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In data mining and machine learning, it is commonly assumed that training and test data share
the same population distribution. However, this assumption is often violated in practice because
of the sample selection bias, which might induce the distribution shift from training data to test
data. Such a model-agnostic distribution shift usually leads to prediction instability across unknown
test data. This paper proposes a novel balance-subsampled stable prediction (BSSP) algorithm
based on the theory of fractional factorial design. It isolates the clear effect of each predictor
from the confounding variables. A design-theoretic analysis shows that the proposed method can
reduce the confounding effects among predictors induced by the distribution shift, improving both
the accuracy of parameter estimation and the stability of prediction across unknown test data.
Numerical experiments on synthetic and real-world data sets demonstrate that our BSSP algorithm
can significantly outperform the baseline methods for stable prediction across unknown test data.
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1 INTRODUCTION

One of the most common assumptions in the machine learning algorithms is that the training
data consists of samples drawn randomly from the same underlying distribution as the
test samples. Under this assumption, many machine learning and artificial intelligence
algorithms have been proposed and shown to be successful in many fields, such as nature

†Kun Kuang and Hengtao Zhang contribute equally to this paper. ∗Aijun Zhang is the corresponding author
(Email: ajzhang@umich.edu).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

© 2009 ACM. 1556-4681/2021/1-ART1 $15.00

DOI: 10.1145/3477052

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.

ajzhang@umich.edu


1:2 K. Kuang et al.

language process [57], computer vision [21], healthcare [43]. However, in many practical
applications, this assumption is often violated because of sample selection bias, which brings
distribution shifts between observed data and the population. It would cause the distribution
shift between training and test data. Moreover, the test data is often unobserved during
model training, which leads to the agnostic distribution shift problem. Therefore, it is
highly demanding to develop predictive algorithms that are stable/robust to the agnostic
distribution shift between training and unknown test data.

Recently, many invariant learning algorithms have been proposed to address the agnostic
distribution shift problem, including domain generalization [38], invariant causal prediction
[40] and causal transfer learning [42]. These methods explore the invariant representation of
data, the invariant structure between predictors and outcome variables, and causal structure
across multiple training datasets. However, their performance usually heavily depends on
the diversity of multiple training datasets so that the distribution shift that does not appear
in existing datasets can not be appropriately addressed. Moreover, their training complexity
grows exponentially with the dimension of the feature space in the worst case, which is not
acceptable in practice.

To address the problem of stable prediction, in this paper, we assume that the underlying
predictive mechanism between predictors/features X and outcome variable Y is invariant
across datasets. Based on the invariant predictive mechanism, all predictors X fall into one
of two categories. One category includes stable features S, which have causal effects on
outcome Y , and are stable/invariant across datasets. For example in computer vision, ears,
noses, and legs of dogs are stable features to recognize whether an image contains a dog or
not. The other category includes noisy features V, which have no causal effects on outcomes,
but might be highly correlated with either stable features, the outcome variable or both in
certain datasets. For the same example, the grass and background pixels are noisy features
for dog recognition. Hence, taking the regression task as an example, we set X = {S,V}
and have Y = f(X) + ε = f(S) + ε in our problem. Conditional on the full set of stable
features, the noisy features do not affect the expected outcome. However, the distribution
shift might make a part of noisy features become power predictors. In the previous example,
grass would be a power predictor if most of the dogs in the training data are on the grass.
Therefore, the distribution shift leads to potential confounding and spurious correlation
between the noisy features and the outcome variable1. To address the stable prediction
problem, we should reduce such confounding effects and spurious correlations between the
noisy features and the outcome variable.

In practice, we have no prior knowledge on which features are stable and which are noisy.
Under such a setting, one possible way to remove the spurious correlation is to isolate the
impact of each individual feature on the response. Variable balancing techniques are widely
used for causation recovery in the literature of causal inference [28]. The key idea is to
construct sample weights by either employing propensity scores [3, 25, 27, 44] or optimizing
weights directly [2, 19, 26, 61]. Recently, a global balancing algorithm [24] was proposed
to learn the weights that enforce all features to be as independent as possible, which was
shown to have better performance. However, this algorithm only focuses on the pairwise
confounding effects, while ignoring the higher-order interactions. Moreover, it is not an
efficient way to learn the weight for each sample and use the full data to perform model
training in the big data scenario.

1Here, the calculated correlation between the noisy features and the outcome variable is called spurious

correlation, since the generation of outcome variable does not depend on the noisy features.
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Fig. 1. A toy example to illustrate the main idea of each deconfounding method.

Full and fractional factorial designs are widely used in statistics for arranging factorial
experiments without confounding effects [8, 11]. With data collected from a factorial
designed experiment, one can easily isolate the impact of each feature and reveal the
causation between predictors and the outcome variable. Inspired by the factorial designs of
experiments, we propose a Balance-Subsampled Stable Prediction (BSSP) algorithm, which
consists of a factorial design-based subsampling strategy for covariates balancing and a
subsampled learning model for stable prediction. Using the factorial design, the subsampling
strategy selects a subset of samples from training data such that the covariates are mutually
balanced and thus deconfounded. Thus, the model fitted by the subsamples would exploit
the causations between predictors and outcome for stable prediction.

Our BSSP method can be regarded as a general data pretreatment method that reduces the
confounding among predictors for prediction. This approach does not impose restrictions on
the choice of models and the type of responses. The samples selected by the proposed method
may work for generalized linear models such as linear regression and logistic regression, and
more complex models like neural networks. The response variable can be either continuous or
binary. We demonstrate the advantages of the proposed BSSP algorithm for stable prediction
on both regression and classification tasks based on synthetic and real-world datasets. It is
shown to have overwhelming performance across unknown test data with a distribution shift
from the training data, thus achieving a more stable prediction. Furthermore, we can train
the model faster as the subdata is much smaller than the full data.

To our best knowledge, this paper is the first to establish a connection between the
fractional factorial design and the stable learning problem. The main idea of different
deconfouding methods is illustrated with a toy example in Fig. 1. Consider a three-
dimensional dataset with binary inputs. We visualize the sample space in Fig. 1a, where the
bubble size corresponds to the number of observations on that point. Each facet corresponds
to the conditional distribution of two variables w.r.t. the remaining one. In the ideal case,
all bubbles should have the same size and there are no confounding effects among variables,
since any two opposite facets have the same distribution. To achieve this goal, the global
balancing method (Fig. 1b) takes all sample values but reweighs them to change the data
distribution. Based on the fractional factorial design, our subsampling method (Fig. 1c)
only uses a fraction of samples that approximate the ideal situation. For example, the
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conditional distributions of Xi|Xk and Xj |Xk are the same in Fig. 1c, where i, j, k ∈ {1, 2, 3}
are distinctive indices.

In summary, the contributions of this paper include:

• We investigate the problem of stable prediction across unknown test data, where
the distribution of agnostic test data is different from the training data.

• We propose a novel BSSP algorithm based on the fractional factorial design strategy
for variable deconfounding and stable prediction. For the first time the subsampling
technique is introduced to the study of stable prediction problem.

• Theoretically, we show that the fractional factorial design-based subsampling can
remove the confounding effects with non-linear interactions. Hence, our BSSP
algorithm can precisely estimate the parameters and achieve a stable prediction
across unknown environments.

• We conduct extensive experiments on synthetic and real-world datasets, and demon-
strate the advantages of our algorithm for stable prediction in both regression and
classification tasks.

2 RELATED WORK

To remedy the problem of distribution shift, a considerable effort has been made in domain
adaptation [4, 5, 9] and transfer learning [31, 39]. Given the test data, domain adaptation
accommodates a learning algorithm trained by the training data, such that the predictive
error on the test data is minimized. These methods achieve good performance for correcting
distribution shift in real applications. In natural language processing (as a new trend
of learning in computational intelligence[22]), [7] proposed the structural correspondence
learning from the feature perspective for the domain adaptation, which is further extended
by [58–60] using the neural networks. [23] introduced instance weighting to adapt different
domains. It also draws our attention that there are a series of works that leverage the genetic
programming in document classification or sentiment analysis across different domains
[10, 16, 17, 32], and [36] incorporated common semantic information into aspect-based
sentiment analysis. The main drawback in these works is that one needs prior knowledge of
the test distribution during the training, and needs to re-train the model for different test
data. In this paper, we focus on the problem of stable prediction with agnostic distribution
shift.

Recently, the invariant learning algorithms have been proposed to address the agnostic
distribution shift problem, including domain generalization [38], invariant causal prediction
[40], causal transfer learning [42] and invariant risk minimization [1]. These methods explore
the invariant representation of data, the invariant structure between predictors and outcome
variables, and causal structure across multiple training datasets. However, their performance
depends heavily on the diversity of multiple training datasets, while the distribution shift
that does not appear in existing datasets can not be appropriately addressed. Moreover,
their training complexity grows exponentially with the dimension of the feature space in the
worst case, which is not acceptable in practice.

To enhance the stability and robustness of artificial intelligence, recently, many methods
have been proposed from different aspects, such as adversarial learning [41, 47], artificial
general intelligent [33], distributional robustness optimization [13, 30], invariant/hetogeneous
risk minimization [1, 29]. In this paper, we focus on the stability of model predictions on
agnostic test data, whose distribution might be different with the training one.
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Variables balancing is a key technique for treatment effect estimation in observational
studies. [44] proposed to achieve variables balancing by sample reweighting with the
inverse of the propensity score. [2] proposed an approximate residual balancing algorithm
by combining outcome modeling with variables balancing. [26] jointly optimized sample
weights and variable weights for a differentiated variable balancing. [14] studied the variables
balancing for continuous treatment variable under linear assumption. These methods perform
well on causal effect estimation in observational studies, but they are not designed for the
case with many causal variables, such that they cannot immediately extend to our stable
prediction problem.

Our work is closely related to [24], which proposed a global balancing algorithm for stable
prediction. As shown in Eq. (7), the global balancing algorithm attempts to learn global
sample weights for each sample such that all predictors may become independent. [24] also
proved that the ideal global sample weights could isolate the impact of each predictor, hence
address the stable prediction problem. However, the algorithm in [24] is non-convex and only
focuses on the first-order confounding between any two variables, ignoring the higher-order
interactions.

In statistical designs of experiments, full and fractional factorial designs, especially the
two-level factorial designs, are widely used for experimental planning and data collection;
see [11] and references therein. Resolution and minimum aberration are two main criteria
to evaluate the goodness of a fractional factorial design; see [15, 34, 54, 55]. The factorial
designs provide efficient ways of conducting experiments, but not for sample selection based
on observational data.

Subsampling is an efficient strategy to accelerate the machine learning algorithms. Tradi-
tionally, the idea of sampling is a key concept in statistical surveys and estimation of point
statistics [46]. Recently, subsampling appears to be an effective strategy for big data model-
ing, including the randomized leveraging methods [12, 35] and deterministic subsampling
methods [50, 51, 56]. These subsampling methods aim to provide a fast approximation to
the model parameters estimated by the full data. Unlike them, this paper considers the idea
of subsampling for the stable prediction across different and possibly unknown datasets.

3 PROBLEM AND NOTATIONS

For a prediction problem, let X and Y denote the predictors and outcome variable, respec-
tively. Define an environment to be the joint distribution PXY of {X, Y }. Let E denote
the set of all environments, and Me = {Xe, Y e} be the dataset collected from e ∈ E . In real
applications, the joint distribution of features and outcome can vary across environments:
P e
XY 6= P e′

XY for e, e′ ∈ E . Then the stable prediction problem [24] is defined as follows.

Problem 1 (Stable Prediction). Given one training environment e ∈ E with dataset
Me = {Xe, Y e}, the task is to learn a predictive model that can stably predict across
unknown test environments E.

In this paper we consider the same problem setting of stable learning as in [24, 45, 52],
where the features X ∈ {0, 1}d are binary. The continuous variables can be converted to be
binary via binning or direct dichotomization, while the discrete variables can be grouped
into two categories2.

2As an extended work, we are investigating multi-category and continuous features based on the similar idea

of leveraging the multi-level factorial design and uniform experimental design.
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Here, we measure the performance of stable prediction byAverage Error and Stability Error
[24] with the following definition:

Average Error =
1

|E|
∑
e∈E

Error(Me), (1)

Stability Error =

√
1

|E| − 1

∑
e∈E

(Error(Me)−Average Error)2, (2)

where Error(Me) represents the predictive error on dataset Me. Actually, theAverage Error
and Stability Error correspond to the mean and variance of the predictive error over all
possible unknown test environments e ∈ E .

Now let X = {S,V}, where S denotes stable features and V denotes noisy features with
following the assumption [24]:

Assumption 1. There exists a probability function P (y|s) such that for all environment
e ∈ E,

P (Y e = y|Se = s,Ve = v) = P (Y e = y|Se = s) = P (y|s). (3)

Assumption 1 means that the responses are solely determined by the stable features.
One can achieve stable prediction by developing a predictive model that learns the stable
function f(S) induced by P (Y |S). For example, we have f(S) = E(Y |S) =

∫
Y P (Y |S)dY

when Y = f(S) + ε with the zero mean error ε. However in practice, we have no prior
knowledge on which features belong to S or V. Indeed, it is difficult to identify V as it
typically demonstrates suspicious correlation with responses due to distribution shift.

In this paper, we study the stable prediction problem under model misspecification for
continuous and binary responses (i.e., for both regression and classification tasks). Suppose
that the true stable function f(S) and Y in environment e are given by:

Y e = f(Se) + VeβV + εe = SeβS + g(Se) + VeβV + εe, for regression; (4)

logit(P (Y e = 1|Se)) = SeβS + g(Se) + VeβV , for classification, (5)

where βV = 0 and εe ⊥ Xe. For simplicity, we restrict our attention on the regression case
(4) in this section, and the classification scenario can be similarly derived. We assume that
the analyst mis-specifies the underlying model (4) by omitting non-linear term g(Se) and
uses a linear model for prediction. Then, standard linear regression may estimate non-zero
effects of noisy features Ve if they are correlated with the omitted term g(Se) in the training
environment e, which leads to instability on prediction since the following theorem implies
that the correlation between V and g(S) is changeable across unknown test environments.

Theorem 3.1. Under assumption 1, the distribution shift across environments is induced
by the variation in the joint distribution over (V,S).

Proof. P (Xe, Y e) can be decomposed as:

P (Xe, Y e) = P (Y e|Xe)P (Xe)

= P (Y e|Se,Ve)P (Se,Ve)

= P (Y e|Se)P (Se,Ve) (6)
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With assumption 1, we know the distribution P (Y e|Se) = P (Y e′ |Se′) for different e, e′ ∈ E .

Hence, the distribution shift across environments (i.e., P (Xe, Y e) 6= P (Xe′ , Y e′)) is induced

by the variation in the joint distribution over (V,S) (i.e., P (Se,Ve) 6= P (Se′ ,Ve′)). �

Notations. Let n be the sample size, and d be the dimensionality of variables. For any

vector v ∈ Rd×1, let ‖v‖1 =
∑d

i=1 |vi|. For any matrix X ∈ Rn×d, let Xi,· and X·,j represent
the ith sample and the jth variable in X, respectively. To simplify notations, we remove the
environment variable e from Xe, Se, Ve, εe, and Y e when there is no confusion from the
context. For an integer k ≥ 1, we use [k] to denote the set of integer indices up to k, i.e.,
[k] = {1, . . . , k}.

4 VARIABLE DECONFOUNDING

In this section, we first propose a generalized global balancing loss for the stable prediction.
Then, we introduce the variable deconfounding technique based on the Factional Factorial
Designs (FFDs) to optimize this generalized loss.

4.1 Generalized Global Balancing Loss

Theorem 3.1 implies that if the covariates are mutually independent (or there are no
confounding effects among variables), we can well estimate parameter βV in Eq. (4), hence
improve the stability of prediction across unknown test environments. The confounding
effects between covariates and the binary treatment status are typically eliminated by
balancing covariates in causality literature [2, 19]. Recently, [24] successively regarded each
variable as the treatment indicator and minimized a global balancing loss:

min
W∈Rn

L(W,X) =

d∑
j=1

∥∥∥∥∥XT
·,−j · (W �X·,j)

WT ·X·,j
−

XT
·,−j · (W � (1−X·,j))

WT · (1−X·,j)

∥∥∥∥∥
2

2

=

d∑
j=1

∑
k 6=j

[∑
i:Xij=1WiXik∑

i:Xij=1Wi
−
∑

i:Xij=0WiXik∑
i:Xij=0Wi

]2
, (7)

where � refers to Hadamard product, and X·,−j = X\{X·,j} collects the remaining variables
after removing the jth variable. The difference in quadratic loss enforces PW(Xk = 1|Xj =
1) ≈ PW(Xk = 1|Xj = 0) w.r.t. the weighted conditional distribution PW. When the
equation holds exactly, it can be shown that Xk ∈ {0, 1} and Xj ∈ {0, 1} are independent
and thus have no confounding effects. L(W,X) hence globally balances each variable with
others by reweighting the observations.

There are several drawbacks for Eq. (7). Firstly, it can only remove the first-order
confounding effects, but ignore higher-order ones3 that between V and k-way interaction
function g(S), e.g., the two-way interaction g(S) = S·,1S·,2. Moreover, it is very hard to find
the global optimal solution as Eq. (7) is non-convex. Lastly, using full weighted data can be
computationally expensive for especially big data scenarios.

3Here, we denote high-order confounding effect as the confounding effect between V and high-order function
g(S). In practice, the function g(Se) may include not only the linear combinations of Se but also some

high-order interactions, such as the two-way interaction S.,1S.,2.
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Considering high-order confounding effects among variables, we define a new generalized
global balancing loss Lk(W,X) as:

Lk(W,X) =
∑
j∈[d]

∑
Ik⊆[d]\{j}

[
XT

Ik
· (W �X·,j)

WT ·X·,j
−

XT
Ik
· (W � (1−X·,j))

WT · (1−X·,j)

]2

=
∑
j∈[d]

∑
Ik⊆[d]\{j}

[∑
i:Xij=1WiXiIk∑

i:Xij=1Wi
−
∑

i:Xij=0WiXiIk∑
i:Xij=0Wi

]2
, (8)

where k refers to the order of confounding effect with 1 ≤ k < d, and XiIk as well as XIk

denotes the k-way interaction w.r.t. the index subset Ik. This loss broadly measures different
orders of correlation or confounding effect between V and g(S). It is easy to see that Eq.
(7) is a special case of Eq. (8) with k = 1. Our target in this paper is to minimize the
aggregation of Lk(W,X) up to the order k.

4.2 Variables Deconfounding via Fractional Factorial Designs

In this section, we elaborate on how fractional factorial designs can be used to deconfound
the variables in terms of minimizing the generalized balancing loss in Eq. (8). Note that the
binary-encoded data matrix is closely related to a two-level factorial design, which motivates
us to leverage the classical results from the fractional factorial design literature.

Two-level fractional factorial design (FFD) [11]: It is a size-m subset of the full
factorial design that consists of all 2d possible combinations of the vector {−1, 1}d. We
denote FFD by D ∈ {−1, 1}m×d, where 0 < m ≤ 2d.

One important feature of FFD is that variables and their interactions are orthogonal to
some degrees, and they can achieve joint orthogonality when FFD becomes full factorial.
Another cardinal observation is that the mean differences in Eq. (8) can be transferred into
the inner products of the main effects and high-order interactions of a design in {−1, 1}m×d;
see the proof of Theorem 4.3. Consequently, the orthogonality of FFD can help remove
non-zero inner products and lead to a minimal loss.

Resolution [15], denoted as R, is an important criterion to reflect the degree of orthogonality.
For an FFD, define the generalized word-length pattern [34]

W (D) = (A1(D), . . . , Ad(D)), (9)

where Aj(D) refers to the generalized wordlength and measures the degree of j-factor
non-orthogonality. Specifically, we have for j = 1, . . . , d,

Aj(D) =
1

m(q − 1)

d∑
k=0

Pj(k; d, q)Bj(D), (10)

where q denotes the number of levels,

Pj(x; d, q) =

j∑
w=0

(−1)w(q − 1)j−w
(
x
w

)(
d−x
j−w

)
(11)

are the Krawtchouk polynomials [37], and B(D) = (B0(D), . . . , Bd(D)) is the distance
distribution Bj(D) = m−1|{(c,d) : dH(c,d) = j, c,d ∈ D}| with dH(·, ·) denoting the
Hamming distance. Note that Bj(D) is invariant to the encoding way of D. Then, the
resolution of D is defined as the smallest index R ≤ d such that AR(D) > 0. Note that the
full factorial design with m = 2d has resolution d+ 1, since Aj(D) = 0 for all j ∈ [d].

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Balance-Subsampled Stable Prediction across Unknown Test Data 1:9

The following lemma [20] explains the relationship between resolution R and orthogonal
strength. We omit ‘fractional factorial’ in the resolution-R design without ambiguity to the
context.

Lemma 4.1. The resolution-R design D has orthogonal strength t = R− 1, where t means
that one can see all possible t-tuples equally often for m/2t times in any t columns of D.

Lemma 4.1 implies that any t columns/variables of D contain m/2t full factorials such
that every t factors are jointly orthogonal. Furthermore, this lemma also implies low order
t′ < t orthogonal strength exists for the resolution-R design. In other words, FFD can
preserve the joint orthogonality up to its resolution minus one. For example, a resolution-3
design guarantees the pairwise orthogonality among the main effects of all factors. The
following theorem further states the preserved orthogonality among the main effect and
their k-way interaction.

Theorem 4.2. Let Ik ⊆ [d] denote any collection of distinctive factors with |Ik| = k ≤ d,
D = (D·1, . . . ,D·d) ∈ {−1, 1}m×d be the design matrix, and DIk ∈ {−1, 1}m represent
k-way interaction of Ik. We have a) DT

·iD·j = 0, i 6= j, for any resolution-R design with
R ≥ 3; and b) DT

Ik
D·j = 0, j ∈ [d], 2 ≤ k ≤ R− 2, for any resolution-R design with R ≥ 4.

Proof. To prove above theorem, we first inductively show a lemma that any full factorial

design (FD) denoted by D ∈ {−1, 1}2d×d has 1TDId = 0 for the integer d ≥ 1. It is easy
to check that 1TDId = 0 holds when d = 1, 2. Suppose this equality holds for any integer
d = `, ` ≥ 1. When d = `+ 1, note that D is invariant to the permutation of rows, so we
rearrange the first column and have

DI`+1
= (−1, . . . ,−1︸ ︷︷ ︸

2`

, 1, . . . , 1︸ ︷︷ ︸
2`

)T � (D
(1)
I`
,D

(2)
I`

)T , (12)

where the sub-designs D(1),D(2) ∈ {−1, 1}2`×` also belong to FD [20]. Therefore, it can be

derived that 1TDI`+1
= 1TD

(2)
I`
− 1TD

(1)
I`

= 0 and the statement gets proved. So for any
FFD with orthogonal strength t, we have

1TDIk = 0 for k ∈ [t], (13)

because Lemma 1 tells that all combinations of at most t-tuples (full factorial design) appear
with equal frequency in corresponding distinctive columns.

With the above property, we can easily show the first case in the theorem as DT
·iD·j =

1TDI2 with I2 = {i, j}, and the resolution-R design has orthogonal strength t = R− 1 ≥ 2,
which implies DT

·iD·j = 0. For the second case, we restate it in terms of orthogonal strength
t, that is, we need to show DT

Ik
D·j = 0, j ∈ [d], 2 ≤ k ≤ t − 1 for t ≥ 3, which can be

inductively proved in the similar manner. Without loss of the generality, we just show
DT

Ik
D·j = 0 for t = 3 in what follows. When j /∈ I2, we can construct a 3-column FFD

with indices I3 = {j} ∪ I2 and DT
I2
D·j = 1TDI3 . And we can similarly obtain 1TDI3 = 0

as done in the first case because of t = 3. If j ∈ I2 = {i, j}, it is easy to check that
DT

I2
D·j = 1TD·i = 0 as t = 3. For t ≥ 4, since high-order orthogonal strength implies the

low order ones, we only need to consider the situation of k = t− 1. And we can similarly
obtain the conclusion by discussing j in Ik or not. �

With these results of FFD, if we determine the subdata matrix X ∈ {0, 1}m×d by exactly
matching it to some resolution-R design D ∈ {−1, 1}m×d with the rule D·j = 2X·j − 1. We
can show that such X is the optimal solution of Eq. (8) with weights W = 1.
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Theorem 4.3. For any X ∈ {0, 1}m×d matching the resolution-R design with R ≥ 3, we
have Lk(W,X) = 0 for any 1 ≤ k ≤ R− 2 and W = 1.

Proof. Let D ∈ {−1, 1}m×d be the resolution-R design matched with X. For any
Ik ⊆ [d]\{j} with a given j and feasible k, let Ik = {j1, . . . , jk} and we have

XIk =
1

2k
(D·j1 + 1)� · · · � (D·jk + 1) = 1

2k

(
1 +

∑k
h=1

∑
Ĩh⊆Ik DĨh

)
, (14)

where Ĩh is the subset of Ik with cardinality h. When W = 1, we have W �X·,j = X·,j ,
W � (1−X·,j) = 1−X·,j as well as WT ·X·,j = WT · (1−X·,j) = m/2 for j = 1, . . . , d.
The squared term in Eq. (8) becomes,[

XT
Ik
·(W�X·,j)

WT ·X·,j −
XT

Ik
·(W�(1−X·,j))

WT ·(1−X·,j)

]2
=
[
2
mXT

Ik
(2X·j − 1)

]2
=
(

2
mXT

Ik
D·j
)2

= 1
4k−1m2

(
1TD·j +

∑k
h=1

∑
Ĩh⊆Ik D

T
Ĩh
D·j

)2
= 0, (15)

where the last equality follows Theorem 2. Specifically, when k = 1 or R = 3, we have
Ĩh = Ik = {jk} with jk 6= j and the last equality becomes zero according to the case a) in
Theorem 2. Similar results can be derived for 2 ≤ k ≤ R− 2 (R ≥ 4) following the case b).
Consequently, it is evident that Lk(1,X) equals to zero for any 1 ≤ k ≤ R− 2 (R ≥ 3). �

This theorem establishes the key connection between FFD and the global balancing loss
in the stable prediction problem. Note that the theorem also holds for W = α1,∀α > 0.
The theorem reveals that higher resolution design can lead to more stable outcomes, as the
lower-order confounding effects are removed by the perfect balance. Since a higher resolution
design would require a larger run size m. In the present paper, we use resolution-5 design
as a subsampling template, which ensures Lk(1,X) = 0 for k = 1, 2, 3. The template with
a given m can be easily generated from open source packages, such as FrF2 in R [18]. As
for m, it should be the power of 2 and no less than 2R−1. One may determine it based on
either available templates or practical demands. We choose m = 128 in this work as it is
empirically sufficient to achieve the stable prediction for all numerical studies. It turns out
the computational cost based on subsampled data is highly reduced, as m is typically much
smaller than the full data size n.

5 BALANCE-SUBSAMPLED STABLE PREDICTION ALGORITHM

BSSP algorithm consists of an FFD-based subsampling method and a subsampled learning
model. We first introduce the specific subsampling algorithm that is feasible for general
situations. To obtain a balanced subdata with deconfounded variables, we propose a matching
algorithm based on the FFD template. Given a resolution-R design D ∈ {−1, 1}m×d, we
transfer its encoding into {0, 1}. Then we select the samples from M = {X ∈ {0, 1}n×d, Y ∈
Rn} if some row in D can match the one in X. The matching process is described in
Algorithm 1.

However, it may not be easy to achieve a perfect matching and thus non-confounding
properties in practice. Note that Lemma 4.1 implies the orthogonality is invariant to the
column permutation of D, which we may denote as D with the cardinality d!. All the designs
in D share the same orthogonal properties as the template design D. Hence, we may find
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Algorithm 1 Sample Matching Algorithm

Input: Observed samples M = {X ∈ {0, 1}n×d, Y ∈ Rn} and a design D ∈ {0, 1}m×d
Output: A subset of samples Msub

1: Set Msub = ∅
2: for each row/sample Di,· ∈ D do
3: if Di,· == Xj,· then
4: Msub = Msub ∪ (Xj,·, Yj)
5: break
6: end if
7: end for
8: return Msub

a better design D′ in D such that all its design points can be matched to the observed
samples.

When none of the designs in D can fully match the observed samples in X, we propose

the following criterion for measuring the degree of confounding byr Msub = {X̃, Ỹ }:

ψ(Msub) =

R−1∑
j=1

ρjAj(X̃), 0 < ρ < 1, (16)

where Aj(X̃) refers to the generalized wordlength in Eq. (10) and ρ is a parameter for
exponentially weighing. In the ideal case, we have ψ(Msub) = 0 according to the definition of

resolution-R design. Note that Aj(X̃) reflects the severity of order-j confounding effects and
is invariant to the design encoding. Motivated by the famous effect hierarchy principle [53]:
(i) lower-order effects are more likely to be important; and (ii) effects with the same order
are equally likely to be important, we set ρ = 0.9 to assign more weights to the lower-order
effects. A simulation is performed shown by Fig. 2 to validate that ψ(Msub) can measure

the deviation of X̃ to the FFD, where we calculate the ψ(Msub) on random subsets of a
128-run resolution-5 design with different sizes and 100 replications. As we can see, the

measure goes to 0 without any variation when X̃ is close to the template design. Based on
Eq. (16), one can calculate the confounding measure for each D in D . Then, we can rank
these subdata candidates and select the one with the minimal ψ-value. The details of the
complete subsampling method are described in Algorithm 2.

With the balance-subsampled data Msub from Algorithm 2, one can directly run a
machine learning model for prediction, including regression for continuous outcome Y and
classification for categorized outcome Y . In this work, we simply consider the typical linear
regression and logistic model with the original linear features of X̃.

6 EXPERIMENTS

In this section, we evaluate the performance of our algorithm on both synthetic and real-world
datasets.

6.1 Baseline Methods

We use the following three methods as the baselines for comparison.
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Fig. 2. ψ(Msub) on random subsets of a 128-run resolution-5 FFD with different subdata sizes.

Algorithm 2 FFD-Based Subsampling Algorithm

Input: Observed samples M = {X ∈ {0, 1}n×d, Y ∈ Rn} and a resolution-R design
D ∈ {0, 1}m×d.

Output: A subset of samples Msub

1: Set Msub = ∅
2: Generate a design set D by column permutation on D,
3: for D′ ∈ D do
4: M′sub = Sample Matching (M,D′)
5: Calculate its confounding measure ψ(M′sub)
6: if ψ(M′sub) < ψ(Msub) then
7: Let Msub = M′sub
8: end if
9: if ψ(Msub) == 0 then . all samples in D′ are matched

10: break
11: end if
12: end for
13: return Msub

• Logistic Regression (LR): A baseline for the classification task. It needs to assume
there is no distribution bias between training and test data, and therefore cannot
address the stable prediction problem.

• Ordinary Least Square (OLS): A baseline for regression task. It also needs to assume
both training and test data have the same distribution, and therefore cannot address
the stable prediction problem.

• Global Balancing Regression (GBR) [24]: It learns the global weights for all the
samples in order to make the variables approximately mutually non-confounding. It
then performs weighted classification and regression and may approximately address
the stable prediction problem.
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Here, we use LR for the classification task and OLS for regression task, while GBR and our
BSSP algorithm can be applied to both classification and regression tasks. Specifically, the
LASSO regularizer [48] is configured in all above methods.

6.2 Evaluation Metrics

In our experiments, we perform stable learning for both classification and regression
tasks. To evaluate the performance, we use Root Mean Squared Error (RMSE), β Error,
Average Error, and Stability Error as evaluation metrics. Their definitions are listed as
follows:

RMSE =
√

1
n

∑n
k=1(Yk − Ŷk)2, (17)

where n is the sample size, Ŷk and Yk refer to the predicted and true outcomes for sample k;

β Error = ‖β − β̂‖1, (18)

where β̂ and β represent the estimated and true regression coefficients. Average Error, and
Stability Error are defined in Eq. (1) and (2), where Error(Me) is defined as RMSE(Me).

6.3 Experiments on Synthetic Datasets

6.3.1 Stable Prediction for Regression Task.

Datasets. Firstly, we generate observed binary predictors X = {S·,1, · · · ,S·,ds
,V·,1, · · · ,V·,dv

}
with independent Gaussian distribution:

Ŝ·,1, · · · , Ŝ·,ds
, V̂·,1, · · · , V̂·,dv

iid∼ N (0, 1), (19)

where ds + dv = d, and S·,j represents the jth variable in S. To make X binary, we let

X·,j = 1 if X̂·,j ≥ 0, otherwise X·,j = 0. Then, we generate continuous response variable Y
by the following function:

Y = f(S) + ε = [S,V] · [βs, βv]T + S·,1S·,2 + ε, (20)

where βs = { 13 ,−
2
3 , 1,−

1
3 ,

2
3 ,−1, · · · }, βv = ~0, and ε = N (0, 0.3). The term S·,1S·,2 refers

to the omitted non-linear term g(·) in Eq. (4).

Various Environments. To test the stability of all algorithms, we need to generate a set of
environments, each with a distinct joint distribution P (X, Y ), while preserving Assumption
1 (and in particular, P (Y |S)). Under Theorem 3.1, we generate different environments in
our experiments by varying P (V|S). For simplicity, we only change P (Vb|S) on a subset of
noisy features Vb ⊆ V, where the dimension of Vb is 0.1 ∗ d.

Specifically, we vary P (Vb|S) via biased sample selection with a bias rate of r ∈ [−3,−1)∪
(1, 3]. For each sample, we select it with probability Pr =

∏
Vi∈Vb

|r|−5∗Di , where Di =

|f(S) − sign(r) ∗ Vi| with f(S) defined in Eq. (20). If r > 0, sign(r) = 1; otherwise,
sign(r) = −1.

Note that r > 1 corresponds to positive unstable correlation between Y and Vb, while
r < −1 corresponds to negative unstable correlation between Y and Vb. The larger value
of |r|, the stronger correlation between Vb and Y . Different values of r refer to different
environments, hence we can generate different environments by varying P (Vb|S).
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(c) Subsampled by BSSP

Fig. 3. Pearson correlation coefficients among variables: a) on raw data; b) on weighted data; c) on
subsampled data.

Results. In experiments, we evaluate the performance of all algorithms from two aspects,
including accuracy on parameter estimation and stability on prediction across unknown
test data. To measure the accuracy of parameter estimation, we train all models on one
training dataset with a specific bias rate rtrain. We carry out model training for 50 times
independently with different training data from the same bias rate rtrain, and report the
mean and variance of β Error on stable features S and noisy features V. To evaluate the
stability of prediction, we test all models on various test environments with different bias
rate rtest ∈ [−3,−1)∪ (1, 3]. For each rtest, we generate 50 different test datasets and report
the mean of RMSE. With RMSE from all test environments, we report Average Error and
Stability Error to evaluate the stability of prediction across unknown test environments.

Before reporting the experimental results, we compare the Pearson correlation coefficients
between any two variables on a) raw data, b) the weighted data by global balancing method
[24] and c) the subdata by our algorithm in Fig. 3. From the result, we can find that
in the raw data (Fig. 3a), the noisy feature V5 is correlated with some stable features
S, and highly correlated with both omitted nonlinear term g and outcome Y . Hence, the
estimated coefficient of V5 in traditional regression models, such as LR and OLS, would be
large, which should be zero in a correctly specified model, leading to unstable prediction.
In the weighted data by global balancing method (Fig. 3b), the sample weights learned
from global balancing can clearly remove the correlation among predictors X, especially
the correlation between noisy feature V5 and stable features S. But we can find that noisy
feature V5 is still correlated with both omitted nonlinear term g and outcome Y , leading to
imprecise estimation on coefficients of noisy features and resulting in unstable prediction.
The main reason is that the global balancing method is focused on first order confounding
while ignoring higher-order confounding between V5 and g. In the subsampled data by our
algorithm (Fig. 3c), we can find that not only the correlation among predictors X, but also
the correlation between noisy feature V5 and the omitted nonlinear term g and outcome
Y are clearly removed. Hence, our algorithm can estimate the coefficient of both S and V
more precisely. This is the key reason that our algorithm can make more stable predictions
across unknown test environments.

We report the results of parameter estimation and stable prediction in Fig. 4, for which
the sample size is n = 2000 and the dimensionality of variables is d = 10. From the results,
we have the following observations and analysis:

• OLS cannot address the stable prediction problem. The reason is that OLS is biased
on both βS and βV estimation since the confounding or spurious correlation between
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Fig. 4. Results of regression. All the models are trained with n = 2000, d = 10 and rtrain = 2.0. The
parameter r ∈ [−3,−1) ∪ (1, 3] refers to the rate of bias selection when generating a regression dataset.
A large absolute value of r corresponds to stronger confounding effects. The training and test datasets
with the same value of r are generated from the same environment.

S and V. Moreover, OLS will often predict large effects of the unstable features,
which leads to instability across environments.
• With considering variable deconfounding loss by sample reweighting, GBR method

achieves better performance than OLS in the parameter estimation on both stable
features and unstable features (See Fig. 4a & 4b). Hence, GBR method can obtain
a more stable prediction than OLS (The Average Error and Stability Error of
GBR method in Fig. 4d is clearly smaller than OLS method).

• The performance of our algorithm is worse than baseline when rtest ≥ 1.3 on
test data in Fig. 4c, but much better than baselines when rtest ≤ −1.3. This is
because the spurious correlations between Vb and Y are similar between training
data (rtrain = 2.0) and test data when rtest ≥ 1.3, and that correlation can be
exploited in prediction; in this setting, V is useful to proxy for omitted functions of
S. However, when rtest ≤ −1.3, using V for prediction induces obvious instability.

• We also provide a mathematical perspective to analyze the results shown in Fig.
4c. Specifically, concerning Eq. (4), we have the OLS estimator for βS and βV as
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Fig. 5. Results of classification on various test datasets by varying rtrain. The parameter r ∈ (0, 1)
corresponds to the rate of bias selection when generating a classification dataset. Generally, a large
value of |r − 0.5| corresponds to stronger confounding effects. The training and test datasets with the
same selection rate rtrain = rtest are generated from the same environment.

follows,

β̂VOLS
= βV +

(
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n
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where n denotes the sample size. It is easy to see that OLS is very sensitive to
the confounding effects among V, S and g(S) under different environments in
terms of

∑n
i=1 V

T
i g (Si) /n and

∑n
i=1 S

T
i Vi/n. In contrast, GBR can alleviate the

confounding effects between V and S via reweighting observations, which leads to a
more stable performance. Whereas our proposed approach additionally reduces the
confounding effects between V and g(S) relative to GBR through subsampling, and
hence should achieve the most stable predictions across various environments.
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• Comparing with baselines, our algorithm achieves the best stable prediction across
unknown test environments. Smart sampling in our algorithm can ensure the
orthogonality and nonconfounding properties among variables. Moreover, the noisy
features will become exactly uncorrelated with the omitted non-linear term and
outcome variable. Therefore, our algorithm avoids using noisy features to proxy for
omitted nonlinear functions of the stable features, ensuring less bias in the estimation
of the effect of both stable features and noisy features, and improving the stability
of prediction.

6.3.2 Stable Prediction for Classification Task.

Datasets. Firstly, we generate observed binary predictors X = {S·,1, · · · ,S·,ds
,V·,1, · · · ,V·,dv

}
with independent Gaussian distributions as:

Ŝ·,1, · · · , Ŝ·,ds
, V̂·,1, · · · , V̂·,dv

iid∼ N (0, 1), (23)

where ds + dv = d, and S·,j represents the jth variable in S. To make X binary, we let

X·,j = 1 if X̂·,j ≥ 0, otherwise X·,j = 0.
Then, we generate binary response variable Y with the function as following:

Y = 1/(1 + exp(−
∑

X·,i∈Sl
αi ·X·,i−

∑
X·,j∈Sn

βj ·X·,j ·X·,j+1)) +N (0, 0.2), (24)

where we separate the stable features S into two parts, linear part Sl and non-linear part
Sn. αi = (−1)i · (mod(i, 3) + 1) · d/3 and βj = d/2, where function mod(x, y) returns the
modulus after division of x by y. To make Y binary, we set Y = 1 when Y ≥ 0.5, otherwise
Y = 0.

Various Environments. We generate various environments by varying P (Y |V) via biased
sample selection with a bias rate r ∈ (0, 1). Specifically, we select a sample with probability
r if its noisy features equal to the response variable, that is V = Y ; otherwise, we select it
with probability 1− r, where r > 0.5(< 0.5) corresponds to a positive (negative) correlation
between Y and V.

Results. In our experiments, we fix the sample size n = 2000 and dimensions of variables
d = 10, but generate different synthetic data by varying bias rate on training data rtrain =
{.15, .25, .75, .85}. We report the results in Fig. 5. From the results, we have the following
observations and analysis:

• The methods LR can not address the stable prediction problem in all settings, since it
cannot remove the confounding or spurious correlation between V and Y during model
training, and often predict large effects of the noisy features V, leading to instability
across test environments.

• With making variables become approximately non-confounding by sample weighting,
GBR method obtains a more stable prediction than LR method, especially when the bias
rate on training rtrain is closer to 0.5. But as increasing of |rtrain− 0.5|, its performance
on stable prediction becomes worse. The main reason is that rtrain is closer to 0.5 refers
to the spurious correlation between V and Y is not such strong, and the global balancing
regularizer can remove those correlations and ensure accurate parameter estimation.
But as spurious correlation become stronger, GBR cannot fully remove them.

• Comparing with baselines, our method achieves the most stable prediction in different
settings. Smart sampling based on FFD ensures the non-confounding among variables,
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Fig. 6. Prediction across environments separated by age. The models are trained on dataset where uses’
Age ∈ [20, 30), but tested on various datasets with different users’ age range.

hence regression on those samples helps to accurately estimate the effect of both stable
features and noisy features for stable prediction.

• By varying the bias rate on training rtrain, the RMSE of our algorithm is consistently
stable and small across environments. Moreover, our algorithm makes greater improve-
ments when r is farther from 0.5, i.e., stronger of the spurious correlation between V
and Y .

6.4 Experiments on Real Datasets

We apply the proposed BSSP algorithm on two real-world datasets, including WeChat
advertising dataset (classification) and Parkinson’s telemonitoring data (regression).

6.4.1 Wechat Advertising Dataset.

Dataset. To check the performance of our algorithm in the classification setting, we
apply it to a real online advertising dataset, which is collected from Tencent WeChat App4

during September 2015 and used in [24] for stable prediction. In WeChat, each user can
share (receive) posts to (from) his/her friends as like the Twitter and Facebook. Then
the advertisers could push their advertisements to users, by merging them into the list
of the user’s wall posts. For each advertisement, there are two types of feedbacks: “Like”
and “Dislike”. When the user clicks the “Like” button, his/her friends will receive the
advertisements with this action.

The Wechat advertising campaign used in our paper is about the LONGCHAMP handbags
for young women.5 This campaign contains 14,891 user feedbacks with Like and 93,108
Dislikes. For each user, we have their features including (1) demographic attributes, such as
age, gender, (2) number of friends, (3) device (iOS or Android), and (4) the user settings
on WeChat, for example, whether allowing strangers to see his/her album and whether
installing the online payment service.

Experimental Settings. In our experiments, we set Yi = 1 if user i likes the ad, otherwise
Yi = 0. For non-binary features, we dichotomize them around their mean value. Specifically,

4http://www.wechat.com/en/
5http://en.longchamp.com/en/womens-bags
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we only preserve users’ features which satisfied 0.2 ≤ #{x=1}
#{x=1}+#{x=0} ≤ 0.8. Finally, our

dataset contains 10 user features as predictor variables and user feedback as the outcome
variable, all of them are binary.

To test the stability of all methods, we generate different environments by dataset
separation with users’ feature. Specifically, we separate the whole dataset into 4 parts by
users’ age, including Age ∈ [20, 30), Age ∈ [30, 40), Age ∈ [40, 50) and Age ∈ [50, 100). In
our experiments, we trained all models with data from environment Age ∈ [20, 30) but tested
them on all 4 environments.

Results. We plot the results in Figure 6. From the results, we can obtain that our
proposed algorithm achieves comparable results to the baseline OLS on test environment
with Age ∈ [20, 30), where the variables’ distributions are similar or even the same with the
one on the training environment. On the other three test environments, whose distributions
differ from the training environment, our algorithm achieves the best prediction performance.
Another important observation is that the performance of our algorithm is always better
than the global balancing method. The main reason is that the global balancing method
cannot address the high-order confounding among variables, while our smart sampling and
stable prediction algorithm can as guaranteed with theorem 4.3.

6.4.2 Parkinson’s Telemonitoring Dataset.

Dataset. To test our algorithm in a regression setting, we apply it to a Parkinson’s
telemonitoring dataset6, which has been wildly used for domain generalization [6, 38] task
and other regression task [49]. The dataset is composed of biomedical voice measurements
from 42 patients with early-stage Parkinson’s disease recruited for a six-month trial of a
telemonitoring device for remote symptom progression monitoring. For each patient, there
are around 200 recordings, which were automatically captured in the patients’ homes. The
aim is to predict the clinician’s motor and total UPDRS scoring of Parkinson’s disease
symptoms from patients’ features, including their age, gender, test time and many other
measures.

Experimental Settings. In our experiments, we set the outcome variables Y as motor
UPDRS scoring and total UPDRS scoring separately. For those non-binary features, we
dichotomize them around their mean value. Finally, we selected 10 patients features as
predictors X, including age, gender, test time, Jitter:PPQ5 (a measure of variation in
fundamental frequency), Shimmer:APQ5 (a measure of variation in amplitude), RPDE (a
nonlinear dynamical complexity measure), DFA (signal fractal scaling exponent), PPE (a
nonlinear measure of fundamental frequency variation), NHR and HNR (two measures of
ratio of noise to tonal components in the voice).

To test the stability of all algorithms, we generate various environments by data separation
on different patients. Specifically, we separate the whole 42 patients into 4 patients’ groups,
including group 1 with recordings from 21 patients, and the other three groups (group 2, 3
and 4) are all with recordings from different 7 patients. In our experiments, we trained all
models with data from environment of group 1, but tested them on all 4 patients’ groups.

Results. We report the experimental results in Figure 7 when we set outcome as patients’
motor UPDRS score, and Figure 8 for patients’ total UPDRS score prediction. From Figures
7a & 8a, we can observe that the predictive results of our algorithm and GBR method are

6https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
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Fig. 7. Prediction across patients’ groups where outcome is motor UPDRS score. Models are trained on
datasets from patients’ group 1, but tested on datasets across patients’ groups.
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Fig. 8. Prediction across patients’ groups where outcome is total UPDRS score. Models are trained on
datasets from from patients’ group 1, but tested on datasets across patients’ groups.

worse than OLS methods when the testing data are from patients’ group 1. This is because
the training and testing data are from the same environment, ensuring they have similar even
the same covariates’ distribution. But the performances of our algorithm and GBR method
are much better than OLS on the other three environments, whose distribution might be
different from the training environment. The results demonstrate that non-confounding
features by the global balancing or subsampling can help to address the agnostic distribution
bias between training and testing environments, hence making better predictions across
unknown testing environments. By comparing our algorithm with GBR, we find that the
performance of our algorithm is always better than global balancing method. The main
reason is that our algorithm can ensure higher-order deconfounding among variables if we
can make exactly subsampling based on FFD, while the GBR only focuses on the first
confounding among variables.
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To explicitly demonstrate the advantage of our proposed algorithm, we reportAverage Error
and Stability Error in Figure 7b for motor UPDRS score prediction and Figure 8b for
total UPDRS score prediction. The results show that our algorithm makes the most
stable prediction (with smallest Average Error and smallest Stability Error) across all
environments.

7 CONCLUSION

This paper addresses the problem of stable prediction across unknown environments. We
propose a subsampling method to reduce the spurious correlation between the noisy features
and the outcome variable. The subsampling method uses fractional factorial design as a
matching template, which promotes the non-confounding properties among features. We
develop a new confounding measure for subsample selection. The proposed BSSP method
can be used in both regression and classification tasks. Extensive experiments on synthetic
and real-world datasets have clearly demonstrated the advantages of the proposed method
for stable prediction. Our future work will extend the BSSP method from binary features
to multi-category and continuous features, for which multi-level fractional factorial designs
and uniform space-filling designs can be considered as the matching templates. We will also
explore how the balance-subsampling idea can be used for stable prediction with the neural
network models and the tensor data.
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