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Data-Driven Variable Decomposition for
Treatment Effect Estimation

Kun Kuang, Peng Cui, Hao Zou, Bo Li, Jianrong Tao, Fei Wu, and Shiqiang Yang

Abstract—Causal Inference plays an important role in decision making in many fields, such as social marketing, healthcare, and public
policy. One fundamental problem in causal inference is the treatment effect estimation in observational studies when variables are
confounded. Controlling for confounding effects is generally handled by propensity score. But it treats all observed variables as
confounders and ignores the adjustment variables, which have no influence on treatment but are predictive of the outcome. Recently, it
has been demonstrated that the adjustment variables are effective in reducing the variance of the estimated treatment effect. However,
how to automatically separate the confounders and adjustment variables in observational studies is still an open problem, especially in
the scenarios of high dimensional variables, which are common in the big data era. In this paper, we firstly propose a Data-Driven
Variable Decomposition (D2VD) algorithm, which can 1) automatically separate confounders and adjustment variables with a
data-driven approach, and 2) simultaneously estimate treatment effect in observational studies with high dimensional variables. Under
standard assumptions, we theoretically prove that our D2VD algorithm can unbiased estimate treatment effect and achieve lower
variance than traditional propensity score based methods. Moreover, to address the challenges from high-dimensional variables and
nonlinear, we extend our D2VD to a non-linear version, namely Nonlinear-D2VD (N-D2VD) algorithm. To validate the effectiveness of
our proposed algorithms, we conduct extensive experiments on both synthetic and real-world datasets. The experimental results
demonstrate that our D2VD and N-D2VD algorithms can automatically separate the variables precisely, and estimate treatment effect
more accurately and with tighter confidence intervals than the state-of-the-art methods. We also demonstrated that the top-ranked
features by our algorithm have the best prediction performance on an online advertising dataset.

Index Terms—Treatment Effect Estimation, Variable Decomposition, Adjustment Variables, Confounder Separation
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1 INTRODUCTION

Causal inference[1], which refers to the process of drawing a
conclusion about a causal connection based on the conditions of
the occurrence of an effect [2], is a powerful statistical modeling
tool for explanatory analysis. One fundamental problem in causal
inference is the treatment effect estimation, and its key challenge
is to remove the confounding bias induced by the different
distributions of confounders between treated and control units.
Taking Fig.1 as an example, if a research attempt to assess the
effect of a drug T on patients’ recovery Y from population data
where the drug usage was a patient’s choice. The data shown that
gender X affects a patient’s choice of drug as well as his/her
chances of recovery. In this scenario, gender X is a confounder
that confounds the relation between treatment T (the choice of
drug) and the outcome Y (the recovery of patients) since the
distribution of gender would be different among patients’s groups
with different choices of drug. The gold standard approaches
for removing confounding bias are randomized experiments, for
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Fig. 1: An example of confounder, adjustment variable, treatment
and outcome. The gender X is a confounder since it confounded
the relation between the choice of drug T and patients’ recovery
Y . The exercise is a adjustment variable since it only influences
the patients’ recovery.

example, A/B testing [3], where different treatments are randomly
assigned to units 1. However, the fully randomized experiments
are usually extremely expensive [4] or sometimes even infeasible
[5] in many scenarios. Hence it is highly demanding to develop
automatic statistical approaches to infer treatment effect in obser-
vational studies.

In literature, Rosenbaum and Rubin [6] proposed a statistical
framework for treatment effect estimation based on propensity
score adjustment. Such a framework has been widely used in
the observational causal study, including matching, stratification,

1. Units represent the objects of treatment. For example, in an online
advertising campaign, the units refer to the users in the campaign.
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Fig. 2: Comparison between Neyman-Rubin’s framework and
our proposed causal framework. (a) Neyman-Rubin’s framework
treats all observed variables U as confounders X. (b) In our
causal framework, we separate the variables U into three different
partitions: (1) Confounders X, which are associated with the
treatment T and may be causally related to the outcome Y , (2)
Adjustment Variables Z, which are causally related to outcome
Y , but independent with treatment T , and (3) Irrelevant Variables
I (Omitted), which are independent with both treatment T and
outcome Y .

inverse weighting and regression on propensity score [7], [8], [9].
The inverse propensity weighting is one of the most commonly
used methods and has been part of a large family of causal
models known as the marginal structural model [10], [11]. With a
combination of inverse propensity weighting and regression, [12]
proposed a doubly robust estimator. These methods have been
widely used in various fields, including economics [13], epidemi-
ology [14], health care [15], social science [16] and advertising
[17].

The essence of these methods is to eliminate the confound-
ing impact of confounders so that the precision of treatment
effect estimation can be significantly improved. However, most
of these works treat all observed variables as confounders when
estimating the propensity score. Eventually, in the scenarios of
high dimensional variables, some of them are not confounders but
are predictive of the outcome, which are denoted by adjustment
variables Z as shown in Fig. 1. For example, the exercise of a
patient would not affect the choice of drug, but should influence
the change of recovery, hence the exercise variable is not a
confounder but a adjustment variable. Ignoring the adjustment
variables will make the estimated treatment effect imprecise and
with inflated variance.

Recently, some researchers have investigated the importance
of the adjustment variables. [18], [19] have advocated that the
adjustment variables should be included in the causal inference
model. And [20] suggested that conditioning on such adjustment
variables is unnecessary to remove bias but can reduce variance
in treatment effect estimation. In a randomized experiment setting,
[21] has proved that adjusting for the adjustment variables by lasso
can reduce the variance of the estimated treatment effect.

All these methods in observational studies assume that the
causal structure, i.e. whether a variable is the cause of the
treatment or outcome, is known a priori. However, the causal

structure cannot be well defined by prior knowledge in most
cases, especially in the scenarios of high dimensional variables
in the big data era. How to automatically separate confounders
and adjustment variables in observational studies is still an open
problem.

To address this problem, we propose a Data-Driven Variable
Decomposition (D2VD) algorithm to jointly optimize confounder-
s’ separation and Average Treatment Effect (ATE) estimation.
More specifically, we propose a regularized integrated regression
model, where a combined orthogonality and sparsity regularizer
is constructed to simultaneously 1) separate the confounders and
adjustment variables with a data-driven approach, 2) eliminate
irrelevant variables which are neither confounders nor adjust-
ment variables to avoid overfitting, and 3) estimate the ATE in
observational studies. During estimating the ATE, the separated
confounders can effectively eliminate their confounding impact on
treatment, while the adjustment variables can significantly reduce
the variances of estimated ATE through outcome adjustment. This
enables us to estimate the true ATE more accurately and with
tighter confidence intervals than baseline methods. Theoretically,
we prove that our D2VD algorithm can unbiasedly estimate the
ATE and achieve lower estimation variance with considering the
separation of confounders and adjustment variables. Moreover,
to address the challenges from high-dimensional variables and
nonlinear structure among variables, we adopt a neural network to
learn a low dimensional and non-linear representation of variables
and propose a Non-linear D2VD (N-D2VD) algorithm. With
extensive experiments on both synthetic and real-world datasets,
we demonstrate the effectiveness of our proposed algorithms on
treatment effect estimation with observational data.

The main contributions in this paper are as follows:

• We study a new problem of automatically separating con-
founders and adjustment variables, which is critical for the
precision and confidence intervals of ATE estimation in
observational studies.

• We propose a novel data-driven variables decomposition
(D2VD) algorithm, where a regularized integrated regression
model is presented to enable confounder separation and ATE
estimation simultaneously. Moreover, we extend our D2VD
algorithm to address the challenges from high-dimensional
and non-linear and propose a Non-linear D2VD algorithm.

• We give theoretical analysis on our proposed algorithm and
prove that our algorithm can unbiasedly estimate the treat-
ment effect with lower estimation variance by automatically
confounder separation in observational studies.

• The advantages of our D2VD and N-D2VD algorithms are
demonstrated in both synthetic and real-world data. It can
also be straightforwardly applied to other causal inference
studies, such as social marketing, health care, and public
policy.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 introduces the adjusted estimator with
considering variables decomposition. In Section 4, we theoretical-
ly give the bias analysis and variance analysis of our proposed
estimation. Section 5 proposes the D2VD algorithm under the
linear assumption and gives its optimization that accurately infers
the ATE. In Section 6, we extend the D2VD algorithm to a
nonlinear version, namely Nonlinear D2VD algorithm. Section 7
gives the experimental results on both synthetic and real-world
datasets. Finally, Section 8 concludes the paper.

Authorized licensed use limited to: Zhejiang University. Downloaded on September 07,2020 at 07:33:37 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3006898, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON DATA ENGINEERING 3

2 RELATED WORK

To make a causal inference, the golden standard approaches are
randomized experiments, such as A/B testing [3], where different
treatments are randomly assigned to units. However, fully ran-
domized experiments are frequently infeasible [5], [4] on many
occasions due to high costs or ethical reasons.

Rosenbaum and Rubin [6] proposed a causal inference frame-
work for causal inference in observational studies, based on the
propensity score which is estimated via logistic regression. Then,
many other machine learning algorithms (e.g. gradient boosted
machine, bagged CART and random forest) are employed to
estimate the propensity score [22], [23]. And various methods
have been proposed based on the propensity score, including
the propensity score matching, stratification on the propensity
score, inverse propensity weighting and regression on propen-
sity score [7], [24], [8], [6]. The inverse propensity weighting
is a commonly used method to control confounders for causal
inference in observational studies. It was first proposed in [25]
and had been part of a large family of causal models known
as the marginal structural model [10], [11]. With a combination
between inverse propensity weighting and regression, Bang and
Robins[12] proposed a doubly robust estimator, which is proven
to have a smaller asymptotic variance [26]. The inverse propensity
weighting and doubly robust methods have been widely used
in various fields, including economics [13], epidemiology [14],
health care [27], social science [16], political science [26] and
advertising [24].

Our work is distinct from these existing works which assume
all variables as confounders and adopt the causal framework
shown in Fig.2a. We propose to separate the confounders and ad-
justment variables and redesign a new causal framework shown in
Fig. 2b, utilizing the adjustment variables to reduce the variance of
estimated ATE. Furthermore, we propose a data-driven approach
to automatically separate confounders and adjustment variables
and simultaneously estimate treatment effect in observational
studies.

Our work is closely related to [21], which reduced the vari-
ance of estimated ATE in randomized experiments by adjusting
covariates with lasso regularizers. But our work differs from [21]
in that [21] is tailored for randomized experiments and there is
no need to deal with confounding in randomized experiments.
In observational studies, we need to control for confounding and
try to reduce variance by including adjustment variables in the
meantime. The crux of our paper is to wisely separate the two sets
of variables automatically.

Comparing to the preliminary version [28], this one comprises
a substantial amount of additional theoretical, algorithmic and
experimental efforts and contributions. Key points of differences
lie in the following aspects: First, as the proposed estimator
in our conference paper, we give theoretical analysis on both
bias and variance of the estimated treatment effect. Second, to
address the challenges from high dimensional variables and non-
linear regression, we extend our D2VD algorithm to a Non-
linear version, namely a Non-linear D2VD algorithm for treatment
effect estimation. Third, we report a series of statistical tests that
examine the performance of the Non-linear D2VD algorithm for
treatment effect estimation and find that the method achieves more
precise results than D2VD algorithm, especially in the settings
with nonlinear regression.

TABLE 1: Symbols and definitions.

Symbol Definition
n sample size
p dimension of variables

X ∈ Rn×p confounders
Z ∈ Rn×p adjustment variables
U ∈ Rn×p all variables, including X and Z

T treatment
Y potential outcome
Y obs observed outcome
Y ? transformed outcome
Y + adjusted transformed outcome
Sa units set with treated status (T = 1)
Sb units set with control status (T = 0)

3 ADJUSTED ATE ESTIMATOR

In this section, we first give the notations and assumptions for
the ATE estimation in observational studies, then propose a new
adjusted ATE estimator by utilizing the adjustment variables for
reducing the variance of estimated ATE.

3.1 Notations and Assumptions

As described in our causal diagram in Fig.2b, we define a treat-
ment as a random variable T and a potential outcome as Y (t)
which corresponds to a specific treatment T = t. In this paper,
we only consider binary treatment, that is t ∈ {0, 1}. We define
the units which received the treatment, which is T = 1, as treated
units and the others with T = 0 as control units. Then for each
unit indexed by i = 1, 2, · · · , n, we observe a treatment Ti, an
outcome Y obsi and a vector of variables Ui. Our observed outcome
Y obsi of unit i can be denoted by:

Y obsi = Yi(Ti) = Ti · Yi(1) + (1− Ti) · Yi(0), (1)

We use Sa and Sb to represent the units set with treated status
(T = 1) and control status (T = 0), respectively.

In our paper, for any column vector v = (v1, v2, · · · , vp)T ,
let ‖v‖22 =

∑p
i=1 v

2
i , and ‖v‖1 =

∑p
i=1 |vi|. Let � and 〈·, ·〉

refer to the Hadamard product and dot product of two vectors,
respectively.

In observational studies, there are three standard assumptions
[6] for ATE estimation.

Assumption 1: Stable Unit Treatment Value. The distribu-
tion of potential outcomes for one unit is assumed to be unaffected
by the particular treatment assignment of another unit when given
the observed variables.

Assumption 2: Unconfoundedness. The distribution of treat-
ment Ti for each unit i is independent of its potential out-
come (Yi(0), Yi(1)), given its observed variables Ui. Formally,
Ti ⊥ (Yi(0), Yi(1)) | Ui or p((Yi(0), Yi(1)) | Ti,Ui) =
p((Yi(0), Yi(1)) | Ui). 2

Assumption 3: Overlap. Every unit i has a nonzero proba-
bility to receive either treatment status when given the observed
variables. Formally, 0 < p(Ti = 1|Ui) < 1.

2. It means all the covariates/confounders that are related to both the
treatment T and the outcome (Y (0), Y (1)) have been included in the observed
variables U for all units.
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3.2 Adjusted ATE Estimator

The important goal of causal inference in observational studies is
to evaluate the ATE on outcome Y . The ATE represents the mean
(average) difference between the potential outcome of units under
treated and control status. Formally, the ATE is defined as:

ATE = E
[
Y (T = 1)− Y (T = 0)

]
, (2)

where E(·) refers to the expectation function.
The Eq. (2) is infeasible, because of “the counterfactual

problem” [24]. That is for each unit, we can only observe one
potential outcome corresponding to its treatment status, treated or
control.

One can address this counterfactual problem by approximating
the unobserved potential outcome. The simplest approach is to
directly compare the average outcome between the treated and
control units. In observational studies, however, comparing two
groups of units directly is likely to have a bias if the treatment
assignment is not random, as confounding impact is not taken into
account [24].

To unbiasedly evaluate the ATE in observational studies, one
has to control the impact of confounders. Under the assumptions
(1,2,3), [6] introduced the propensity score to summarize the
information required to control the confounders. The propensity
score, denoted by e(U), was defined as the probability of units
to be in treated status, i.e T = 1, when given all variables U.
Actually, from our causal framework in Fig. 2b, we know that
only confounders X are associated with the treatment, therefore

e(U) = p(T = 1|U) = p(T = 1|X) = e(X). (3)

Based on the propensity score, [25] proposed the transformed
outcome Y ? to address the counterfactual problem in Eq. (2)
with Inverse Propensity Weighting (IPW) estimator ÂTEIPW ,
see also [29]. Specifically, the treated units (T = 1) is weighted by
T
e(U) and estimate Ê(Y (T = 1)) = T ·Y obs

e(U) , the control units is

weighted by 1−T
1−e(U) and estimate Ê(Y (T = 0)) = (1−T )·Y obs

1−e(U) .
Then, the transformed outcome Y ? is defined as

Y ? = Ê(Y (T = 1))− Ê(Y (T = 0))

=
T · Y obs

e(U)
− (1− T ) · Y obs

1− e(U)

= Y obs · T − e(U)

e(U) · (1− e(U))

= Y obs · T − e(X)

e(X) · (1− e(X))
, (4)

and the IPW estimator is defined as

ÂTEIPW = Ê(Y ?) = Ê

(
Y obs · T − e(X)

e(X) · (1− e(X))

)
. (5)

However, most previous approaches based on propensity score
usually treat all observed variables as confounders when estimat-
ing the propensity score. This will make the estimated treatment
effect imprecise and with inflated variance because some vari-
ables could be non-confounders and have a direct impact on the
outcome.

Therefore, based on our causal diagram as shown in Fig. 2b,
we propose to separate all observed variables U into three sets,
the confounders X, the adjustment variables Z and irrelevant
variables I (Omitted in Fig.2b). And then, we propose a newly

adjusted estimator by incorporating adjustment variables to reduce
the variance of estimated ATE under the following assumption.

Assumption 4: Separateness. The observed variables U can
be decomposed into three sets, that is U = (X,Z, I), where
confounders X are associated with the treatment T and might be
correlated to the outcome Y ; adjustment variables Z are causally
related to outcome Y but independent with treatment T ; and
irrelevant variables I are independent with both treatment T and
outcome Y .

With assumption 4, we define our adjusted transformed out-
come Y + based on Y ? as

Y + =
(
Y obs − φ(Z)

)
· T − e(X)

e(X) · (1− e(X))
, (6)

where φ(Z) is associated with Z and refers to the effect of Z on
Y . (Y obs − φ(Z)) helps to reduce the variance among Y .

Then we propose the adjusted estimator ÂTEadj as

ÂTEadj = Ê(Y +) = Ê
((
Y obs − φ(Z)

)
· T−e(X)
e(X)·(1−e(X))

)
. (7)

In the next section, we will prove that our proposed adjusted
estimator can unbiasedly estimate treatment effect and achieve
more robust results than those estimators which assume all vari-
ables as confounders.

4 THEORETICAL ANALYSIS

In this section, we give the theoretical analysis about our adjusted
estimator ÂTEadj , including bias analysis and variance analysis.

4.1 Bias Analysis
For our adjusted transformed outcome Y + in Eq. (6), we have
following property.
Theorem 1. Under assumptions 1-4, we have

E(Y +|X,Z) = E(Y (1)− Y (0)|X,Z). (8)

Proof 1. Firstly, under assumption 4,

E

(
φ(Z) · T − e(X)

e(X) · (1− e(X))
|X,Z

)
(9)

=
φ(Z)

e(X) · (1− e(X))
· E (T − e(X)|X,Z) (10)

=
φ(Z)

e(X) · (1− e(X))
· (E (T |X)− e(X)) (11)

=
φ(Z)

e(X) · (1− e(X))
· (e(X)− e(X)) = 0. (12)

From Eq. (9) to Eq. (10): φ(Z), e(X) and 1 − e(X) are
constant when given X,Z. From Eq. (10) to Eq. (11): Under
assumption 4, T is independent with Z, hence E(T |X,Z) =
E(T |X). Then, with the definition of propensity score that
e(X) = E(T |X), we can obtain Eq. (12) from Eq. (11).
Secondly, it has been shown in the literature that
E(Y ?|X,Z) = E(Y (1) − Y (0)|X,Z), see, e.g., [29]. Then
we can derive

E(Y +|X,Z)

= E(Y ?|X,Z)− E
(
φ(Z) · T − e(X)

e(X) · (1− e(X))
|X,Z

)
= E(Y (1)− Y (0)|X,Z)
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Then we conclude that E(Y +|X,Z) = E(Y (1) −
Y (0)|X,Z).
With theorem 1, we can obtain following equation

E(Y +) = E(Y (1))− E(Y (0)). (13)

Therefore, our proposed adjusted estimator is unbiased for
treatment effect estimation in observational studies.

4.2 Variance Analysis
With our adjusted transformed outcome Y + as defined in Eq. (6),
we can rewrite the observed outcome Y obsi for each unit i as

Y obsi = Y +
i ·

e(Xi) · (1− e(Xi))

Ti − e(Xi)
+ φ(Zi) + e+i , (14)

where e+i is the unit-level residuals represented with Y +
i .

Similarly, we can rewrite the observed outcome Y obsi with the
definition of transformed outcome Y ∗ in Eq. (4) for each unit i
as:

Y obsi = Y ? · e(Xi) · (1− e(Xi))

T − e(Xi)
+ e?i , (15)

where e?i is the unit-level residuals represented with Y ?i .
Condition 1: There exists a fixed constant L > 0 such that

for all n = 1, 2, · · ·

1

n

n∑
i=1

(e+i )
4 < L,

1

n

n∑
i=1

(e?i )
4 < L,

Condition 2: The means n−1
∑n
i=1(e

+
i )

2, n−1
∑n
i=1(e

?
i )

2,
and n−1

∑n
i=1 e

+
i e

?
i converge to finite limits.

We denote by σ2
adj the asymptotic variance of our adjusted

estimator ÂTEadj , then, under conditions 1 & 2, and according
to Bloniarz et al. [21], we have√

|Sa|+ |Sb|
(
ÂTEadj −ATE

)
→ N (0, σ2

adj),

where Sa and Sb represent the units set with treated and control
status, respectively.

σ2
adj = lim

|Sa|+|Sb|→∞

( |Sb|
|Sa|

σ2
e+(1) +

|Sa|
|Sb|

σ2
e+(0) + 2σe+(1)e+(0)

)
,

where

σ2
e+(1) =

1

|Sa|+ |Sb|
∑
i∈Sa

(e
+(1)
i )

2
,

σ2
e+(0) =

1

|Sa|+ |Sb|
∑
i∈Sb

(e
+(0)
i )

2
,

σe+(1)e+(0) =
1

|Sa|+ |Sb|
∑

i∈Sa∪Sb

e
+(1)
i e

+(0)
i ,

and e+(1)
i and e+(0)

i represent the unit-level residuals e+i (see Eq.
14) of treated and control unit, respectively.

Similarity, denoting by σ2
IPW as the asymptotic variance of

estimators based on Inverse Propensity Weighting (we call them
as IPW estimators ÂTEIPW in this paper), we have

σ2
IPW = lim

|Sa|+|Sb|→∞

( |Sb|
|Sa|

σ2
e?(1) +

|Sa|
|Sb|

σ2
e?(0) + 2σe?(1)e?(0)

)
,

where e?(1)i and e?(0)i represent the unit-level residuals e?i (see Eq.
15) of treated and control unit, respectively.

With the σ2
adj and σ2

IPW , we have following theorem.

Theorem 2. The asymptotic variance of our adjusted estimator
ÂTEadj is no greater than IPW estimator ÂTEIPW :

σ2
adj ≤ σ2

IPW .

Proof 2. The difference between σ2
adj and σ2

IPW is

σ2
adj − σ2

IPW =
|Sb|
|Sa|

lim
|Sa|+|Sb|→∞

(
σ2
e+(1) − σ2

e?(1)

)
+
|Sa|
|Sb|

lim
|Sa|+|Sb|→∞

(
σ2
e+(0) − σ2

e?(0)

)
(16)

+ 2 lim
|Sa|+|Sb|→∞

(σe+(1)e+(0) − σe?(1)e?(0)) .

With the orthogonal regularizer between α and β in Eq. (23),
we can obtain φ(Z) and e(X) are the orthogonal projections
of the outcomes, we have(

Y ? · e(X) · (1− e(X))

T − e(X)

)T

φ(Z) = 0,

(
Y + · e(X) · (1− e(X))

T − e(X)

)T

φ(Z) = 0,

Then we have the following three equalities:

σ2
e+(1) − σ2

e?(1) = ||e
+(1)||

2

2 − ||e
?(1)||

2

2 = −||φ(Z)||22 ≤ 0,

σ2
e+(0) − σ2

e?(0) = ||e
+(0)||

2

2 − ||e
?(0)||

2

2 = −||φ(Z)||22 ≤ 0,

σe+(1)e+(0) − σe?(1)e?(0) =
(
e+(1)

)T(
e+(0)

)
−
(
e?(1)

)T(
e?(0)

)
= −||φ(Z)||22 ≤ 0.

And with Equation (16), we conclude that

σ2
adj − σ2

IPW ≤ 0.

Therefore, our adjusted estimator is unbiased and has a smaller
variance than those estimators which assume all variables as con-
founders, such as the IPW estimator. This enables us to construct
tighter confidence intervals for the true ATE.

5 D2VD ALGORITHM AND OPTIMIZATION

In this section, we give the details of our Data-Driven Variable
Decomposition (D2VD) algorithm for automatically separating
confounders and simultaneously estimating the treatment effect.
We also introduce the parameter tuning method for the “no ground
truth” problem in observational causal inference.

5.1 D2VD Algorithm

With our adjusted estimator in Eq. (7), we can obtain estimated
ATE by regressing our adjusted transformed outcome Y + against
the variables U and minimizing the following objective function

min
φ(·),e(·),h(·)

‖Y + − h(U)‖2, (17)

where h(U) denotes the effect of U on our adjusted transformed
outcome Y + with a function h. Then, the estimated ATE by our
adjusted estimator ÂTEadj can be obtained by E(h(U)).
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In practice, we specify φ(Z) and h(U) as linear functions3

with coefficient vector α and γ, that is

φ(Z) = Zα, (18)

h(U) = Uγ, (19)

and adopt the linear-logistic regression to evaluate the propensity
score e(X) with coefficient vector β:

e(X) = p(T = 1|X) =
1

1 + exp(−Xβ)
. (20)

For simplifying the equations and formulations in our paper,
we involve the inverse propensity weighting function W (β) as a
function of the coefficient vector β:

W (β) :=
T − e(X)

e(X) · (1− e(X))

= (2T − 1n)�
(

1n + exp
(
(1n − 2T )� Xβ

))
(21)

where� denoted the Hadamard product and 1n = [1, 1, · · · , 1︸ ︷︷ ︸
n

]T .

In the specifications of Equations (18, 20, 21), we have
assumed the knowledge of the decomposition U = (X,Z, I).
Nevertheless, we don’t know the exact separation in practice.
Hence we use the full set of candidate variables U to replace
X and Z instead, and use automatic algorithm to achieve the
separation. We update our objective function in Eq. (17) as:

min ‖(Y obs − Uα) ·W (β)− Uγ‖22, (22)

s.t. ‖α‖1 ≤ λ,
‖β‖1 ≤ δ,
‖γ‖1 ≤ η,
〈α, β〉 = 0.

where the coefficient vector α is optimized for separating the
adjustment variables Z and β is for separating confounders X form
variables U. We can obtain the ATE by estimating E(Uγ). That is,
with the optimized coefficient vectors α, β and γ, we can separate
the confounders and adjustment variables and simultaneously
estimate the ATE.

In particular, we employ an orthogonal regularizer on α and
β for ensuring the separation of confounders and adjustment
variables. Besides, we add L1 penalties on α, β and γ to eliminate
irrelevant variables I and to further reduce variance and address
the sparseness problem of variables.

Then with the lagrangian from Eq. (22), we can rewrite
our objective function, denoted as J (α, β, γ), with the penalty
regularizers as:

J (α, β, γ) = ‖(Y obs − Uα) ·W (β)− Uγ‖22 (23)

+λ‖α‖1 + δ‖β‖1 + η‖γ‖1 + µ‖αTβ‖22.

To minimize the objective function J (α, β, γ) with L1 norm
regularizer which is non-smooth and undifferentiable,, we adopt
the proximal gradient algorithm [30]. For each optimizing step in
proximal gradient algorithm, we used the proximal operator [30]
for L1 norm regularizer.

3. In practice, higher order terms or interaction terms of the original
variables can be included in U. Thus the linearity assumption is not as stringent
as it seems.

First, we split our objective function J (α, β, γ) into two
parts: the differentiable part f(α, β, γ) and the undifferentiable
part g(α, β, γ) (simplified as J , f and g). That is

J = f(α, β, γ) + g(α, β, γ), (24)

f = ‖(Y obs − Uα) ·W (β)− Uγ‖22 + µ‖αTβ‖22, (25)

g = λ‖α‖1 + δ‖β‖1 + η‖γ‖1. (26)

Then with the operator splitting property [30] of proximal
gradient algorithm, we can get the optimized parameter (i.e.,
α(t+1)) at the tth iteration by proximal operator proxκ(t)g of
function g(·) with the step size κ(t):

α(t+1) = proxκ(t)g

(
α(t) − κ(t) ∂f(·)

∂α

)
(27)

where ∂f(·)
∂α refers to the gradient of function f(·) on the variable

α and we set

proxκ(t)g(x) = (x− κ(t) · λ)+ − (−x− κ(t) · λ)+

=


xi − κ(t) · λ xi ≥ κ(t) · λ
0 |xi| ≤ κ(t) · λ
xi + κ · λ xi ≤ −κ(t) · λ

(28)

The λ in Eq. (28) is the coefficient of variable α in function g(·).
If the optimized parameter is β, then it should be δ and should be
η for optimized parameter γ.

With the proximal gradient algorithm, we can minimize the
objective function in Eq. (23). That is, starting from some random
initialization on α, β, γ, we solve each of them alternatively with
the other two parameters as fixed and step by step until conver-
gence. Obviously, the objective function J (α, β, γ) is bounded
below by 0 and the alternating proximal gradient search procedure
will reduce it monotonically, the algorithm is guaranteed to be
convergent. Specifically, the gradients of the function f(α, β, γ)
with the respect to the variables are:

∂f(·)
∂α

= −2(W (β) · 1Tp � U)T

·
(
(Y − Uα)�W (β)− Uγ

)
+ 2µβ,

∂f(·)
∂β

= 2

(
(Y − Uα) · 1Tp �

∂W (β)

∂β

)T

·
(
(Y − Uα)�W (β)− Uγ

)
+ 2µα,

∂f(·)
∂γ

= −2UT ·
(
(Y − Uα)�W (β)− Uγ

)
.

where
∂W (β)

∂β
= (2T − 1n)� exp

(
(1n − 2T )� Uβ

)
� (1n − 2T ) · 1Tp � U,

and 1n = [1, 1, · · · , 1︸ ︷︷ ︸
n

]T, 1p = [1, 1, · · · , 1︸ ︷︷ ︸
p

]T.

Thus, we apply the following proximal gradient based ap-
proach on our Data-Driven Variable Decomposition algorithm as
describe in Algorithm 1.

The function f̂κ(·) in Algorithm 1 is defined as:

f̂κ(x, y) = f(y) + (x− y) + ∂f(·)
∂x

T

(1/(2κ))‖x− y‖22. (29)

Our model can be applied in the real system to deal with the
causal inference problem in observational studies.

Authorized licensed use limited to: Zhejiang University. Downloaded on September 07,2020 at 07:33:37 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3006898, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON DATA ENGINEERING 7

Algorithm 1 Data-Driven Variable Decomposition Algorithm

Require: Initialization J (0) = J (α(0), β(0), γ(0)).
Ensure: J (0) ≥ 0, J (t+1) < J (t)

for t = 1, 2, · · · do
Calculate ∂f(·)

∂α , ∂f(·)∂β and ∂f(·)
∂γ

κ = 1
while 1 do

Let α(t+1) = proxκg
(
α(t) − κ∂f(·)∂α

)
break if f(α(t+1)) ≤ f̂κ(α(t+1), α(t))
Update κ = 1

2κ
end while
κ = 1
while 1 do

Let β(t+1) = proxκg
(
β(t) − κ∂f(·)∂β

)
break if f(β(t+1)) ≤ f̂κ(β(t+1), β(t))
Update κ = 1

2κ
end while
κ = 1
while 1 do

Let γ(t+1) = proxκg
(
γ(t) − κ∂f(·)∂γ

)
break if f(γ(t+1)) ≤ f̂κ(γ(t+1), γ(t))
Update κ = 1

2κ
end while

J (t+1) = J (α(t+1), β(t+1), γ(t+1))

end for

5.2 Complexity Analysis
By analyzing the procedure of optimization in Algorithm 1, we
know the main cost is to calculate the loss J (α, β, γ) and update
those parameters including α, β, and γ. We analyze the time
complexity of each of them respectively. For the calculation of
the loss, its complexity is O(np), where n is the sample size
and p is the dimension of observed variables. The complexity
of updating parameter α is dominated by the step of calculating
the partial gradients of function f(·) with respect to variable α.
The complexity of ∂f(·)

∂α is O(np). For updating parameter β,
it complexity is dominated by the step of calculating ∂f(·)

∂β and
∂W (β)
∂α , their complexity are also O(np). Similarly, we can find

the complexity of updating parameter γ is also O(np).
In total, the complexity of each iteration in Algorithm 1 is

O(np).

5.3 Parameters Tuning
The main challenge of parameter tuning for causal inference
algorithms in observational studies is that there is no ground truth
about the true ATE.

To address this challenge, we employed the matching method
to evaluate the ATE and set it as “approximal ground truth” like
Athey and Imbens did in [29]. Specifically, for each unit i, find
its closest match among the units with opposite treatment status in
the test dataset:

match(i) = arg min
j:Tj=1−Ti

‖Ui − Uj‖22. (30)

We can estimate the true ATE with matching estimator
ATEmatching by comparing the average outcome between the
matched treated and control units sets. We set it as “approximal

ground truth”. With the “approximal ground truth”, we can tune
parameters of our algorithm with cross-validation by grid search-
ing.

6 NON-LINEAR D2VD ALGORITHM

In previous section, we assume the function between adjustment
variables Z and outcome Y , and function between confounders X
and treatment T are linear and linear-logistic in Eq. (18) and Eq.
(20). In practice, those functions might be non-linear structures in
real applications.

To address these challenges, we adopt a neural network to
learn a non-linear representation of variables and finally extend
our D2VD algorithm to a non-linear version, namely Non-linear
D2VD Algorithm. To make sure we can correctly specify the
propensity score model, which is very important for propensity
score based methods, we keep the function between confounders
X and treatment T as linear-logistic, but the function between
adjustment variables Z and outcome Y is non-linear. Then, the
objective function of our N-D2VD algorithm can be written as:

J (A, α, β, γ) = ‖(Y obs − h(U,A)α) ·W (β)− Uγ‖22 (31)

+λ‖α‖1 + δ‖β‖1 + η‖γ‖1 + µ‖βTA(1)‖1.

where A refers to the parameters in neural network for learning
non-linear representation of variables h(U,A). Given the input U,
the hidden representations for each layer in neural network are
shown as follows:

h(U)(1) = σ(UA(1) + b(1)) (32)

h(U)(k) = σ(h(U)(k−1)A(k) + b(k)), k = 2, · · · ,K

where K is the number of layer. A(k) and b(k) are weight
matrix and bias on kth layer. σ(·) represents non-linear activation
function4. h(U,A) = h(U,A)(K) is the hidden representation of
final layer.

In Eq. 31, the orthogonal constraint ‖βTA(1)‖1 helps to
make sure the separation of confounders and adjustment variables,
where A(1) is the weight matrix in the first layer of neural network
for learning non-linear representation of adjustment variables as
we have shown in Eq. 32, and β is the coefficient of confounders
for estimating propensity score as we have shown in Eq. 20.

Finally, with the optimized parameters A(1), β, and γ, we can
separate the confounders and adjustment variables, and simultane-
ously estimate the ATE. Note that, we only consider the non-linear
function between adjustment variables Z and outcome Y in our N-
D2VD algorithm, the non-linear function between confounders X
and treatment T can also be easily incorporated.

7 EXPERIMENTS

In this section, we check the performance of our proposed al-
gorithms on treatment effect estimation with multiple synthetic
datasets and two real-world datasets.

4. We use sigmoid function σ(x) = 1
1+exp(−x)

as non-linear activation
function.

Authorized licensed use limited to: Zhejiang University. Downloaded on September 07,2020 at 07:33:37 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3006898, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON DATA ENGINEERING 8

TABLE 2: Results on synthetic dataset in different settings. The Bias refers to the absolute error between the true and estimated ATE.
The SD, MAE and RMSE represent the standard deviations, mean absolute errors and root mean square errors of estimated ATE (ÂTE)
after 50 times independently experiments, respectively. The smaller Bias, SD, MAE and RMSE, the better.

p p=50 p=100 p=150
T/n Estimator Bias SD MAE RMSE Bias SD MAE RMSE Bias SD MAE RMSE

T = Tlogit

n = 10000

ÂTEDIR 1.345 0.201 1.345 1.36 1.744 0.222 1.744 1.758 1.922 0.301 1.922 1.946
ÂTELASSO 0.053 0.260 0.206 0.266 0.091 0.362 0.302 0.374 0.100 0.328 0.258 0.343
ÂTEIPW 0.117 0.867 0.652 0.875 0.031 0.631 0.422 0.632 0.081 0.569 0.491 0.575
ÂTEDR 0.127 0.839 0.641 0.848 0.028 0.529 0.386 0.53 0.09 0.561 0.49 0.568

ÂTED2V D 0.102 0.283 0.243 0.299 0.112 0.319 0.253 0.336 0.016 0.343 0.252 0.34
ÂTEN−D2V D 0.016 0.17 0.136 0.17 0.018 0.148 0.116 0.149 0.027 0.203 0.163 0.205

T = Tlogit

n = 20000

ÂTEDIR 1.345 0.11 1.345 1.35 1.714 0.171 1.714 1.722 1.858 0.223 1.858 1.872
ÂTELASSO 0.049 0.185 0.141 0.191 0.010 0.219 0.172 0.219 0.010 0.227 0.186 0.227
ÂTEIPW 0.071 0.724 0.476 0.727 0.047 0.467 0.387 0.47 0.034 0.408 0.325 0.409
ÂTEDR 0.071 0.689 0.472 0.692 0.051 0.439 0.376 0.442 0.026 0.395 0.3 0.395

ÂTED2V D 0.145 0.169 0.18 0.221 0.099 0.208 0.183 0.228 0.177 0.284 0.269 0.332
ÂTEN−D2V D 0.054 0.120 0.109 0.131 0.031 0.124 0.108 0.128 0.017 0.114 0.09 0.115

T = Tmissp

n = 10000

ÂTEDIR 1.118 0.196 1.118 1.135 1.52 0.348 1.52 1.559 1.896 0.326 1.896 1.924
ÂTELASSO 0.010 0.203 0.161 0.203 0.041 0.336 0.270 0.338 0.011 0.393 0.310 0.393
ÂTEIPW 0.123 0.301 0.263 0.325 0.177 0.468 0.39 0.5 0.157 0.476 0.394 0.501
ÂTEDR 0.092 0.308 0.257 0.322 0.054 0.501 0.403 0.504 0.016 0.512 0.421 0.513

ÂTED2V D 0.262 0.158 0.264 0.305 0.186 0.312 0.295 0.361 0.27 0.343 0.347 0.434
ÂTEN−D2V D 0.099 0.075 0.106 0.125 0.075 0.118 0.119 0.14 0.084 0.203 0.176 0.22

T = Tmissp

n = 20000

ÂTEDIR 1.099 0.135 1.099 1.107 1.525 0.203 1.525 1.539 1.926 0.235 1.926 1.94
ÂTELASSO 0.043 0.164 0.144 0.170 0.072 0.257 0.227 0.267 0.047 0.254 0.204 0.259
ÂTEIPW 0.084 0.22 0.182 0.235 0.174 0.26 0.252 0.313 0.269 0.346 0.36 0.438
ÂTEDR 0.01 0.226 0.182 0.226 0.034 0.274 0.232 0.276 0.141 0.355 0.313 0.382

ÂTED2V D 0.275 0.128 0.276 0.303 0.247 0.226 0.285 0.333 0.229 0.253 0.284 0.339
ÂTEN−D2V D 0.087 0.060 0.092 0.106 0.073 0.087 0.093 0.113 0.060 0.101 0.093 0.118

7.1 Baseline Estimators

We implement the following baseline estimators to evaluate the
ATE for comparison.
• Direct Estimator ÂTEDIR: It evaluates the ATE by directly

comparing the average outcome between the treated and con-
trol units. It ignores the confounding effect of confounders
on treatment.

• Linear Regression with LASSO ÂTELASSO[31]: It directly
regresses outcome on treatment and observed variables, and
evaluates the ATE with the regression coefficient of treatmen-
t. It ignores the confounding effect between confounders and
treatment.

• IPW Estimator ÂTEIPW [6]: It evaluates the ATE via
reweighting observations with inverse of propensity score. It
treats all variables as confounders and ignores the adjustment
variables.

• Doubly Robust Estimator ÂTEDR [12]: It evaluates the ATE
by combination of IPW and regression methods. It ignores
the separation of confounders and adjustment variables.

In this paper, we implemented ÂTEIPW and ÂTEDR with
lasso regression [31] for variables selection in high dimensional
settings.

7.2 Evaluation Metrics

In our experiments, we perform the task of treatment effect
estimation. To evaluate the performance of our proposed methods,
we carry out the experiments for 50 times independently. Based
on the estimated treatment effect (ÂTE) in each experiment, we
calculate and report its Bias, standard deviations (SD), mean

absolute errors (MAE) and root mean square errors (RMSE)
with following definitions:

Bias = | 1K
∑K
k=1 ÂTEk −ATE|

SD =
√

1
K

∑K
k=1(ÂTEk − 1

K

∑K
k=1 ÂTEk)

2

MAE = 1
K

∑K
k=1 |ÂTEk −ATE|

RMSE =
√

1
K

∑K
k=1(ÂTEk −ATE)2

where K is the number of experiments, ÂTEk is the estimated
ATE in kth experiment and ATE represents the true treatment
effect.

7.3 Experiments on Synthetic Data

7.3.1 Dataset

To generate the synthetic dataset, we set the sample size
n = {10000, 20000} and the dimension of observed vari-
ables p = {50, 100, 150}. We first generate the variables
U = (X,Z, I) = (x1, · · · , xpx , z1, · · · , zpz , i1, · · · , ipi) with
independent gaussian distributions as

x1, · · · , xpx , z1, · · · , zpz , i1, · · · , ipi
iid∼ N (0, 1)

where px, pz and pi represent the dimension of confounders X,
adjustment variables Z and irrelevant variables I, respectively. And
px = 0.2 ∗ p, pz = 0.2 ∗ p, pi = 0.6 ∗ p.
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To test the robustness of all estimators, we generate the binary
treatment variable T from a logistic function (Tlogit) and a
misspecified function (Tmissp) as

Tlogit ∼ Bernoulli(1/(1 + exp(−
px∑
i=1

xi · r))) and

Tmissp =

{
1 if

∑px
i=1 xi/

√
p/5 +N (0, 1) > 0.5

0 otherwise

where r = 50/p.

The outcome Y is generated as

Y =

px∑
i=1

xi · ωi +
pz∑
j=1

zjzj+1 · ρj + T +N (0, 1),

In synthetic dataset, the features X = (x1, x2, · · · , xpx) are
correlated to the treatment and outcome, simulating a confound-
ing effect. From the generation of outcome, we know the true
treatment effect in synthetic dataset is 1.

7.3.2 Treatment Effect Estimation
To evaluate the performance of our proposed method, we carry out
the experiments 50 times independently. Based on our estimated
ATE, we calculate theBias, SD, MAE, and RMSE, and report the
results in Tab. 2, where the smaller Bias, SD, MAE and RMSE
are better. From Tab. 2, we have following observations.
• The direct estimator (ÂTEDIR) is failed (with large Bias)

under all settings because it ignores the confounders, hence
did not consider the confounding effect.

• Linear regression (ÂTELASSO) can improve the accuracy
of the treatment effect than the direct method. But its perfor-
mance is worse than our propose method since it ignores the
confounding bias between treatment and observed variables.

• The IPW estimator (ÂTEIPW ) can estimate the ATE more
precisely (with smaller Bias) when T = Tlogit, but with a
bigger Bias when propensity score model is misspecified by
setting T = Tmissp.

• With a combination of IPW and regression models, the DR
estimator (ÂTEDR) can get better performance than the
IPW estimator, especially when T = Tmissp, but with higher
variance (or SD) than regression model (ÂTELASSO).

• With considering the separation between confounders and
adjustment variables, our D2VD estimator (ÂTED2V D) can
improve the accuracy (smaller Bias) and reduce the variance
(smaller SD) for ATE estimation from DR and IPW baseline
estimators under different settings.

• By utilizing the neural network to capture the nonlinear
structure among variables, our proposed Nonlinear D2VD
estimator (ÂTEN−D2V D) is better than D2VD algorithm,
and almost achieves the best performance for treatment effect
estimation over all settings.

To deeply demonstrate the advantages of our proposed method,
we also show the results of ATE by varying the proportion of
confounders and adjustment variables ( px

px+pz
) in Table 3. From

the results, we find that the bias of ÂTEDIR increased as increas-
ing in the proportion of confounders px

px+pz
from 10% to 90%,

this is because more confounders bring larger confounding bias in
data. By comparing with all baselines, our method ÂTEN−D2V D

achieved the best performance for treatment effect estimation
over all settings with different proportions of confounders and
adjustment variables.

TABLE 4: Separation results of confounders X and adjustment
variables Z from our D2VD estimator. The closer to 1 for TPR
and TNR is better.

T = Tlogit

p = 50 p = 100 p = 150
n TPR TNR TPR TNR TPR TNR

n = 10000
X 1.000 1.000 1.000 1.000 0.907 1.000
Z 0.466 0.519 0.536 0.415 0.583 0.363

n = 20000
X 1.000 1.000 1.000 1.000 0.970 1.000
Z 0.296 0.6870 0.389 0.572 0.470 0.504

T = Tmissp

n p = 50 p = 100 p = 150
n TPR TNR TPR TNR TPR TNR

n = 10000
X 1.000 1.000 0.915 1.000 0.590 1.000
Z 0.418 0.545 0.522 0.433 0.587 0.370

n = 20000
X 1.000 1.000 0.962 1.000 0.365 1.000
Z 0.226 0.700 0.388 0.593 0.447 0.497

TABLE 5: Separation results of confounders X and adjustment
variables Z from our N-D2VD estimator. The closer to 1 for TPR
and TNR is better.

T = Tlogit

p = 50 p = 100 p = 150
n TPR TNR TPR TNR TPR TNR

n = 10000
X 1.000 1.000 1.000 1.000 1.000 1.000
Z 1.000 0.994 1.000 0.94 1.000 0.999

n = 20000
X 1.000 1.000 1.000 1.000 1.000 1.000
Z 1.000 1.000 1.000 0.999 1.000 0.999

T = Tmissp

n p = 50 p = 100 p = 150
n TPR TNR TPR TNR TPR TNR

n = 10000
X 1.000 1.000 1.000 1.000 1.000 1.000
Z 1.000 0.983 1.000 0.937 1.000 0.999

n = 20000
X 1.000 1.000 1.000 1.000 1.000 1.000
Z 1.000 1.000 1.000 0.999 1.000 0.999

7.3.3 Variables Decomposition

As we described before, with the optimized α̂ and β̂, our D2VD
algorithm can separate the confounders as X = {Ui : β̂i 6= 0}
and adjustment variables as Z = {Ui : α̂i 6= 0}. To demonstrate
the performance of automated variables decomposition of our
algorithm, we carry out the experiments 50 times independently
and report the true positive rate (TPR) and true negative rate
(TNR) in Tab. 4 and 5. The formulations of TPR and TNR for
separated confounders X are defined as

TPR =
#{β̂i 6= 0, βi 6= 0}

#{βi 6= 0}
,TNR =

#{β̂i = 0, βi = 0}
#{βi = 0}

. (33)

In the same way, we calculate the TPR and TNR for separated
adjustment variables Z via Eq. (33) by using parameter α̂.

Similarly, we can obtain the results of variables decomposition
of our N-D2VD algorithm with its optimized parameters Â

(1)
and

β̂.
Tab. 4 and 5 demonstrate the results of variables decompo-

sition of our D2VD and N-D2VD algorithms, respectively. From
Tab. 4, we know that our D2VD can separate the confounders X
more precisely when T = Tlogit, comparing with T = Tmissp.
This is because of the logistic assumption of treatment assignment
in our algorithm is correct. Even in the setting T = Tmissp,
our D2VD algorithm can still precisely separate the confounders.
This enables us to estimate the propensity score more accurately
for better treatment effect estimation. However, Tab. 4 show that
our D2VD cannot separate the adjustment variables precisely, the

Authorized licensed use limited to: Zhejiang University. Downloaded on September 07,2020 at 07:33:37 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3006898, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON DATA ENGINEERING 10

TABLE 3: Results by varying the proportion of confounders and adjustment variables ( px
px+pz

) under setting T = Tlogit, n =
10000, p = 50, where px + pz = 20. The smaller Bias, SD, MAE and RMSE, the better.

T = Tlogit, n = 10000, p = 50, px + pz = 20
px

px+pz
Methods ÂTEDIR ÂTELASSO ÂTEIPW ÂTEDR ÂTED2V D ÂTEN−D2V D

90%

Bias 1.633 0.038 0.062 0.030 0.014 0.036
SD 0.090 0.092 0.286 0.221 0.108 0.063

MAE 1.633 0.080 0.214 0.172 0.089 0.061
RMSE 1.636 0.100 0.293 0.224 0.108 0.073

70%

Bias 1.478 0.059 0.093 0.101 0.075 0.010
SD 0.129 0.187 0.346 0.311 0.168 0.112

MAE 1.478 0.165 0.288 0.257 0.147 0.079
RMSE 1.484 0.196 0.358 0.328 0.182 0.112

50%

Bias 1.345 0.053 0.117 0.127 0.102 0.016
SD 0.201 0.260 0.867 0.839 0.283 0.170

MAE 1.345 0.206 0.652 0.641 0.243 0.136
RMSE 1.360 0.266 0.875 0.848 0.299 0.170

30%

Bias 0.987 0.095 0.005 0.016 0.112 0.008
SD 0.219 0.333 0.630 0.617 0.292 0.133

MAE 0.987 0.281 0.479 0.463 0.256 0.100
RMSE 1.011 0.347 0.630 0.618 0.310 0.133

10%

Bias 0.467 0.039 0.081 0.083 0.124 0.010
SD 0.239 0.315 0.356 0.355 0.241 0.104

MAE 0.477 0.256 0.321 0.318 0.217 0.081
RMSE 0.524 0.318 0.365 0.364 0.269 0.104
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Fig. 3: Parameters tuning.

value of TPR and TNR on adjustment variables Z is far from
1. This is induced by the incorrectly specified function between
adjustment variables and outcome.

With considering the non-linear representation on adjustment
variables Z, our N-D2VD algorithm can simultaneously separate
the confounders X and adjustment variables Z precisely, as shown
in Tab. 5. Even in the setting T = Tmissp, our algorithm can still
simultaneously precisely separate the confounders and adjustment
variables. This is the key reason that our N-D2VD algorithm
achieves better performance than D2VD algorithm on treatment
effect estimation. Hence, enabling us to estimate the ATE more
accurately and with tighter confidence intervals than the state-of-
the-art methods.

7.4 Experiments on Real Advertising Data

7.4.1 Dataset

The real online advertising dataset we used is collected during
Sep. 2015 from Tencent WeChat App5. In WeChat, each user can
share posts to his/her friends and receive posts from friends like in
Twitter and Facebook. The advertisers can push advertisements
to users, by merging them into a list of the user’s wallposts.
There are two types of feedback on the advertisements: “Like”
and “Dislike”.

5. http://www.wechat.com/en/

The online advertising campaign is about LONGCHAMP
handbags for young ladies6. This campaign contains 14,891 user
feedbacks with Like and 93,108 Dislikes. For each user, we have
56 features including (1) demographic attributes, such as age,
gender, (2) number of friends, (3) device (iOS or Android), and
(4) the user settings on WeChat, for example, whether allowing
strangers to see his/her album (“Share Album to Strangers”)
and whether installing the online payment service (“With Online
Payment”).

7.4.2 Experimental Settings
In our experiments, we set the feedback of users about the
advertisement as the outcome Y . Specifically, we set the outcome
Yi = 1 when the user i likes the advertisement and Yi = 0 if user
i dislikes it. And we alternatively set one of the features as the
treatment T and all other features as the variables U. So that we
can evaluate the ATE of each feature.

During the parameters tuning, we set the matching threshold
ε = 5, which makes the matching estimator is close to the
exact matching and we can obtain the “approximal ground truth”.
With regard to parameters settings, we have λ and δ as the
relative weights of L1 norm on the confounder coefficients and
adjustment variable coefficients, η as the relative weight of L1

norm on average causal effect coefficients, and µ as the relative

6. http://en.longchamp.com/en/womens-bags
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weight of L2 norm for enforcing separation of confounders and
adjustment variables. In detail, we tuned these 4 parameters with
cross-validation by grid searching with the “approximal ground
truth”. In Fig.3, we show the change of Bias Error between
estimated and true treatment effect with respect to different values
of parameters. And we obtain the best parameters λ = 30, δ = 50,
η = 70 and µ = 30 for our D2VD algorithm.

7.4.3 Treatment Effect Estimation
For each user feature, we employ our D2VD algorithm to estimate
its ATE on the outcome. Tab. 6 shows the top-ranked features by
their absolute ATE estimated with our D2VD estimator, compar-
ing with baseline estimators and the “approximal ground truth”
ATEmatching . Note that the ATEmatching has very rigorous
requirements on the sample size with exactly matching. For some
user features, we do not have a sufficient number of samples thus
we cannot derive their ATEmatching .

From Tab. 6, we have following observations.
O1. Our D2VD estimator evaluates the ATE more accurately

than baseline estimators. With separated confounders, the ATE
estimated by our D2VD estimator is closer to the “approximate
ground truth” ATEmatching . While the IPW and DR estimators,
which treat all variables as confounders, generate a huge error
in estimating ATE for some features, even make the wrong
estimation of the ATE polarity (positive or negative), such as
feature WithDelicacyP lugin for IPW estimator and feature
Gender for DR estimator.

O2. Our D2VD estimator can reduce the variance of estimated
ATE from baseline estimators. With regression on separated ad-
justment variables, our estimator obtains smaller SD than IPW and
DR estimators, where the IPW estimator ignores the adjustment
variables and the DR estimator makes regression on all variables,
ignoring the variables separation.

O3. Younger ladies are with higher probability to like the ad-
vertisement about LONGCHAMP handbags. The ATE of Age(>
33) is −0.284 and Gender(Male) is −0.073, which indicates
that the younger ladies have a higher probability of like the
advertisement. This is consistent with our intuition since the
LONGCHAMP advertisement is mainly designed for young ladies
as their potential customers.

Some features in Tab. 6 cannot be intuitively interpreted for
their causal effect on users’ Like behaviors. We attribute this to
the mediational effect [32] of unobserved confounders or variables
on them, which are common in previous studies in causal effects.

7.4.4 Case Studies on Variables Decomposition
We illustrate several case studies to demonstrate the separation
results of confounders and adjustment variables when employing
our D2VD algorithm for causal inference in an online advertising
campaign. Our case studies include two different treatments, “Add
friends by Shake” and “With WeChat Album”.

Treatment 1: Add friends by Shake. Shake7 is a two-way func-
tion where both people using this function at the same time can
see each other and make friends on WeChat. Tab. 7 shows the sep-
aration results between confounders and adjusted variables when
we set “Add friends by Shake” as the treatment. The confounders
are many other ways for adding friends on WeChat, which have
a significant causal effect to the treatment, such as “With Drift

7. https://rumorscity.com/2014/07/25/how-to-add-friends-on-wechat-7-
ways/

TABLE 7: Confounders and adjustment variables when we set the
“Add friends by Shake” as treatment.

Confounders Adjustment Variables
With Drift Bottle plugin No. friends
Add friends by People Nearby Age
Add friends by QQ Contacts With WeChat Album
Without Friends Confirmation Plugin Device

TABLE 8: Confounders and adjustment variables when we set the
“With WeChat Album” as treatment.

Confounders Adjustment Variables
Open WeChat Album Service Friends Count
With High-Definition Head Portrait Age
Open to Strangers With Drift Bottle Plugin
With Personal Information Device

Bottle Plugin” which is a channel to add friends via “Drift Bottle”
among strangers, “Add friends by People Nearby” which allows
one can look around and make friends with people nearby and
“Add friends by QQ Contacts” which allows one make friends
by contracts of QQ app (QQ is another communicational app of
Tencent). The confounder “Without Friends Confirmation Plugin”
which allows strangers to make friends with you without sending
an initial friend request to you, indicating that you are willing
to make friends with strangers. The confounders are precisely
separated, hence we can better eliminate their confounding effect
on the treatment and obtain more accurate ATE of the feature “Add
friends by Shake”.

While the adjustment variables, for example, the “No. friends”
and “Age”, are not associated with the treatment but have a
significant effect on the outcome. As shown in Tab. 6, the features
“No. friends” and “Age” are the top-2 ranked features that are
causally related to outcome. With the precisely separated adjusted
variables, we can reduce the variance of estimated ATE by our
estimator.

Treatment 2: With WeChat Album. On WeChat, users can share
albums with their friends. Tab. 8 shows the separation results of
confounders and adjusted variables when we set “With WeChat
Album” as treatment. One wants to have the album on WeChat,
he/she need to open the service first, hence the feature “Open
WeChat Album Service” should be the confounder. On the other
hand, the users with a high-definition head portrait on WeChat
may have an album with high probability. Therefore, the separated
confounders are highly related to the treatment. While the adjusted
variables are independent with treatment and have an important
impact on the outcome, such as the “No. friends” and “Age”. With
the precisely separated confounders and adjustment variables of
treatment “With WeChat Album”, we can estimate its ATE more
accurately with a smaller variance than other baseline estimators.

7.4.5 Like or Dislike Prediction

In addition to estimating the causal effect, we are also interested in
whether the top k features selected by our adjusted estimator, can
get good performance in predicting the Like and dislike behaviors
of users. We compare with both IPW estimator, direct estimator,
and the commonly used methods for correlation-based feature
selection, including MRel (Maximum Relevance) [33] and mRMR
(Maximum Relevance Minimum Redundancy) [34]. We use MAE
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TABLE 6: The top ranked features by their absolute ATE estimated with our D2VD estimator ÂTED2V D, comparing with the baseline
estimator ÂTEIPW and ÂTEDR. The ATEmatching is the “approximal ground truth” by matching method, “n/a” means that we
cannot obtain the ATE from matching method since the number of matching samples are not sufficient.

No. Features ÂTED2V D (SD) ÂTEIPW (SD) ÂTEDR (SD) ATEmatching

1 No. friends (> 166) 0.295 (0.018) 0.240 (0.026) 0.297(0.021) 0.276
2 Age (> 33) -0.284 (0.014) -0.235 (0.029) -0.302(0.068) -0.263
3 Share Album to Strangers 0.229 (0.030) 0.236 (0.030) -0.034(0.021) n/a
4 With Online Payment 0.226 (0.019) 0.260 (0.029) 0.244(0.028) n/a
5 With High-Definition Head Portrait 0.218 (0.028) 0.203 (0.032) 0.237(0.046) n/a
6 With WeChat Album 0.191 (0.014) 0.237 (0.021) 0.097(0.050) n/a
7 With Delicacy Plugin 0.124 (0.038) -0.253 (0.037) 0.067(0.051) 0.099
8 Device (iOS) 0.100 (0.024) 0.206 (0.012) 0.060(0.021) 0.085
9 Add friends by Drift Bottle -0.098 (0.012) 0.016 (0.019) -0.115(0.015) -0.032
10 Gender (Male) -0.073 (0.017) -0.240 (0.029) 0.065(0.055) -0.097
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Fig. 4: Our D2VD estimator outperforms the baseline methods
when selecting the top k significant causal features to predict
whether user will like or dislike an advertisement.

as the evaluation metric, which is defined as

MAE =
1

n

n∑
i=1

|Ŷi − Yi|,

where n is the number of users in test data, Ŷi and Yi represent
the predict and actual feedback of user i on the advertisement.

Fig. 4 shows that our adjusted estimator achieves the best
prediction accuracy with a different number of features. Also,
our method can get nearby the optimal prediction performance
with much fewer features than other baselines. For example, when
k = 3, the MAE value of our D2VD estimator (0.3178) is
much smaller than those values of IPW estimator (0.3682), direct
estimator (0.4701), MRel (0.4116) and mRMR (0.4115). Another
important observation is that the two commonly used correlation-
based feature selection methods perform worse than our method
and even the IPW causal estimators. This demonstrates that the
explainability brought by causal analysis can also significantly
help to improve the prediction performances, as long as the
confounding problems are subtly addressed.

7.5 Experiments on LaLonde Dataset
7.5.1 LaLonde Dataset
LaLonde [35] dataset8 is a canonical benchmark in the causal
inference literature [36], [37]. The LaLonde dataset used in our

8. The dataset is available at http://users.nber.org/∼rdehejia/data/nswdata2.
html

TABLE 9: Results of ATE estimation on LaLonde dataset, where
the true treatment effect from randomized experiment is 1,794.
The smaller Bias and SD, the better.

Estimator Bias SD MAE RMSE

ÂTT dir 10299.92 65.85 10299.92 10300.13
ÂTT IPW 761.86 240.71 761.86 798.98)
ÂTTDR 529.78 235.95 530.61 579.95
ÂTTD2V D 417.7 263.2 431.4 493.7

ÂTTN−D2V D 370.6 263.0 400.2 454.5

paper consists of two parts. The first part comes from a random-
ized experiment on a large scale job training program, the National
Support Work Demonstration (NSW)9. In the second part data, as
[37] did, we replace the control group in a randomized experiment
with another control group drawn from the Current Population
Survey-Social Security Administration file (CPS-1) where the
measured covariates are the same with the experimental data. The
treatment variable in this data is whether the participant attends the
particular job training program or not, and the outcome is earning
in the year 1978. The data contains 10 raw observed variables,
including earnings and employment status for the years 1974 and
1975, education status (years of schooling and an indicator for
completed high school degree), age, ethnicity (indicators for black
and Hispanic) and the married status.

Overall, there are 185 program participants (the treated units)
and 260 nonparticipants (the control units) in the experimental
data NSW. In the observational data CPS-1, we have 185 pro-
gram participants and 15,992 nonparticipants. The randomized
experimental data NSW provide the ground truth for estimating
the treatment effect of the program. We estimate the treatment
effect with the observational data CPS-1, comparing our proposed
algorithm with the baselines.

7.5.2 Experimental Settings and Results
In our experiments, we randomly split the observational data CPS-
1 as 6 partitions, with the first 3 partitions, we train our model and
baseline models for parameters tuning with cross validation by
grid searching, and test model performance and robustness with
the last 3 partitions.

We report the results in Table 9, where the smaller Bias,
SD, MAE, and RMSE, the better. From the results, we have

9. Notice that we focus on the Dehejia and Wahha sampled dataset of the
LaLonde.

Authorized licensed use limited to: Zhejiang University. Downloaded on September 07,2020 at 07:33:37 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3006898, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON DATA ENGINEERING 13

the following observations. (1) Directly estimator failed due to
the existence of confounding bias in the LaLonde data. (2) IPW
estimator generates a big error on treatment effect estimation. The
main reason is that the specification model of IPW is incorrect
and the sample size between treated and control units is unbal-
anced. (3) By combining the IPW and regression model, the DR
estimator achieves better performance than the IPW estimator.
(3) Our proposed D2VD estimator achieves better performance
compared with the baselines since D2VD can precisely separate
the confounders and adjustment variables. (4) With considering
the non-linear presentation of adjustment variables, our proposed
N-D2VD algorithm obtains better performance than our D2VD
algorithm.

8 CONCLUSION

In this paper, we focus on how to evaluate the average treatment
effect in a more precise way with tighter confidence intervals
in observational studies. We argued that most previous causal
methods based on propensity score are deficient because they
usually treat all variables as confounders. Based on our causal
diagram, we proposed to separate the confounders and adjustment
variables from all observed variables for causal inference in the
hope of reducing variance and improving the accuracy of average
treatment effect estimation. Aiming at this, we proposed a Data-
Driven Variable Decomposition (D2VD) algorithm to jointly opti-
mize the variables decomposition and ATE estimation. Moreover,
we proposed a Non-linear D2VD (N-D2VD) algorithm to address
the challenges of high-dimensional and nonlinear in observational
studies. Theoretically, we proved that our algorithms can unbiased
estimate the treatment effect and achieve lower variance than
traditional methods. Experimental results on both synthetic data
and real-world data verify the practical usefulness of our proposed
models and the effectiveness of our proposed algorithms for ATE
estimation in observational studies.
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