricts the sample weight ω not to be all zero and
approximately 1:

RC B =
(∑

i:ti=0 ωi − 1
)2

+
(∑

j:tj=1 ωj − 1
)2

, wi > 0, wj > 0 (11)

To avoid all the sample weights to be zero and main-
tain original quantity allocation on each treatment arm, we
constrain the sample weight

∑
i:ti=0 ωi =

∑
i:ti=1 ωi = 1.

4.5.3 The regularization on the orthogonal regularizer.
While minimizing LO (in Eq. 7), the deep orthogonal reg-
ularizer may lead to the result W̄ k

I = W̄ k
C = W̄ k

A = 0 for
all dimension k. To guarantee the information flows of the
representation networks, we softly constrain the sum of each
W̄I , W̄C , and W̄A to approximately 1:

RO=

(
m∑

k=1

W̄ k
I − 1

)2

+

(
m∑

k=1

W̄ k
C − 1

)2

+

(
m∑

k=1

W̄ k
A − 1

)2

(12)

4.6 Objective Function

Therefore, we propose to minimize the following objective
function in our DeR-CFR algorithm:

L=LR + α · LA + β · LI + γ · LC B + µ · LO + λ ·Reg (13)

where Reg refers to the regularization term on the DeR-CFR
parameters:

Reg = RW +RC B +RO (14)

whereRW is the l2 regularization on the parameters of sub-
networks {I(·), C(·), A(·), h0(·), h1(·), gI(·), gA(·)}. RC B

restricts the sample weight ω not to be zero. To guarantee
the information flows of the representation networks, we
use RO to softly constrain the sum of each W̄I , W̄C , and
W̄A to approximately 1.

We adopt an alternating training strategy to iteratively
optimize the representations for confounder separation and
sample weight for confounder balancing as:

L−ω = LR + α · LA + β · LI + µ · LO + λ ·Reg (15)
Lω = LR + γ · LC B + λ ·Reg (16)

We minimize L−ω by using stochastic gradient descent
to update the parameters of the representation and hypoth-
esis network, and minimize Lω to update ω.
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Algorithm 1 Decomposed Representations for CounterFac-
tual Regression

1: Input: Observational data
{
xi, ti, y

F
i

}N
i−1

2: Output: ŷ0, ŷ1
3: Loss function: L−ω and Lω

4: Components: Three representation learning networks
{I(·), C(·), A(·)}, two regression networks h0(·) and
h1(·) for the potential outcomes, two network
gI(·), gA(·) to enforce I(·), A(·) to predict Treatment and
Factual outcome as precisely as possible.

5: for i = 0, 1, 2, ... do
6:

{
xi, ti, y

F
i

}N
i=1
→ {I(X), C(X), A(X)}

7: {I(X)} → gI(I(X))→ t̂
8: {A(X)} → gA(A(X))→ ŷ
9: h0(C(X), A(X)), h1(C(X), A(X))→ ŷ0, ŷ1

10: updateW ← Adam{L−ω}
11: update ω ← Adam{Lω}
12: end for

TABLE 1
Hyper-parameters and Ranges

Hyper-parameter Range
the number of {2, all}the constrained layers l

batch norm {False, True}rep normalization
depth of layers of {1, 2, 3, 5, 7}{dR, dy , dt}

hidden state dimension of {32, 64, 128, 256}{hR, hy , ht}
{α, β, γ, µ, λ} {1e-3, 1e-2, 1e-1 1, 5, 10, 100}

Algorithm 1 shows the details of the pseudo-code of
DeR-CFR 2, where W is the the trainable parameter of
{{I(·), C(·), A(·), h0(·), h1(·), gI(·), gA(·)}}, ω is the train-
able sample weights, and the maximum number of itera-
tions is I = 3000.

4.7 Hyper-parameter Optimization

This algorithm selects ELU as the non-linear activation func-
tion and adopts Adam optimizer to minimize DeR-CFR’s
objective function with a learning rate of 1e-3. We assign
an adaptive weight to each unit in the training process
and regard all samples as one full-batch. The maximum
number of iterations is 3000. Table 1 states the number
and range of values tried per hyper-parameter during the
paper’s development. We return the best-evaluated iterate
with early stopping and optimize the hyper-parameters in
DeR-CFR by minimizing objective loss.

Bergstra et al. [51] demonstrated that trials on ran-
dom search would be more efficient than grid search for
optimizing hyper-parameter. In this paper, we randomly
choose trails to determine the best Hyper-parameters for
each Dataset within the Hyper-parameters space (Tabel 1).
In addition, we will prioritize to fix model capacity [dR,
dy , dt, hR, hy , ht] and select norm operations based on
α = β = γ = µ = λ = 0, k =all. And then, we proceed to

2. The code is available at: https://www.dropbox.com/sh/
5m40z2vmthx0y10/AACXJFuOvgB24av1VqkrkmKRa?dl=0

the other Hyper-parameters search to optimize our model.
Tabel 2 lists all optimal hyper-parameters of DeR-CFR used
for each dataset in the paper’s experiments.

5 EXPERIMENTS

5.1 Baselines
We compare the proposed algorithm (DeR-CFR) with the
following baselines. (1)D2VD and N-D2VD [22], [23]: (Non-
linear) Data-Driven Variable Decomposition; (2) CFR-MMD
and CFR-WASS [28], [29]: CounterFactual Regression with
MMD and Wasserstein metrics; (3) CFR-ISW [41]: Counter-
Factual Regression with Importance Sampling Weights; (4)
SITE [30]: local Similarity preserved Individual Treatment
Effect estimator; and (5) DR-CFR [27]: Disentangled Repre-
sentations for CounterFactual Regression.

5.2 Experiments on Real Dataset
5.2.1 Dataset.
In order to evaluate the proposed method, we conduct the
experiment on three real-world datasets that are adopted in
[30]: IHDP, Jobs and Twins-28. IHDP aims to evaluate the
effect of specialist home visits on premature infants’ future
cognitive test scores and Jobs aims to estimate the effect of
job training programs on employment status.

IHDP3: The original Randomized Controlled Trial (RCT)
data of the Infant Health and Development Program (IHDP
) aims at evaluating the effect of specialist home visits on
the future cognitive test scores of premature infants. Hill
[52] removed a non-random subset of the treated group and
induced selection bias. The dataset comprises 747 units (139
treated, 608 control) with 25 pre-treatment variables related
to the children and their mothers. We report the estimation
errors on the same benchmark (100 realizations of the out-
comes with 63/27/10 proportion of train/validation/test
splits) provided by and used in [27], [28], [29].

Jobs4: The Jobs dataset created by LaLonde [53] is a
widely used benchmark in the causal inference community,
based on the randomized controlled trials. The dataset
aims to estimate the effect of job training programs on
employment status. Jobs contains 17 variables, such as age,
education level, etc. Following Smith and Todd [54], we
use LaLonde’s data (297 treated, 425 control) and the PSID
comparison group (2490 control) to carry out our exper-
iment. We randomly split the data of 3212 samples into
train/validation/test with a 56/24/20 ratio (10 realizations).

Twins5: The original Twins dataset is derived from the
all twins born in the USA between the year of 1989 and 1991
[55]. When a unit is the heavier one in the twins, the treat-
ment is ti = 1, and the lighter one is ti = 0. Besides, we ob-
tained 28 variables related to parents, pregnancy, and birth.
The outcome is the children’s mortality after one year. We fo-
cus on same-sex twins weighing less than 2000g and without
missing features. The final dataset contains 5271 records. To
develop the instrument variables, we generate 38-dimension
variables for each unit: X = {X1, X2, ..., X38}, where

3. http://www.fredjo.com/
4. http://www.fredjo.com/
5. http://www.nber.org/data/linked-birth-infant-death-data\

-vital-statistics-data.html
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TABLE 2
Optimal Hyper-parameters

Hyper-parameters IHDP Jobs Twins Binary
l 2 2 all all
batch norm False True True False
rep normalization True True True False
{dR, dy , dt} [7, 4, 1] [5, 4, 1] [7, 7, 3] [2, 5, 5]
{hR, hy , ht} [32, 256, 256] [32, 128, 128] [64, 64, 64] [256, 128, 128]
{α, β, γ, µ, λ} [5, 100, 1, 10, 1e-2] [1e-2, 1, 1e-2, 5, 1e-3] [1e-2, 1e-3, 1e-3, 5, 5] [1e-1, 1, 1, 10, 1]

(c) DeR-CFR in Binary_8_8_8_3000

(i) DeR-CFR in Binary_16_16_16_3000

(f) DeR-CFR in Binary_8_8_8_10000

(l) DeR-CFR in Binary_16_16_16_10000

(b) DR-CFR in Binary_8_8_8_3000

(h) DR-CFR in Binary_16_16_16_3000

(e) DR-CFR in Binary_8_8_8_10000

(k) DR-CFR in Binary_16_16_16_10000

(b) DR-CFR in Binary_8_8_8_3000

(h) DR-CFR in Binary_16_16_16_3000

(e) DR-CFR in Binary_8_8_8_10000

(k) DR-CFR in Binary_16_16_16_10000

(a) N-D
2
VD in Binary_8_8_8_3000

(g) N-D
2
VD in Binary_16_16_16_3000

(d) N-D
2
VD in Binary_8_8_8_10000

(j) N-D
2
VD in Binary_16_16_16_10000

Fig. 3. Visualization of the contribution of each variable in X on the decomposed representations of I, C and A under the different settings with
Binary mI mC mA n, where XI = {X1 · · · , XmI }, XC = {XmI+1 · · · , XmI+mC } and XA = {XmI+mC+1 · · · , XmI+mC+mA} are the true
underlying factors of I, C and A.

X1, X2, · · · , X10 ∼ B(5, 0.5) and {X11, X12, ..., X38} comes
from the original data. The treatment assignment strategy
is: ti|xi ∼ Bern

(
sigmoid

(
wTXIC + n

))
, where wT ∼

U
(
(−0.1, 0.1)44×1

)
and n ∼ N(0, 0.1). We conduct our

experiments on the 10 realizations of Twins with a 63/27/10
proportion of train/validation/test splits.

5.2.2 Metrics.
On IHDP and Twins, we adopt the Precision in Es-
timation of Heterogeneous Effect (PEHE) [27], [52] as
the individual-level performance metric, where PEHE
=
√

1
N

∑N
i=1 ((ŷ

1
i − ŷ0i )− (y1i − y0i ))

2. For population-level, we

adopt the bias of ATE prediction ϵATE = |ATE − ÂTE| to
evaluate performance, where ATE = E(y1)− E(y0).

On Jobs dataset, there is no ground truth for counterfac-
tual outcomes, so the policy risk [29] is adopted, which is de-
fined as:Rpol = 1−E

[
y1|πf (x) = 1, t = 1

]
P (πf (x) = 1)−

E
[
y0|πf (x) = 0, t = 0

]
P (πf (x) = 0), where πf (x) = 1 if

ŷ1 − ŷ0 > 0 and πf (x) = 0, otherwise. The policy risk mea-
sures the expected loss if the treatment is taken according
to the ITE estimation. For PEHE and policy risk, the smaller
value is, the better the performance.

5.2.3 Results.
We report the results, including the mean and standard
deviation (std) of treatment effect over 100 replications on
IHDP, 10 replications on Jobs and Twins-28 datasets in Table
3. The results show that in comparison with state-of-the-art
methods, DeR-CFR outperforms all baselines and achieves
a significant improvement on PEHE and ϵATE measures in
the IHDP dataset: the error metric PEHE is reduced by 26%
and the ATE bias is reduced by 32.5% compared with the
best baseline. On Jobs and Twins, DeR-CFR has comparable
performance to the state-of-the-art in estimating treatment
effects. Our algorithm does not achieve such significant
improvement on Jobs and Twins-28 than IHDP data; the
main reason we analyzed is that (i) on Jobs, most of the
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TABLE 3
The results (mean±std) of treatment effect estimation on real-world data.

Within-sample
Datasets IHDP(Mean ± Std) Jobs(Mean ± Std) Twins-28(Mean ± Std)
Methods PEHE ϵATE Rpol(π) ϵATT PEHE ϵATE

D2VD 11.41 ± 2.513 0.269 ± 0.181 - 0.125 ± 0.018 0.728 ± 0.014 0.006 ± 0.004
N-D2VD 4.246 ± 0.818 1.726 ± 0.226 - 0.115 ± 0.024 0.703 ± 0.017 0.003 ± 0.002

CFR-MMD 0.702 ± 0.037 0.284 ± 0.036 0.194 ± 0.004 0.041 ± 0.015 0.279 ± 0.001 0.010 ± 0.004
CFR-WASS 0.702 ± 0.034 0.306 ± 0.040 0.194 ± 0.004 0.041 ± 0.016 0.277 ± 0.001 0.021 ± 0.001
CFR-ISW 0.598 ± 0.028 0.210 ± 0.028 0.189 ± 0.006 0.041 ± 0.017 0.279 ± 0.001 0.036 ± 0.002

SITE 0.609 ± 0.061 0.259 ± 0.091 0.224 ± 0.005 0.064 ± 0.022 0.279 ± 0.001 0.037 ± 0.003
DR-CFR 0.657 ± 0.028 0.240 ± 0.032 0.199 ± 0.006 0.064 ± 0.026 0.276 ± 0.001 0.006 ± 0.002
DeR-CFR 0.444 ± 0.020 0.130 ± 0.020 0.187 ± 0.037 0.053 ± 0.084 0.276 ± 0.001 0.008 ± 0.003

Out-of-sample
Datasets IHDP(Mean ± Std) Jobs(Mean ± Std) Twins-28(Mean ± Std)
Methods PEHE ϵATE Rpol(π) ϵATT PEHE ϵATE

D2VD 14.67 ± 9.797 1.429 ± 1.247 - 0.224 ± 0.081 0.726 ± 0.053 0.028 ± 0.019
N-D2VD 299.7 ± 700.2 39.95 ± 81.98 - 0.138 ± 0.041 0.719 ± 0.091 0.025 ± 0.017

CFR-MMD 0.795 ± 0.078 0.309 ± 0.039 0.222 ± 0.019 0.084 ± 0.028 0.284 ± 0.005 0.010 ± 0.004
CFR-WASS 0.798 ± 0.058 0.325 ± 0.045 0.225 ± 0.023 0.102 ± 0.047 0.281 ± 0.005 0.023 ± 0.003
CFR-ISW 0.715 ± 0.102 0.218 ± 0.031 0.225 ± 0.024 0.089 ± 0.033 0.283 ± 0.006 0.039 ± 0.004

SITE 1.335 ± 0.698 0.341 ± 0.116 0.229 ± 0.023 0.074 ± 0.028 0.283 ± 0.006 0.040 ± 0.004
DR-CFR 0.789 ± 0.091 0.261 ± 0.036 0.235 ± 0.015 0.119 ± 0.045 0.280 ± 0.005 0.009 ± 0.003
DeR-CFR 0.529 ± 0.068 0.147 ± 0.022 0.208 ± 0.062 0.093 ± 0.032 0.279 ± 0.005 0.008 ± 0.004

* (N-)D2VD: The factual outcomes of selected samples are all 1, and almost all of them are
[
πf (x) = 0, t = 0

]
, i.e.

Rpol ≈ 1− E
[
y0|πf (x) = 0, t = 0

]
= 0. This is not an ideal phenomenon: ŷ1 ≤ ŷ0. We use ’-’ to denote it.

TABLE 4
Results (mean±std) of ablation studies on IHDP dataset (✓ refers to

keeping the component in DeR-CFR).

LA LI LC B LO

PEHE
Within-sample Out-of-sample

✓ ✓ ✓ 0.635 ± 0.035 0.858 ± 0.133
✓ ✓ ✓ 0.479 ± 0.030 0.560 ± 0.071
✓ ✓ ✓ 0.482 ± 0.039 0.565 ± 0.075
✓ ✓ ✓ 0.478 ± 0.033 0.542 ± 0.053
✓ ✓ ✓ ✓ 0.444 ± 0.020 0.529 ± 0.068

manually selected variables may be confounding variables,
DeR-CFR would be not prominent compared with other
baseline in this case; (ii) on Twins, all variables are discrete
and most units have similar data, which leads to the low
improvement in our DeR-CFR algorithm.

Table 4 reports the effects of each module of the DeR-
CFR by conducting ablation experiments on IHDP. From
Tabel 3 and Table 4, we can draw the following conclusions:
(i) With explicitly learning the decomposed representations,
DeR-CFR achieves better performance than DR-CFR, which
cannot guarantee the disentanglement of different factors
{I, C,A}. (ii) Each component in our DeR-CFR is necessary,
since missing any one of them would confuse the decom-
posed representation learning and damage the performance
of ITE estimation on IHDP dataset.

5.3 Experiments on Synthetic Dataset
5.3.1 Dataset.
To generate synthetic datasets, we design two different
sample sizes n = {3000, 10000} and two settings of variable
dimensions {mI ,mC ,mA}={8, 8, 8} or {16, 16, 16}, where
mI ,mC , and mA denote the dimensions of instrumental
variables, confounding variables and adjustment variables,
respectively. Thus, the total dimension of pre-treatment vari-
ables is m = mI +mC +mA +mD , where mD = 2 denotes

(c) Decomposition of A with DR-CFR(c) Decomposition of A with DR-CFR (f) Decomposition of A with DeR-CFR(f) Decomposition of A with DeR-CFR(c) Decomposition of A with DR-CFR (f) Decomposition of A with DeR-CFR

(b) Decomposition of C with DR-CFR(b) Decomposition of C with DR-CFR (e) Decomposition of C with DeR-CFR(e) Decomposition of C with DeR-CFR(b) Decomposition of C with DR-CFR (e) Decomposition of C with DeR-CFR

(a) Decomposition of I with DR-CFR(a) Decomposition of I with DR-CFR (d) Decomposition of I with DeR-CFR(d) Decomposition of I with DeR-CFR(a) Decomposition of I with DR-CFR (d) Decomposition of I with DeR-CFR

Fig. 4. Radar charts that visualize the disentangled/decomposed rep-
resentations of all three underlying factors {I, C,A} from DR-CFR
(sub-figures a,b,c) and DeR-CFR (sub-figures d,e,f) methods. Each
vertex on the polygons denotes an experimental setting with form Bi-
nary mI mC mA n. The green and red plots denote the average con-
tribution of true variables and other variables in X on the representation
of each factor, respectively.

two noise variables. We generate samples from independent
Normal distributions X1, X2, · · · , Xm ∼ N (0, 1).
Binary Setting: In this paper, we focus on the setting with
binary treatment and binary outcome. We first generate
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TABLE 5
Results (mean ± std) on synthetic data under different settings (Binary mI mC mA n).

Within-sample
Setting Binary 8 8 8 3000 Binary 8 8 8 10000 Binary 16 16 16 3000 Binary 16 16 16 10000

Methods PEHE ϵATE PEHE ϵATE PEHE ϵATE PEHE ϵATE

D2VD 3.641 ± 2.027 0.037 ± 0.017 1.334 ± 0.082 0.034 ± 0.003 0.679 ± 0.015 0.074 ± 0.003 0.667 ± 0.006 0.072 ± 0.001
N-D2VD 1.893 ± 0.463 0.201 ± 0.064 1.788 ± 0.645 0.008 ± 0.007 0.905 ± 0.037 0.073 ± 0.006 1.306 ± 0.073 0.056 ± 0.007

CFR-MMD 0.384 ± 0.004 0.015 ± 0.006 0.276 ± 0.004 0.008 ± 0.003 0.491 ± 0.005 0.021 ± 0.008 0.399 ± 0.005 0.012 ± 0.005
CFR-WASS 0.378 ± 0.004 0.016 ± 0.006 0.277 ± 0.004 0.008 ± 0.002 0.513 ± 0.007 0.011 ± 0.005 0.408 ± 0.005 0.015 ± 0.005
CFR-ISW 0.383 ± 0.005 0.035 ± 0.007 0.279 ± 0.004 0.013 ± 0.002 0.538 ± 0.003 0.014 ± 0.005 0.441 ± 0.005 0.034 ± 0.005

SITE 0.550 ± 0.007 0.075 ± 0.013 0.497 ± 0.006 0.035 ± 0.012 0.585 ± 0.005 0.035 ± 0.012 0.608 ± 0.006 0.041 ± 0.014
DR-CFR 0.377 ± 0.002 0.027 ± 0.008 0.288 ± 0.005 0.022 ± 0.007 0.544 ± 0.004 0.023 ± 0.010 0.427 ± 0.015 0.043 ± 0.019
DeR-CFR 0.325 ± 0.002 0.014 ± 0.006 0.234 ± 0.003 0.007 ± 0.002 0.404 ± 0.003 0.011 ± 0.004 0.307 ± 0.002 0.006 ± 0.002

Out-of-sample
Setting Binary 8 8 8 3000 Binary 8 8 8 10000 Binary 16 16 16 3000 Binary 16 16 16 10000

Methods PEHE ϵATE PEHE ϵATE PEHE ϵATE PEHE ϵATE

D2VD 3.654 ± 2.134 0.049 ± 0.051 1.173 ± 0.554 0.043 ± 0.024 0.723 ± 0.123 0.065 ± 0.034 0.686 ± 0.044 0.061 ± 0.021
N-D2VD 1.725 ± 0.244 0.195 ± 0.146 1.347 ± 0.675 0.039 ± 0.046 1.454 ± 0.277 0.088 ± 0.057 1.289 ± 0.358 0.045 ± 0.026

CFR-MMD 0.465 ± 0.006 0.062 ± 0.021 0.327 ± 0.006 0.021 ± 0.008 0.574 ± 0.007 0.036 ± 0.012 0.463 ± 0.006 0.018 ± 0.006
CFR-WASS 0.469 ± 0.011 0.063 ± 0.021 0.320 ± 0.006 0.016 ± 0.007 0.553 ± 0.006 0.028 ± 0.009 0.469 ± 0.005 0.018 ± 0.007
CFR-ISW 0.461 ± 0.005 0.058 ± 0.021 0.334 ± 0.006 0.017 ± 0.007 0.553 ± 0.006 0.034 ± 0.012 0.501 ± 0.005 0.040 ± 0.007

SITE 0.561 ± 0.005 0.077 ± 0.020 0.506 ± 0.006 0.021 ± 0.009 0.588 ± 0.007 0.050 ± 0.016 0.612 ± 0.009 0.049 ± 0.013
DR-CFR 0.469 ± 0.011 0.063 ± 0.024 0.333 ± 0.006 0.030 ± 0.009 0.551 ± 0.008 0.037 ± 0.014 0.486 ± 0.011 0.044 ± 0.019
DeR-CFR 0.409 ± 0.009 0.046 ± 0.017 0.286 ± 0.007 0.012 ± 0.006 0.485 ± 0.006 0.028 ± 0.010 0.376 ± 0.006 0.018 ± 0.005

binary treatment t = binomial(1, 1/(1 + e−z)), where
z = 1

10θt × XIC + ε, XIC denotes the variables in
X that belongs to I and C . Then, generate binary out-
comes corresponding to different treatment arms as y0 =
sign

(
max

(
0, z0 − z̄0

))
and y1 = sign

(
max

(
0, z1 − z̄1

))
,

where z0 = 1
10

θy0×XCA

mC+mA
and z1 = 1

10
θy1×X2

CA

mC+mA
. In addition,

θt ∼ U ((8, 16)mI+mC ) , θy0, θy1 ∼ U ((8, 16)mC+mA) , ε ∼
N (0, 1). We use Binary mI mC mA n to denote different
experimental settings. In each setting, we do experiments
with 10 replications, and report the mean and standard
deviation (std) on PEHE and ϵATE.

5.3.2 Results of treatment effect estimation.
In binary setting, we compare our DeR-CFR with the con-
tending baselines under different settings and report the
results in Table 5. We see that DeR-CFR outperforms other
state-of-the-art methods in PEHE and ϵATE in synthetic
datasets, the error metric PEHE is reduced by 10% on
average compared with the best baseline and the ATE bias
is reduced by up to 20%. Moreover, with the explicit de-
composition of instrumental, confounding and adjustment
variables during representation learning, the performance
of DeR-CFR is much better than DR-CFR. From the result,
we can conclude that considering the decomposed repre-
sentation of confounders and non-confounders, our DeR-
CFR can achieve the best performance than baselines on
counterfactual regression.

5.3.3 Results on decomposed representation.
To evaluate the performance of decomposed representation
learning, we calculate the average contribution of each
variable in X on the representation of each factor for DR-
CFR and DeR-CFR, i.e., W̄I , W̄C , W̄A ∈ Rm as described
in the previous section. In high-dimensional variables and
non-linear settings, N-D2VD extends D2VD to a non-linear
version. We choose the coefficient vector (feature selection
layer) of N-D2VD to evaluate the separation performance
of D2VD-based methods. Figure 3 reports the results under
the different settings with Binary mI mC mA n. It is evi-
dent in Figure 3 that our DeR-CFR algorithm can precisely

separate the three underlying factors {I, C,A} and almost
all separated factors correspond to their real semantics,
while the baseline DR-CFR fails to disentangle those factors.
In addition, although N-D2VD can successfully separate
adjustment variables A from low dimensional observation
variables X , it fails in complex high-dimensional datasets,
and it ignores the separation between instrumental variables
and confounders. This result validates the motivation of the
proposed DeR-CFR and is consistent with our analysis on
the comparison of DeR-CFR, DR-CFR and D2VD algorithms
in the previous section.

Similar to the setting in DR-CFR [27], we also plot the
radar charts on the representation of each factor ({I, C,A})
in Figure 4 for further comparison between DR-CFR and
DeR-CFR. For example, in Figure 4(a), we calculate the
average contribution of true variables of I in X , i.e.,
XI = {X1, · · · , X16} on the representation of I (plotted
with dotted green), compared with the average contribution
of other variables in X , i.e., X\XI = {X17, · · · , X48} on
the representation of I (plotted with red) under different
settings. From the results, we can conclude that with ex-
plicit decomposed representation, our DeR-CFR achieves
much better decomposed/disentangled representations of
all three underlying factors {I, C,A} than DR-CFR. This
is the key reason that our DeR-CFR can obtain significant
improvement on treatment effect estimation than DR-CFR,
as shown in Table 5.

5.4 Training Cost Analysis

The above algorithms are trained based on the network
model, and different network structures and constraints will
increase model complexity and training cost. In all synthetic
and real-world datasets, we implement 10 replications to
study the average training time(s) for the proposed model
in a single execution and compare it to baselines. From the
results (Table 6), we have the following observations: (1)
Adopting Wass distance to measure the discrepancy of rep-
resentation distributions will be more time-consuming than
MMD; (2) Re-weighting techniques and three representation
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TABLE 6
Training time(s) of various methods in a single execution on different datasets.

Time(s) IHDP Jobs Twins Binary 8 8 8 3000 Binary 8 8 8 10000 Binary 16 16 16 3000 Binary 16 16 16 10000
D2VD 76.9 82.5 102.3 83.5 88.1 84.6 98.1

N-D2VD 116.8 120.1 546.1 555.4 705.9 685.4 875.4
CFR-MMD 33.8 36.2 61.8 40.5 48.4 41.1 54.6
CFR-WASS 41.6 68.7 102.7 49.2 62.2 49.5 66.5
CFR-ISW 48.7 48.2 80.2 48.6 53.7 55.2 59.5

SITE 51.5 46.8 81.7 72.4 128.5 75.4 132.6
DR-CFR 72.6 135.6 159.8 61.7 69.1 61.8 78.7
DeR-CFR 72.3 147.2 219.9 104.7 240.1 108.4 244.7

Fig. 5. Hyper-parameter sensitivity analysis on {α, β, γ, µ, λ}. The green lines show the accuracy of the these parameters within the specified range
{0, 0.01, 0.1, 1.0, 10, 100}. The red line indicates the best parameters for the setting.

networks would increase model complexity and training
cost by comparing with the results of CFR-MMD, CFR-ISW
and DR-CFR; (3) As model complexity increases, model ac-
curacy and separation performance are improved. DeR-CFR
with orthogonality constraints, among representation-based
algorithms, has the best estimation and separation perfor-
mance but has the largest model complexity. Fortunately, its
single execution time is less than 300 seconds, which is still
within the acceptable range; (4) The convergence speed of
N-D2VD is slow, and a single convergence takes more than
600 seconds on large datasets.

Hardware configuration: Ubuntu 16.04.5 LTS operating
system with 2 * Intel Xeon E5-2678 v3 CPU, 384GB of RAM,
and 4 * GeForce GTX 1080Ti GPU with 44GB of VRAM.

Software configuration: Python with TensorFlow 1.15.0,
NumPy 1.17.4, and MatplotLib 3.1.1.

5.5 Hyper-parameters Analysis
Given the complex multi-term objective function (Section
4.6) in DeR-CFR, we study the impact of each item on
the accuracy of the potential outcomes under setting Bi-
nary 16 16 16 3000 by changing {α, β, γ, µ, λ} in the scope
{0, 0.01, 0.1, 1.0, 10, 100}. The results in Figure 5 demon-
strates that the performance of DeR-CFR is mostly affected
by changing in α and λ, reflecting the fact that decomposing
adjustment variables A accurately will greatly contribute to
the improvement of performance and limiting the complex-
ity of the model is necessary. µ will guarantee the decompo-
sition of three latent factors {I, C,A}, which not only help
each representation network to select information, but will
also prevent the model from overfitting. β and γ may not af-
fect the accuracy obviously, but they are essential conditions
for confounder separation. With hyper-parameters analysis,
we can choose the best hyper-parameters for experiments.

5.6 Mutual Information Interpretation.
We also demonstrate the mutual information [49] with lower
and upper bound under setting Binary 16 16 16 3000. The
results are summarized in Table 7, which demonstrates the
learned I from DeR-CFR is weakly correlated with Y but

TABLE 7
Mutual Information interpretation for DeR-CFR.

MI
DR-CFR DeR-CFR

T Y T Y

I 0.0267 ∼ 0.0472 0.0158 ∼ 0.0150 0.1993 ∼ 0.3874 0.0010 ∼ 0.0823
C 0.0157 ∼ 0.2115 0.0141 ∼ 0.2004 0.3729 ∼ 0.4561 0.3599 ∼ 0.4439
A 0.0001 ∼ 0.0004 0.0001 ∼ 0.0004 0.0439 ∼ 0.2113 0.2494 ∼ 0.4151
X 0.4892 ∼ 0.6485 0.3365 ∼ 0.6605 0.4892 ∼ 0.6485 0.3365 ∼ 0.6605

highly correlated with T , and the learned A from DeR-
CFR is weakly related to T but highly correlated with Y.
Consistent with the results in Figure 3, the mutual infor-
mation between variables {I, C,A} with treatment T and
Y shows DeR-CFR does decompose instrumental variables
I , confounding variables C and adjustment variables A. In
addition, the results show that the representation network
I in DR-CFR overfits the training data and the learned A
from DR-CFR may be empty (i.e., A = ∅) without explicit
decomposition constraints.

6 CONCLUSION

In this paper, we focus on the problem of estimating
treatment effect in observational studies. We argue that
previous methods mainly focus on confounder balancing,
while ignoring the importance of confounder separation.
Although some promising algorithms have been proposed
for confounder separation/disentanglement, they cannot
guarantee the decomposition of instrumental variables and
confounding factor. In light of this, we propose a De-
composed representation learning algorithm for Counter-
Factual Regression (DeR-CFR) with explicit decomposition
constraints for confounder separation and balancing, and
simultaneously estimate the treatment effect via counterfac-
tual inference. Empirical results demonstrate the advantages
of the DeR-CFR algorithm compared with state-of-the-art
methods.
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