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Treatment effect plays an important role on decision making in many fields, such as social marketing, health-

care, and public policy. The key challenge on estimating treatment effect in the wild observational studies

is to handle confounding bias induced by imbalance of the confounder distributions between treated and

control units. Traditional methods remove confounding bias by re-weighting units with supposedly accurate

propensity score estimation under the unconfoundedness assumption. Controlling high-dimensional vari-

ables may make the unconfoundedness assumption more plausible, but poses new challenge on accurate

propensity score estimation. One strand of recent literature seeks to directly optimize weights to balance

confounder distributions, bypassing propensity score estimation. But existing balancing methods fail to do

selection and differentiation among the pool of a large number of potential confounders, leading to possible

underperformance in many high-dimensional settings. In this article, we propose a data-driven Differentiated

Confounder Balancing (DCB) algorithm to jointly select confounders, differentiate weights of confounders

and balance confounder distributions for treatment effect estimation in the wild high-dimensional settings.

Besides, under some settings with heavy confounding bias, in order to further reduce the bias and variance

of estimated treatment effect, we propose a Regression Adjusted Differentiated Confounder Balancing (RA-

DCB) algorithm based on our DCB algorithm by incorporating outcome regression adjustment. The synergis-

tic learning algorithms we proposed are more capable of reducing the confounding bias in many observational
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studies. To validate the effectiveness of our DCB and RA-DCB algorithms, we conduct extensive experiments

on both synthetic and real-world datasets. The experimental results clearly demonstrate that our algorithms

outperform the state-of-the-art methods. By incorporating regression adjustment, our RA-DCB algorithm

achieves more precise estimation on treatment effect than DCB algorithm, especially under the settings with

heavy confounding bias. Moreover, we show that the top features ranked by our algorithm generate accurate

prediction of online advertising effect.

CCS Concepts: • Computing methodologies → Causal reasoning and diagnostics; Machine learning;

Statistical relational learning;

Additional Key Words and Phrases: Treatment effect estimation, confounding bias, differentiated confounder

balancing, regression adjustment
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1 INTRODUCTION

Owing to the popularity of Big Data, abundant data are accumulated in various domains such
as healthcare and advertising. At the same time, many machine learning and data mining meth-
ods are proposed to exploit these data for prediction, aiming to estimate the future outcome in
the application of interest. These methods have been proved to be successful in prediction-oriented
applications. However, the lack of interpretability of most predictive algorithms makes them less
attractive in many settings, especially those requiring decision making, such as healthcare and pol-
icy making. How to improve the explanability of learning algorithms is of paramount importance
for both academic research and real applications.

Causal inference, which refers to the process of drawing a conclusion about a causal connection
based on the conditions of the occurrence of an effect [16], is a powerful statistical modeling tool for
explanatory analysis. One fundamental problem in causal inference is treatment effect estimation,
and its key challenge is to remove the confounding bias induced by the different confounder distri-
butions between treated and control units. The gold standard approach for removing confounding
bias is to conduct randomized experiments like A/B testing [27], where different treatments are
randomly assigned to units.1 But fully randomized experiments are usually time-consuming, ex-
pensive [21] and sometimes infeasible [6]. Therefore, many methods are proposed to estimate
treatment effect directly from observational data under the unconfoundedness assumption [38].
Most of them adopt the propensity score to reweight units for removing confounding bias [3, 4, 8,
23]. Although these methods are gaining ground in applied work, they require correct model spec-
ification on treatment assignment or accurate propensity score estimation. In big data scenarios,
controlling high-dimensional variables may make the unconfoundedness assumption more plausi-
ble, but poses new challenge on accurate propensity score estimation. Recently, some researchers
proposed to balance confounder distributions by directly optimizing the weights, without mod-
eling or estimating the propensity scores [2, 9, 15, 46]. But they balance all observed variables
equally without screening and differentiation of confounders, leading to poor performance in high-
dimensional settings. Overall, the previous methods can work well in well-designed experimental
settings or observational studies with grounded model assumptions and prior knowledge.

1Units represent the objects of treatment. For example, the units refer to the users in online advertising campaign.
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In the wild big data scenarios, however, there are almost always a large number of additional
or mostly uncontrolled confounders and identified variables, and the correlations among them are
complex and unknown in the real world [41]. Hence, we face the following challenges in estimating
treatment effect in the wild observational studies: (1) unknown model structure of the interactions

among variables: As stated in [41], pretty much everything in the real world interacts with every-
thing else, to some degree, and their interactions are complicated due to the complex nature of
the real world. We hardly know the real model structure among variables in the wild, so we can-
not make any model specification a priori for removing confounding bias. (2) High-dimensional

and noisy variables: In big data scenario, there are always a large number of observed variables,
but not all these variables are confounders and different confounders contribute unequally to the
confounding bias in data. Usually, we do not have sufficient prior knowledge to justify the inclu-
sion of hundreds or even thousands of variables. How to differentiate the confounders and their
confounding bias is quite difficult.

To address these challenges, we propose a data-driven method, named Differentiated Con-
founder Balancing (DCB) algorithm. The method is based on the framework of confounder bal-
ancing, but in contrast with previous methods that balance all variables equally, we argue that
some variables should not be regarded as confounders and we theoretically prove that the weights
of confounders should be differentiated in confounder balancing. Motivated by this, we propose
an integrated regularization algorithm to jointly select confounders, differentiate weights of con-
founders and balance confounder distributions for treatment effect estimation. During the treat-
ment effect estimation, the selected confounders and their weights are used to adjust the weights
of units, so that the confounder distributions, approximated by their moments, over all units can
be balanced in treated and control groups. We find, however, that our DCB algorithm could still
have some substantial bias in the settings with heavy confounding bias. To address this problem,
we propose a Regression Adjusted DCB (RA-DCB) model based on our DCB algorithm by incor-
porating regression adjustment on the outcome, aiming to further reduce the bias and variance of
estimated treatment effect. We validate our DCB and RA-DCB algorithms with extensive exper-
iments on both synthetic and real datasets. The results clearly demonstrate that our algorithms
outperform the state-of-the-art methods on treatment effect estimation in observational studies.
And we find that with considering regression adjustment, our RA-DCB algorithm achieves a better
performance on treatment effect estimation than DCB algorithm, especially in high-dimensional
settings and high bias selection settings.

The main contributions of this article are as follows:

—We address the new challenges of estimating treatment effect in big data scenarios with
high-dimensional noisy variables and insufficient prior knowledge on variable interactions,
which is beyond the capability of previous methods.

—We propose a novel DCB algorithm to jointly select confounders, optimize the confounder
weights and sample weights for confounder balancing, and simultaneously estimate the
treatment effect in observational studies.

—In order to further reduce the bias and variance of estimated treatment effect, we propose
a new RA-DCB algorithm based on our DCB algorithm by incorporating regression adjust-
ment on the outcome.

—The advantages of our DCB and RA-DCB algorithms are demonstrated in both synthetic and
real datasets. We also show that our method can significantly help to improve the prediction
performance with real online advertising dataset.

The rest of this article is organized as follows. Section 2 reviews the related work. Section 3 in-
troduces our DCB estimator. Section 4 proposes the algorithm that accurately infers the treatment

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 1, Article 6. Publication date: December 2019.



6:4 K. Kuang et al.

effect, and gives some analysis on our model. Section 5 gives the experimental results. Finally,
Section 6 concludes the article.

2 RELATED WORK

In this section, we review related fields including weighting based estimators, confounder selection
methods and learning for causal inference.

Weighting based estimators: Existing weighting based treatment effect estimation methods in
observational studies either employ propensity score or optimize balance weights directly.

The propensity score was first proposed by Rosenbaum and Rubin [38], where it was estimated
via a logistic regression. Then many other machine learning algorithms (e.g., lasso [10, 12], boost-
ing regression [30], bagged CART, and neural network [44]) are employed for propensity score
estimation. Various estimators have been proposed based on propensity score, such as propensity
score matching, inverse propensity weighting, and double robust estimators [3, 4, 8, 24, 25]. Re-
cently, some novel methods [17, 23] have been proposed to improve the performance of propensity
score based methods. Imai et al. [17] introduced a covariate balancing propensity score by model-
ing treatment assignment while optimizing the covariate balance for treatment effect estimation.
Kuang et al. [23] proposed a data driven algorithm by jointly optimize variables separation and
treatment effect estimation, where the separated confounders were used for confounding bias re-
moving, and the separated adjustment variables were utilized for variance reduction. These meth-
ods are gaining ground in applied work, but they either require correct model specification on
treatment assignment or precise estimation of the propensity score, which may not be the case in
many applications [2], especially in high-dimensional settings.

Recently, researchers proposed new weighting based estimators by focusing on confounder bal-
ancing directly [2, 9, 15, 17, 45, 46], bypassing propensity score estimation. Hainmueller [15] in-
troduced entropy balancing method to directly adjust sample weights to the specified sample mo-
ments while moving the sample weights as little as possible. Athey et al. [2] proposed approximate
residual balancing algorithm, which, motivated by doubly robust approaches, combines outcome
modeling using the LASSO with balancing weights constructed to approximately balance covari-
ates between treatment and control groups. Zubizarreta [46] learned the stable balancing weights
via minimizing its variance and adjusting for confounder balancing directly. Chan et al. [9] con-
sidered a wide class calibration weights constructed to attain confounder balancing directly. Imai
et al. [17] introduced covariate balancing propensity score, which models treatment assignment
while optimizing covariates balancing. Most of these methods are nonparametrical and require no
propensity score estimation, but they do not differentiate the confounders by treating all observed
variables as confounders and balanced all of them equally, leading to possible poor performance
on treatment effect estimation in the setting of high-dimensional variables.

Hence, it is very likely to improve the treatment effect estimation efficiency by fine-tuned se-
lection and differentiated methods. To achieve the goal, we propose a DCB algorithm to jointly
optimize confounder weights and sample weights for precise treatment effect estimation.

Confounders selection: Recently, researchers had realized that not all observed variables are con-
founders and proposed some approaches for confounders selection [7, 34, 39, 43]. Most of these
methods assumed the causal structure, i.e., whether a variable is the cause of treatment or out-
come, is known a prior. But the causal structure cannot be well defined via prior knowledge in
the wild, especially in the setting of high-dimensional variables. Here, we propose a data driven
approach to learn the confounder weights for treatment effect estimation in the wild.

Learning for causal inference: Due to the big success in machine learning, many learning meth-
ods were utilized for causal inference, including deep neural network [19, 40], adversarial learning
[20, 32], and variational autoencoder [29, 36]. In [19, 40], they proposed to adopt a deep neural
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network to learn a variables representation, which has the same distribution on both treated
and control groups, and learn a outcome regression model for counterfactual prediction. With
adversarial learning techniques, the authors in [20, 32] proposed to learn a sample weight to adjust
the variables’ distribution on treated and control groups where the adversarial discriminator
cannot distinguish the units from treated or control groups. By leveraging the techniques of
variational inference, recent work [29, 36] proposed generative models to learn and capture the
latent variables of confounders for better balancing. There are books for causal inference [18, 31,
34], and recently Guo et al. [14] present a survey of learning causality with data.

Comparing to the preliminary version [22], this one comprises a substantial amount of addi-
tional theoretical, algorithmic and experimental efforts and contributions. Key points of differences
lie in the following aspects: First, as the bias analysis in our conference paper, we extend the the-
oretical analysis to both bias and variance of estimated treatment effect, and propose to utilize L2

norm of sample weights to bound the variance. Second, by incorporating regression adjustments
on outcome, we propose a new RA-DCB algorithm to further reduce the substantial bias of DCB
algorithm in the setting with heavy confounding bias. Third, we report a series of statistical tests
that examine the performance of the new RA-DCB algorithm for treatment effect estimation, and
find that the method achieves more precise and robust results than DCB algorithm, especially in
the settings with heavy confounding bias.

3 PROBLEM AND OUR ESTIMATOR

In this section, we first give the notations and problem formulation, then revisit traditional con-
founder balancing estimators, and propose a novel estimator via DCB and regression adjustment.

3.1 Notations and Problem Formulation

Our goal is to estimate the treatment effect based on potential outcome framework [18, 38]. With
the framework, we define a treatment as a random variable T and a potential outcome as Y (t ),
which corresponds to a specific treatmentT = t . In this article, we only focus on binary treatment,
that is t ∈ {0, 1}. We define the units that received treatment (T = 1) as treated units and the other
units with T = 0 as control units. Then, for each unit indexed by i = 1, 2, . . . ,n, we observe a
treatmentTi , an outcome Y obs

i , and a vector of observed pre-treatment variablesXi ∈ Rp×1, where

the observed outcome Y obs
i of unit i is denoted by

Y obs
i = Yi (Ti ) = Ti · Yi (1) + (1 −Ti ) · Yi (0). (1)

The numbers of treated and control units are equal to nt and nc , and the dimension of all
observed variables is p. In our article, for any column vector v = (v1,v2, . . . ,vm )T , let ‖v‖∞ =
max( |v1 |, . . . , |vm |), ‖v‖22 =

∑m
i=1v

2
i , and ‖v‖1 =

∑m
i=1 |vi |.

Throughout this article, we assume the SUTV and Unconfoundedness [38] condition is satisfied.

Assumption 1 (Stable Unit Treatment Value (SUVT)). The distribution of potential outcome

for one unit is assumed to be unaffected by the particular treatment assignment of another unit, when

given the observed variables.

Assumption 2 (Unconfoundedness). The distribution of treatment is independent of potential

outcome when given the observed variables. Formally, T⊥
(
Y (0),Y (1)

)
|X.

In this article, we focus on estimating the Average Treatment effect on the Treated (ATT), which
represents the mean (average) difference between the potential outcomes under treated and control
status among the treated subgroup. Formally, the ATT is defined as

ATT = E[Y (1) |T = 1] − E[Y (0) |T = 1], (2)
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Table 1. Symbols and Definitions

Symbol Definition

nt (nc ) Sample size for treated (control) group
p Dimension of observed (augmented) variables

T ∈ Rn×1 Treatment
Y ∈ Rn×1 Outcome
X ∈ Rn×p Observed variables

Xt ∈ Rnt×p Observed variables of treated units
Mt ∈ Rnt×p Augmented variables of treated units
Mc ∈ Rnc×p Augmented variables of control units
W ∈ Rnc×1 Sample weights on control units
β ∈ Rp×1 Confounder weights

where Y (1) and Y (0) represent the potential outcome of units with treatment status as treated
T = 1 and controlT = 0, respectively. Our method proposed in this article can be readily extended
to estimate the Average Treatment effect on the Control (ATC) and hence the Average Treatment
Effect (ATE) for the whole population.

In Equation (2), E[Y (1) |T = 1] can be straightforwardly estimated by the sample analog∑
i :Ti=1

1
nt
· Y obs

i . But it is cumbersome to estimate E[Y (0) |T = 1], since we cannot observe the po-

tential outcomeY (0) for the treated units. Under Assumption 1, E[Y (0) |T = 1] is usually estimated
by re-weighting techniques for removing the confounding bias. The reweighting methods form the
surrogates of the unobserved potential outcome (Y (0) |T = 1) by reweighting the control units with
sample weightsW to make the confounder distributions on control units mimic the distributions
on treated units. Then with the sample weightsW on control units, we can estimate the ATT by

ÂTT =
∑

i :Ti=1

1

nt
· Y obs

i −
∑

j :Tj=0

Wj · Y obs
j . (3)

3.2 Revisiting on Confounder Balancing

It can been seen from Equation (3) that the ATT estimation produces to sample weights learning
problem. The classical approaches for sample weights learning are propensity score based methods
[3, 4, 8]. The good performance of these methods hinges on the correct model specification for
treatment assignment or accurate estimates of the propensity scores. Hence, the performance of
these methods is often poor in the wild observational studies, where the model structure among
variables is unknown.

To reduce the model dependency for applying on data in the wild, researchers proposed non-
parametric methods to optimize the sample weights W by focusing on confounder balancing di-
rectly [2, 15]. The motivation behind these methods is that the confounders can be balanced by
their moments, which uniquely determine their distributions. Therefore, they learn the sample
weightsW by

W = arg min
W
‖Xt −

∑
j :Tj=0

Wj · X j ‖22 , (4)

or
W = arg min

W
‖Xt −

∑
j :Tj=0

Wj · X j ‖2∞, (5)

where the Xt =
∑

i :Ti=1
1

nt
Xi represents the mean value of observed variables on treated units. The

direct confounder balancing methods based on Equation (4) or (5) can be applied on data in the
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wild. But they balance all observed variables equally without differentiating confounders, which
results in poor performance in the setting of high-dimensional variables.

3.3 Differentiated Confounder Balancing

To precisely estimate the treatment effect with high-dimensional observational data in the wild, we
propose to simultaneously learn confounder weights and sample weights. The confounder weights
can determine which variable is included and its share of contribution on confounding bias, and
the sample weights are designed for confounder balancing.

To be specific, we jointly optimize the confounder weights and sample weights by learning
following optimization under some constraints to be clarified later:

W = arg min
W

��
�
βT · ��

�
Xt −

∑
j :Tj=0

Wj · X j
��
�

��
�

2

, (6)

whereW ∈ Rnc×1 is sample weights and β ∈ Rp×1 is the confounder weights. In Equation (6), the
confounder weights β differentiate the roles of each confounder in the balancing process, which
helps for better removing the confounding bias in the wild observational studies.

Next, we give theoretical analysis on how to differentiate confounders weights with following
proposition.

Proposition 3.1. In observational studies, different confounders make unequal confounding bias

on treatment effectATT with their own weights, and the weights can be learned by regressing potential

outcome Y (0) on observed variables X.

The general relationship among observed variables X, treatment T , and outcome Y can be rep-
resented as

Y = f (X) +T · д(X) + ϵ, (7)

where the true ATT is E (д(Xt )), and the potential outcome Y (0) can be represented by

Y (0) = f (X) + ϵ . (8)

We prove Proposition 3.1 with following assumption.

Assumption 3 (Linearity). The regression of potential outcome Y (0) on observed variables X is

linear, that is f (X) = c + αX.

Under Assumption 3, we can rewrite the estimator of ÂTT as

ÂTT =
∑

i :Ti=1

1

nt
Y obs

i −
∑

j :Tj=0

WjY
obs
j

=
∑

i :Ti=1

1

nt
(c + αXi + д(Xi ) + ϵi ) −

∑
j :Tj=0

Wj (c + αX j + ϵj )

= E (д(Xt )) + ��
�

∑
i :Ti=1

1

nt
αXi −

∑
j :Tj=0

WjαX j
��
�
+ ϕ (ϵ )

= ATT +
∑p

k=1
αk (
∑

i :Ti=1
1

nt
Xi,k −

∑
j :Tj=0WjX j,k )︸																																																	︷︷																																																	︸

Bias

+ϕ (ϵ ), (9)

where ϕ (ϵ ) =
∑

i :Ti=1
1

nt
ϵi −
∑

j :Tj=0Wjϵj � 0 refers to the difference of noises between treated and

control units. In order to reduce the Bias term of estimated ATT, we have to regulate the term
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∑p

k=1
αk · (

∑
i :Ti=1

1
nt
Xi,k −

∑
j :Tj=0WjX j,k ), where (

∑
i :Ti=1

1
nt
Xi,k −

∑
j :Tj=0WjX j,k ) means the dif-

ference of the kth confounder between treated and control units. The parameter αk represents the
confounding bias weight of the kth confounder, and it is the coefficient ofXk in the function f (X).
Hence, we can learn the confounder weights from the regression of potential outcome Y (0) on
observed variables X under Linearity assumption.

Actually, the regression of potential outcome Y (0) against on observed variables X is infeasi-
ble, because of the counterfactual problem, that we cannot observe the potential outcome Y (0)
for treated units. Here, we utilize the sample weights W again to facilitate the construction of
surrogates for the potential outcomes Y (0) of the treated units. We will elaborate on this later.

When the function f (X) is nonlinear, that is f (X) allows for powers and interactions among
observed variables. It is conceptually easy to extend above results under Linearity assumption to
bound the bias of ATT with Taylor expansion on f (X) by balancing not only observed variables,
but also their powers and interactions. Therefore, when f (X) is nonlinear, we have to balance
the augmented variables M = (X,X2,XiX j ,X

3,XiX jXk , . . .), and learn the confounder weights by
regressing the potential outcome Y (0) on augmented variables M.

Besides considering the bias of estimated treatment effect, we also give theoretical analysis on
its variance with following proposition.

Proposition 3.2. If we assume the homogeneity of the variance of outcome when given observed

variables and treatment, that is ∀i,Var (Yj |X j ,Tj ) = σ 2, then we can bound the variance of estimated

ATT as a L2 norm regularizer on the sample weightsW .

Under the linearity assumption in 3, we can write the Mean Squared Error (MSE) between esti-

mated ATT (ÂTT ) and real ATT (ATT ) as

E
(
(ÂTT −ATT )2 | {Xi ,Ti }ni=1

)
=

��
�
Bias + ��

�

∑
i :Ti=1

1

nt
ϵi −

∑
j :Tj=0

Wjϵj
��
�

��
�

2

(10)

= Bias2 (11)

= 2 · Bias · ��
�

∑
i :Ti=1

1

nt
E (ϵi |Xi ,Ti ) −

∑
j :Tj=0

WjE (ϵj |X j ,Tj )
��
�

(12)

+ E (
∑

i :Ti=1
1

nt
ϵi −
∑

j :Tj=0Wjϵj )
2 |{Xi ,Ti }ni=1)︸																																																			︷︷																																																			︸

Variance

, (13)

where Bias =
∑p

k=1
αk (
∑

i .Ti=1
1

nt
Xi,k −

∑
j :Tj=0WjX j,k ), which refers to the bias of estimated ATT.

Equation (11) refers to the bias term of estimated ATT. Equation (12) equals 0, as E (ϵi |Xi ,Ti ) = 0.
By using the assumption that ϵi are independent and therefore E (ϵiϵj ) = 0 for i � j, then we can
simply rewrite the variance term in Equation (13) as

Variance =
1

n2
t

∑
i :Ti=1

E
(
ϵ2

i |Xi ,Ti

)
+
∑

i :Ti=0

W 2
j E
(
ϵ2

j |X j ,Tj

)
. (14)

=
1

n2
t

∑
i :Ti=1

Var (Yi |Xi ,Ti ) +
∑

i :Ti=0

W 2
j Var (Yj |X j ,Tj ). (15)

If we consider the homogeneity of Var (Yj |X j ,Tj ), denoted by σ 2. Then, we can bound above
variance term as

Variance =
1

n2
t

∑
i :Ti=1

σ 2 +
∑

i :Ti=0

W 2
j σ

2.
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That is we can minimize the variance term by a L2 norm regularizer on sample weightsW .
Consequently, we may write the MSE as

E
(
(ÂTT −ATT )2

)
| {Xi ,Ti }ni=1) =

( ∑p

k=1
αk (
∑

i .Ti=1
1

nt
Xi,k −

∑
j :Tj=0WjX j,k )︸																																																	︷︷																																																	︸

Bias

)2
(16)

+ 1
n2

t

∑
i :Ti=1 σ

2 + σ 2∑
i :Ti=0W

2
j︸																																︷︷																																︸

Variance

.

Therefore, to minimize the MSE and precisely estimate the ATT, we need to consider the tradeoff
between bias term and variance term. In the next selection, we will introduce our algorithms for
treatment effect estimation by simultaneously minimizing both bias and variance term.

4 MODEL AND OPTIMIZATION

In this section, we give details of our models for treatment effect estimation, including DCB model
and Regression Adjusted DCB model.

4.1 Differentiated Confounder Balancing Model

With Proposition 3.1, we know the ATT estimator is affected by the unbalance of the observed
variables, and their high order terms. That is the augmented variables M:

M = (X,X2,XiX j ,X
3,XiX jXk , . . .). (17)

Combining Equation (6) and (17) and Proposition 3.1, we give our objective function to jointly
optimize sample weights and confounder weights for ATT estimation in observational studies as

min
(
βT · (Mt −M

T
cW )
)2
, (18)

s .t .
∑

j :Tj=0

(1/nt +Wj ) · (Yj −Mj · β )2 ≤ λ,

‖W ‖22 ≤ δ , ‖β ‖22 ≤ μ, ‖β ‖1 ≤ ν ,

1
TW = 1 and W 	 0,

whereW is the sample weights and β is the confounder weights. Mt represents the mean value of
augmented variables on treated units.

∑
j :Tj=0 (1/nt +Wj ) · (Yj −Mj · β )2 refers to the loss function

of potential outcomeY (0) when learning the confounder weights, including potential outcome loss
on both control units

∑
j :Tj=0 1/nt (Yj −Mj · β )2 and treated units

∑
j :Tj=0Wj · (Yj −Mj · β )2, which

is again a surrogate by weighting. With the constraints ‖β ‖22 ≤ μ and ‖β ‖1 ≤ ν , we can remove

the nonconfounders and smooth the confounder weights. The formula 1
TW = 1 normalizes the

sample weights on control units to add up to one, with the sample weights on treated units. The
terms W 	 0 constraint each of sample weights is nonnegative. With norm ‖W ‖22 ≤ δ , we can
reduce the variance of estimated ATT to achieve stability with theoretical guarantee.

These lead to the following optimization problem, which is to minimize J (W , β ) with con-
straints on parametersW .

J (W , β ) = (βT · (Mt −M
T
cW ))2 + λ

∑
j :Tj=0

1/nt +Wj ) · (Yj −Mj · β )2 (19)

+δ ‖W ‖22 + μ‖β ‖22 + ν ‖β ‖1,
s .t . 1

TW = 1 and W 	 0.

Here, we propose an iterative method to minimize the above objective function (19).
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ALGORITHM 1: Differentiated Confounder Balancing (DCB)

Input: Tradeoff parameters λ > 0, δ > 0, μ > 0, ν > 0, Augmented Variables Matrix on treat units
Mt , Augmented Variables Matrix on control units Mc and Outcome Y .

Output: Confounder Weights β and Sample WeightsW
1: Initialize Confounder Weights β (0) and Sample WeightsW (0)

2: Calculate the current value of J (W , β ) (0) = J (W (0), β (0) ) with Equation (19)
3: Initialize the iteration variable t ← 0
4: repeat

5: t ← t + 1
6: Update β (t ) by solving J (β (t−1) ) in Equation (20)

7: UpdateW (t ) by solving J (W (t−1) ) in Equation (21)

8: Calculate J (W , β ) (t ) = J (W (t ), β (t ) )
9: until J (W , β ) (t ) converges or max iteration is reached

10: return β ,W .

Firstly, we initialize sample weights W = {1/nc , . . . , 1/nc }T and confounder weights β =
{1/p, . . . , 1/p}T . Once the initial values are given, in each iteration, we first update β by fixing
W , and then updateW by fixing β . These steps are described as follows.

Update β : When fixingW , the problem (19) is equivalent to optimize following objective func-
tion:

J (β ) = (βT · (Mt −M
T
cW ))2 + λ

∑
j :Tj=0

(1/nt +Wj ) · (Yj −Mj · β )2 + μ‖β ‖22 + ν ‖β ‖1, (20)

which is a standard �1 norm regularized least squares problem and can be solved with any LASSO
(or elastic net) solver. Here, we use the proximal gradient algorithm [33] with proximal operator
to solve the objective function in (20).

UpdateW : By fixing β , we can obtainW by optimizing (19). It is equivalent to optimize following
objective function:

J (W ) = (βT · (Mt −M
T
cW ))2 + λ

∑
j :Tj=0

(1/nt +Wj ) · (Yj −Mj · β )2 + δ ‖W ‖22 , (21)

s .t . 1
TW = 1 and W 	 0.

For ensuring nonnegative ofW with constraintW 	 0, we letW = ω � ω, where ω ∈ Rp×1 and
� refers to the Hadamard product. Then, the problem (21) can be reformulated as

J (ω) = (βT · (Mt −M
T
c (ω � ω)))2 + λ

∑
j :Tj=0

(1/nt + ωj � ωj ) · (Yj −Mj · β )2 + δ ‖ω � ω‖22 , (22)

s .t . 1
T (ω � ω) = 1.

The partial gradient of term J (ω) with respect to ω is

∂J (ω)

∂ω
= −4(βT · (Mt −M

T
c (ω � ω))) ·Mc · β � ω

+4δω � ω � ω + 2λω � (Yc −Mc · β )2.

Then, we determine the step size a with line search, and update ω at t th iteration as

ω (t ) = ω (t−1) − a · ∂J (ω (t−1) )

∂ω (t−1)
.
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With constraint 1
T (ω � ω) = 1, we normalize ω (t ) as

ω (t ) =
ω (t )√

1T (ω (t ) � ω (t ) )
.

Then, we updateW (t ) at t th iteration with

W (t ) = ω (t ) � ω (t ) .

We update β andW iteratively until the objective function (19) converges. The whole algorithm
is summarized in Algorithm 1.

Finally, with the optimized sample weightsW by our DCB algorithm, we can estimate the ATT
with Equation (3).

4.2 Regression Adjusted DCB Model

Recently, regression adjustment [13] has been used to experimental data for treatment effect es-
timation. And in [5, 28], it has been proved that regression adjustment could help to reduce the
variance of estimated treatment effect on experimental data. Also, in the literature of causal in-
ference with observational data [2, 23], regression adjustment also has been applied to reduce the
bias and variance of estimated treatment effect, therefore, achieve a more precise estimation of
causal effect.

Inspired by regression adjustment in these works, we propose a regression adjusted estimator
based on our DCB model for treatment effect estimation in observational studies, named as Re-
gression Adjusted Differentiated Confounder Balancing (RA-DCB) estimator, where we utilize the
confounder weights β learned in our DCB algorithm or outcome regression adjustment, aiming
to further reduce the substantial bias and variance from DCB algorithm under some settings with
heavy confounding bias in observational data.

Therefore, we estimate ATT in our new proposed RA-DCB estimation with regression adjust-
ment as following:

ÂTT =
∑

i :Ti=1

1

nt
·
(
Y obs

i −Miβ
)
−
∑

j :Tj=0

Wj ·
(
Y obs

j −Mjβ
)
, (23)

where the parameter β can be learned by regression augmented variables M on outcome Y . Com-
paring with previous estimator in (3), our new RA-DCB estimator in Equation (23) can remove
the substantial bias from augmented variables M by regression adjustment, which could help to
reduce the variance of estimated ATT.

4.3 Complexity Analysis

During the procedure of optimization, the main cost of DCB Algorithm 1 is to calculate the loss
J (W , β ), update confounder weights β and sample weights W . We analyze the time complexity
of each of them, respectively. For the calculation of the loss, its complexity isO (np), where n is the
sample size andp is the dimension of (augmented) variables. For updating β , this is standard LASSO
problem and its complexity is O (np). For updatingW , the complexity is dominated by the step of
calculating the partial gradients of function J (ω) with respect to variable ω. The complexity of
∂J (ω )
∂ω

is O (np).
In total, the complexity of each iteration in DCB Algorithm 1 is O (np). Similarly, we can obtain

the complexity of each iteration in RA-DCB estimator is also O (np) totally.
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4.4 Parameters Tuning

No ground truth for parameters tuning is the main challenge of causal inference in observational
studies. To address this challenge, we apply matching method to estimate the ATT and set it as the
“approximate ground truth” as [1, 23, 37] did. Specially, for each treated unit i , we find its closet
match among control units as follow:

match(i ) = arg min
j :Tj=0

‖Xi − X j ‖22 . (24)

To make the matching approximate to exactly matching, we drop unit i if match(i ) > ε . Then,
we can obtain the “approximate ground truth” by comparing the average outcome between the
matched treated and control units.

With the “approximate ground truth,” we can tune parameters for our algorithm and baselines
with cross validation by grid searching.

5 EXPERIMENTS

In this section, we evaluate our algorithm on both synthetic and real-world datasets, comparing
with the state-of-the-art methods.

5.1 Baseline Estimators

We implement following baseline estimators to evaluate the ATT for comparison.

—Unadjusted estimator ÂTTU nA: It evaluates the ATT by directly comparing the average out-
come between the treated and control units without adjusting data. It ignores the confound-
ing bias in data.

— IPW estimator ÂTT I PW [38]: It evaluates the ATT via reweighting units with inverse of
propensity score. It relies on correct model specification for propensity score estimation.

—Doubly robust estimator ÂTTDR [4]: It evaluates the ATT with combination of IPW and re-
gression method. It relies on correct specification of propensity score or outcome regression
models.

—Entropy balancing estimator ÂTT ENT [15]: It evaluates the ATT by directly balancing on
confounders and entropy loss on sample weights. It ignores the confounder weights.

—Approximate residual balancing estimator ÂTTARB [2]: It evaluates the ATT by combining
weighting adjustment via directly balancing on confounders and regression adjustment on
outcome. It ignores the confounder weights.

In this article, we implemented ÂTT I PW and ÂTTDR with lasso regression for variables selection.

5.2 Experiments on Synthetic Data

In this section, we introduce how to generate the synthetic datasets and demonstrate the effec-
tiveness of our DCB algorithm with extensive experiments.

5.2.1 Dataset. To generate the synthetic datasets, we consider two sample sizes n =
{2,000, 5,000} and also vary the dimension of observed variables p = {50,100}. We first generate
the observed variables X = (x1, x2, . . . , xp ) with independent Gaussian distributions as

x1, x2, . . . , xp
iid∼ N (0, 1),

where xi represents value of the ith variable in X.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 1, Article 6. Publication date: December 2019.



Treatment Effect Estimation via Differentiated Confounder Balancing and Regression 6:13

To test the robustness of all estimators, we generate the binary treatment variable T from a
logistic function (Tloдit ) and a misspecified function (Tmissp ) as

Tloдit ∼ Bernoulli �
�
1/ �

�
1 + exp �

�
−

p ·rc∑
i=1

sc · xi +N (0, 1)�
�

�
�

�
�
, and

Tmissp = 1 if

p ·rc∑
i=1

sc · xi +N (0, 1) > 0, Tmissp = 0 otherwise.

where we vary both confounding rate rc and confounding strength sc from 0 to 1. The confounding
rate represents the ration of confounders to all observed variables, and the confounding strength
refers to the bias strength of confounders on treatment. As increasing of confounding rate rc and
confounding strength sc , the selection bias between treated and control groups become more and
more serious.

We generate the outcome Y from a linear function (Yl inear ) and a nonlinear function (Ynonlin )
as

Yl inear = T +

p∑
j=1

{
I (mod (j, 2) ≡ 0) ·

( j
2
+T
)
· xj

}
+N (0, 3),

Ynonlin = T +

p∑
j=1

{
I (mod (j, 2) ≡ 0) ·

( j
2
+T
)
· xj

}
+N (0, 3)

+

p−1∑
j=1

{
I (mod (j, 10) ≡ 1) · p

2
· (x2

j + x j · x j+1)
}
,

where the I (·) is the indicator function and function mod (x ,y) returns the modulus after division
of x by y.

Under different settings on treatment T and outcome Y , we know the true ATT in simulation.
We evaluate the ATT with our algorithm, comparing with baselines.

5.2.2 Results. To evaluate the performance of our proposed method, we carry out the exper-

iments for 100 times independently. Based on the estimated ATT (ÂTT ), we calculate its Bias ,
standard deviations (SD), mean absolute errors (MAE), and root mean square errors (RMSE) with
following definitions:

Bias =








1

K

K∑
k=1

ÂTT k −ATT








SD =

√√√
1

K

K∑
k=1

(ÂTT k −
1

K

K∑
k=1

ÂTT k )2

MAE =
1

K

K∑
k=1

|ÂTT k −ATT |

RMSE =

√√√
1

K

K∑
k=1

(ÂTT k −ATT )2,

where K is the experimental times, ÂTT k is the estimated ATT in kth experiment and ATT repre-
sents the true treatment effect.
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By varying sample size n, variables’ dimension p, function of treatment T , function of outcome
Y , confounding rate rc , and confounding strength sc , we obtain the experimental results of our
DCB algorithm in total eight different settings by comparing with all baselines. The experimental
results are demonstrated in Tables 2 and 3.

From Tables 2 and 3, we have following observations and analyses:

—Unadjusted estimator fails when confounders are associated with both treatment and out-
come. From our results, we find the unadjusted estimator makes huge error on ATT esti-
mation, because it ignores the confounding bias in data.

—IPW and DR estimators have poor performance in the setting of high-dimensional variables
or when the model specifications are incorrect. IPW and DR estimators make huge error
under setting 3 and setting 4, where T = Tmissp and Y = Ynonlin .

—ENT estimator has good performance only when the parameters sc = 0.2 under setting 2,
where the confounding bias is small in data, but its performance deteriorates as the con-
founding bias increasing. Since it ignores the confounder weights, which makes it unable
to effectively remove the confounding bias in data.

—ARB estimator achieves better performance than other baselines in most of time, since it is
nonparametric method with regression adjustment. However, it is far inferior to our pro-
posed estimator. The key reason is that it balances all observed variables equally.

—Our proposed DCB estimator, by jointly optimizing both sample weights and confounder
weights, achieves significant improvements over the baselines in all settings, when varying
sample size n, dimension of variables p, confounding rate rc , and confounding strength sc .

Robustness test. We also show the robustness of our DCB estimator in Figure 1 by varying the
sample size n, dimension of variables p, confounding rate rc , and confounding strength sc . From
Figure 1, we find that as we decrease n or increase p, rc , and sc , the MAE of our DCB estimator
is consistent stable and small, while the MAE of baseline estimators increases continuously. This
demonstrates that our proposed estimator is more precise and robust than the baselines.

RA-DCB VS. DCB. In Table 4, we report the experimental results by comparing RA-DCB with
DCB in different settings. From the results, we find our proposed RA-DCB algorithm achieve a
comparable results with previous DCB algorithm in the settings with mild confounding bias. But
when the bias become severe (severe bias could be induced by high dimension, high confounding
rate and confounding strength), RA-DCB algorithm could have a better performance than DCB
on treatment effect estimation. For example, in setting 3, when n = 5,000,p = 100, sc = 1, rc = 0.8,
our RA-DCB algorithm make an obvious improvement on treatment effect estimation than DCB
algorithm. To clearly demonstrate the effective of our RA-DCB algorithm, we report the results
in Figure 3 by comparing with DCB algorithm in a severe bias setting, where T = Tmissp ,Y =
Ynonlin ,n = 5,000,p = 200, sc = 1.0, rc = 0.8. From the results, we conclude that with considering
the regression adjustment, our RA-DCB algorithm can have a better performance on treatment
effect estimation than DCB algorithm in settings with severe bias.

5.2.3 Parameter Analysis. In our DCB algorithm, we have hype-parameters λ, δ , μ, and ν . As
mentioned before, we tuned these parameters in our experiments with cross validation by grid
searching, and each parameter is uniformly varied from {0.001,0.01,0.1,1,10,100,1,000}. We dis-
played the Bias of treatment effect estimation with respect to λ, δ , μ, and ν , respectively. As seen
from Figure 2, the Bias do not change too much and the performance are relatively stable when
parameters λ ≥ 1 and δ , μ,ν ≤ 1. From Figure 2(a), we can see the Bias is huge when parameter
λ is too small. The main reason is that small value of λ would slack the constrain on confounder
weights learning, resulting in imprecise confounder weights, even the trivial solution β = 0. From
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Table 2. Results on Synthetic Dataset in Setting 1 to 4

Setting 1: T = Tloдit , Y = Yl inear , and sc = 1

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

�ATT U nA 6.483 (3.460) 6.682 7.349 18.60 (8.859) 18.67 20.61 6.420 (2.050) 6.420 6.739 18.53 (5.148) 18.53 19.23

�ATT I PW 2.220 (6.224) 4.866 6.609 8.365 (15.40) 14.47 17.52 1.907 (4.092) 3.648 4.514 8.033 (9.852) 10.52 12.71

rc = 0.2 �ATT DR 0.118 (0.307) 0.253 0.329 1.591 (0.512) 1.591 1.672 0.059 (0.174) 0.145 0.183 1.446 (0.337) 1.446 1.485

�ATT E N T 0.371 (0.477) 0.453 0.605 4.924 (3.167) 5.052 5.855 0.046 (0.254) 0.210 0.258 2.425 (1.229) 2.429 2.719

�ATT ARB 0.074 (0.472) 0.376 0.477 0.868 (0.435) 0.881 0.971 0.027 (0.269) 0.217 0.270 0.365 (0.371) 0.447 0.520

�ATT DC B 0.014 (0.121) 0.099 0.122 0.006 (0.119) 0.101 0.119 0.001 (0.073) 0.053 0.073 0.001 (0.085) 0.067 0.085

�ATT U nA 51.06 (3.725) 51.06 51.19 143.0 (9.389) 143.0 143.3 50.45 (1.900) 50.45 50.48 142.1 (5.647) 142.1 142.2

�ATT I PW 29.99 (4.048) 29.99 30.26 98.24 (8.462) 98.24 98.60 29.38 (2.216) 29.38 29.46 96.86 (5.899) 96.86 97.04

rc = 0.8 �ATT DR 0.345 (0.253) 0.367 0.428 4.492 (0.333) 4.492 4.504 0.338 (0.136) 0.338 0.365 4.306 (0.227) 4.306 4.312

�ATT E N T 15.06 (1.745) 15.06 15.16 63.02 (4.551) 63.02 63.19 10.09 (1.473) 10.09 10.19 51.99 (3.206) 51.99 52.09

�ATT ARB 0.231 (0.645) 0.553 0.685 2.909 (0.491) 2.909 2.951 0.189 (0.504) 0.428 0.538 2.259 (0.468) 2.259 2.307

�ATT DC B 0.003 (0.127) 0.102 0.127 0.020 (0.135) 0.114 0.136 0.003 (0.088) 0.072 0.088 0.012 (0.088) 0.073 0.089

Setting 2: T = Tloдit , Y = Yl inear , and rc = 0.5

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

sc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

�ATT U nA 11.80 (3.243) 11.80 12.24 43.38 (9.170) 43.38 44.34 11.53 (2.142) 11.53 11.73 42.64 (6.103) 42.64 43.07

�ATT I PW 3.897 (2.759) 4.144 4.775 18.37 (8.317) 18.38 20.17 3.873 (2.055) 3.875 4.384 17.13 (5.971) 17.13 18.14

sc = 0.2 �ATT DR 0.053 (0.150) 0.124 0.159 1.255 (0.265) 1.255 1.283 0.056 (0.104) 0.090 0.118 1.148 (0.180) 1.148 1.162

�ATT E N T 0.023 (0.168) 0.128 0.170 0.174 (0.193) 0.208 0.260 0.001 (0.116) 0.090 0.116 0.089 (0.119) 0.120 0.149

�ATT ARB 0.002 (0.170) 0.129 0.170 0.011 (0.184) 0.151 0.185 0.004 (0.119) 0.094 0.120 0.006 (0.121) 0.093 0.122

�ATT DC B 0.011 (0.107) 0.086 0.107 0.013 (0.098) 0.080 0.099 0.003 (0.065) 0.053 0.065 0.004 (0.073) 0.060 0.073

�ATT U nA 22.81 (3.610) 22.81 23.09 69.28 (9.608) 69.28 69.94 21.91 (1.908) 21.91 21.99 68.72 (5.410) 68.72 68.93

�ATT I PW 9.984 (4.878) 10.15 11.11 40.64 (12.48) 40.64 42.51 9.263 (3.615) 9.263 9.943 40.31 (7.185) 40.31 40.94

sc = 0.8 �ATT DR 0.185 (0.256) 0.256 0.316 3.234 (0.449) 3.234 3.265 0.177 (0.166) 0.205 0.243 3.051 (0.245) 3.051 3.061

�ATT E N T 2.805 (1.153) 2.805 3.033 23.53 (4.432) 23.53 23.94 0.742 (0.447) 0.759 0.866 15.97 (2.519) 15.97 16.16

�ATT ARB 0.059 (0.564) 0.455 0.567 1.861 (0.491) 1.861 1.924 0.005 (0.408) 0.327 0.408 1.133 (0.451) 1.133 1.219

�ATT DC B 0.007 (0.124) 0.102 0.124 0.015 (0.123) 0.102 0.124 0.001 (0.083) 0.067 0.083 0.017 (0.076) 0.063 0.078

Setting 3: T = Tmissp , Y = Ynonlin , and sc = 1

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

�ATT U nA 6.527 (5.367) 7.041 8.450 18.67 (14.04) 20.01 23.36 7.340 (3.425) 7.366 8.099 20.54 (9.992) 20.54 22.84

�ATT I PW 5.061 (8.998) 8.542 10.32 17.31 (19.22) 21.90 25.86 6.707 (6.494) 7.934 9.336 19.81 (15.04) 21.79 24.87

rc = 0.2 �ATT DR 6.334 (8.628) 8.562 10.70 23.65 (26.32) 29.16 35.38 6.493 (6.698) 7.637 9.329 23.44 (16.62) 24.77 28.74

�ATT E N T 3.770 (2.166) 3.842 4.348 13.46 (5.854) 13.58 14.68 3.096 (1.285) 3.102 3.352 12.16 (3.585) 12.16 12.68

�ATT ARB 0.643 (0.292) 0.647 0.706 3.757 (0.483) 3.757 3.788 0.512 (0.247) 0.517 0.569 3.288 (0.262) 3.288 3.299

�ATT DC B 0.016 (0.316) 0.263 0.317 0.021 (0.364) 0.294 0.365 0.017 (0.169) 0.139 0.169 0.082 (0.214) 0.183 0.230

�ATT U nA 53.26 (5.308) 53.26 53.53 145.2 (13.47) 145.2 145.9 53.12 (3.673) 53.12 53.24 145.2 (9.247) 145.2 145.4

�ATT I PW 39.46 (6.404) 39.46 39.97 113.0 (16.91) 113.0 114.3 39.04 (4.424) 39.04 39.29 111.7 (10.19) 111.7 112.1

rc = 0.8 �ATT DR 15.12 (8.433) 15.40 17.31 34.07 (28.29) 37.09 44.28 14.26 (5.613) 14.28 15.33 30.92 (15.90) 31.70 34.77

�ATT E N T 29.83 (1.795) 29.83 29.89 97.32 (6.507) 97.32 97.54 25.73 (1.155) 25.73 25.76 85.63 (3.114) 85.63 85.68

�ATT ARB 1.342 (0.337) 1.342 1.384 7.440 (0.566) 7.440 7.462 1.102 (0.230) 1.102 1.126 6.526 (0.325) 6.526 6.535

�ATT DC B 0.076 (0.321) 0.255 0.330 0.024 (0.388) 0.298 0.389 0.003 (0.207) 0.171 0.207 0.021 (0.304) 0.248 0.305

(Continued)
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Table 2. Continued

Setting 4: T = Tmissp , Y = Ynonlin , and rc = 0.5

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

sc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

�ATT U nA 18.01 (5.556) 18.01 18.84 59.49 (14.13) 59.49 61.15 18.01 (3.178) 18.01 18.29 60.34 (8.923) 60.34 60.99

�ATT I PW 7.288 (6.605) 8.429 9.836 32.24 (19.66) 33.23 37.76 7.372 (4.505) 7.516 8.639 33.39 (12.87) 33.39 35.78

sc = 0.2 �ATT DR 3.408 (5.953) 5.735 6.859 13.87 (21.90) 21.33 25.92 3.130 (4.146) 4.360 5.194 13.87 (12.53) 15.54 18.69

�ATT E N T 1.812 (0.818) 1.812 1.988 25.54 (6.241) 25.54 26.29 0.273 (0.160) 0.282 0.317 14.49 (2.800) 14.49 14.76

�ATT ARB 0.159 (0.254) 0.244 0.300 2.960 (0.385) 2.960 2.985 0.055 (0.150) 0.131 0.160 1.899 (0.241) 1.899 1.915

�ATT DC B 0.005 (0.223) 0.178 0.223 0.011 (0.288) 0.228 0.288 0.012 (0.120) 0.095 0.120 0.025 (0.158) 0.125 0.160

�ATT dir 24.58 (5.276) 24.58 25.14 72.30 (13.95) 72.30 73.63 24.10 (3.219) 24.10 24.31 71.20 (8.771) 71.20 71.74

�ATT I PW 18.34 (6.819) 18.34 19.56 57.07 (18.02) 57.07 59.85 17.65 (4.755) 17.65 18.28 54.95 (9.861) 54.95 55.83

sc = 0.8 �ATT DR 11.23 (8.757) 12.46 14.24 32.35 (26.22) 35.39 41.65 11.17 (5.492) 11.17 12.44 28.06 (14.24) 28.29 31.46

�ATT E N T 12.88 (1.956) 12.88 13.03 48.40 (5.818) 48.40 48.75 10.46 (1.315) 10.46 10.55 40.79 (2.773) 40.79 40.88

�ATT ARB 0.993 (0.343) 0.993 1.050 6.052 (0.525) 6.052 6.075 0.807 (0.255) 0.807 0.846 5.176 (0.279) 5.176 5.183

�ATT DC B 0.042 (0.310) 0.246 0.313 0.023 (0.364) 0.306 0.365 0.006 (0.211) 0.167 0.211 0.013 (0.237) 0.194 0.238

The Bias refers to the absolute error between the true and estimated ATT. The SD , MAE , and RMSE represent the stan-

dard deviations, mean absolute errors, and root mean square errors of estimated ATT (�ATT ) after 100 times independently

experiments, respectively. The smaller Bias , SD , MAE , and RMSE , the better.

Figure 2(c) and (d), we find that the Bias increased as the increasing of μ and ν . This is because
that large value of μ and ν would enforce the confounder weights close to zero. The Figure 2(b)
demonstrates that the performance is insensitive to the parameter δ . To sum up, we can easily
obtain the best hype-parameters for our DCB algorithm.

5.3 Experiments on Real Data

In this section, we apply our DCB algorithm on two real datasets for ATT estimation and applica-
tion, including the LaLonde dataset and an online advertising dataset.

5.3.1 LaLonde Dataset. First, we apply our DCB algorithm on the LaLonde [26] dataset,2 a
canonical benchmark in the causal inference literature [11, 15]. The LaLonde dataset used in our
article consists of two parts. The first part comes from a randomized experiment on a large scale
job training program, the National Support Work Demonstration (NSW).3 In the second part data,
as [15] did, we replace the control group in randomized experiment with another control group
drawn from the Current Population Survey-Social Security Administration file (CPS-1) where the
measured covariates are the same with the experimental data. The treatment in this data is whether
the participant attend the particular job training program or not, and the outcome is the earning in
the year 1978. The data contains 10 raw observed variables, including earnings and employment
status for year 1974 and 1975, education status (years of schooling and an indicator for completed
high school degree), age, ethnicity (indicators for black and hispanic), and the married status.

Overall, there are 185 program participants (the treated units) and 260 nonparticipants (the
control units) in the experimental data NSW. In the observational data CPS-1, we have 185 pro-
gram participants and 15,992 nonparticipants. The randomized experimental data NSW provide the
ground truth for estimating the ATT of the program. We estimate the ATT with the observational
data CPS-1, comparing our proposed algorithm with the baselines.

2The dataset is available at http://users.nber.org/∼rdehejia/data/nswdata2.html.
3Notice that we focus on the Dehejia and Wahha sampled dataset of the LaLonde.
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Table 3. Results on Synthetic Dataset in Setting 5 to 8

Setting 5: T = Tmissp , Y = Yl inear , and sc = 1

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

�ATT U nA 7.366 (2.857) 7.370 7.901 19.31 (10.17) 19.58 21.83 7.388 (2.182) 7.388 7.704 20.43 (5.003) 20.43 21.04

�ATT I PW 4.335 (4.960) 5.350 6.587 11.45 (13.30) 14.54 17.55 3.132 (3.484) 3.764 4.685 12.76 (8.194) 13.11 15.17

rc = 0.2 �ATT DR 0.163 (0.290) 0.266 0.333 2.309 (0.446) 2.309 2.352 0.163 (0.168) 0.185 0.234 2.265 (0.302) 2.265 2.285

�ATT E N T 2.284 (1.232) 2.287 2.595 8.716 (3.705) 8.729 9.470 1.556 (0.789) 1.565 1.745 7.311 (2.202) 7.311 7.636

�ATT ARB 0.077 (0.643) 0.538 0.648 1.724 (0.447) 1.724 1.781 0.094 (0.497) 0.404 0.506 1.437 (0.435) 1.437 1.501

�ATT DC B 0.005 (0.134) 0.106 0.134 0.025 (0.117) 0.092 0.120 0.003 (0.084) 0.067 0.084 0.000 (0.067) 0.052 0.067

�ATT U nA 52.46 (3.347) 52.46 52.56 145.9 (8.598) 145.9 146.1 52.06 (1.963) 52.06 52.10 145.7 (5.380) 145.7 145.8

�ATT I PW 35.31 (3.548) 35.31 35.49 105.3 (8.115) 105.3 105.6 34.51 (2.012) 34.51 34.57 104.5 (5.467) 104.5 104.6

rc = 0.8 �ATT DR 0.437 (0.251) 0.442 0.504 4.885 (0.348) 4.885 4.897 0.396 (0.132) 0.396 0.417 4.649 (0.252) 4.649 4.656

�ATT E N T 23.72 (1.416) 23.72 23.77 76.10 (3.331) 76.10 76.17 20.70 (1.059) 20.70 20.72 68.32 (2.304) 68.32 68.36

�ATT ARB 0.357 (0.528) 0.514 0.637 3.534 (0.488) 3.534 3.567 0.276 (0.539) 0.457 0.605 3.034 (0.421) 3.034 3.063

�ATT DC B 0.005 (0.128) 0.106 0.128 0.034 (0.124) 0.105 0.129 0.004 (0.084) 0.066 0.084 0.002 (0.086) 0.068 0.086

Setting 6: T = Tmissp , Y = Yl inear , and rc = 0.5

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

sc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

�ATT U nA 18.00 (3.090) 18.00 18.26 58.80 (9.332) 58.80 59.54 17.70 (1.734) 17.70 17.79 59.63 (5.402) 59.63 59.88

�ATT I PW 5.868 (3.710) 5.905 6.943 27.90 (10.52) 27.91 29.82 5.612 (2.314) 5.612 6.071 27.45 (6.236) 27.45 28.15

sc = 0.2 �ATT DR 0.093 (0.197) 0.182 0.218 2.191 (0.347) 2.191 2.218 0.099 (0.125) 0.129 0.160 1.972 (0.206) 1.972 1.983

�ATT E N T 0.106 (0.237) 0.215 0.260 5.948 (1.987) 5.948 6.271 0.041 (0.147) 0.122 0.153 0.540 (0.279) 0.540 0.607

�ATT ARB 0.007 (0.237) 0.190 0.237 0.444 (0.383) 0.484 0.586 0.002 (0.148) 0.118 0.148 0.017 (0.230) 0.190 0.231

�ATT DC B 0.003 (0.099) 0.080 0.099 0.007 (0.124) 0.098 0.124 0.002 (0.070) 0.057 0.070 0.002 (0.075) 0.063 0.075

�ATT U nA 23.99 (3.322) 23.99 24.22 71.72 (8.267) 71.72 72.19 24.25 (1.828) 24.25 24.32 72.19 (5.520) 72.19 72.40

�ATT I PW 14.18 (3.898) 14.18 14.71 47.86 (9.081) 47.86 48.72 14.00 (2.514) 14.00 14.23 47.90 (6.710) 47.90 48.37

sc = 0.8 �ATT DR 0.356 (0.244) 0.367 0.431 3.910 (0.466) 3.910 3.937 0.280 (0.141) 0.282 0.314 3.830 (0.268) 3.830 3.839

�ATT E N T 9.040 (1.216) 9.040 9.122 35.08 (3.207) 35.08 35.22 6.990 (0.981) 6.990 7.058 30.22 (2.387) 30.22 30.32

�ATT ARB 0.214 (0.579) 0.494 0.617 2.756 (0.528) 2.756 2.806 0.110 (0.530) 0.439 0.542 2.417 (0.420) 2.417 2.454

�ATT DC B 0.003 (0.123) 0.099 0.123 0.013 (0.123) 0.098 0.123 0.000 (0.073) 0.057 0.073 0.003 (0.077) 0.065 0.077

Setting 7: T = Tloдit , Y = Ynonlin , and sc = 1

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

�ATT U nA 6.639 (5.061) 7.128 8.348 18.60 (14.50) 19.95 23.59 6.301 (3.417) 6.403 7.168 16.44 (9.478) 16.80 18.98

�ATT I PW 3.132 (10.15) 8.573 10.62 13.00 (26.69) 22.22 29.69 2.793 (6.610) 5.872 7.176 11.82 (15.47) 15.43 19.47

rc = 0.2 �ATT DR 1.646 (8.908) 7.640 9.059 12.98 (25.93) 22.17 29.00 2.516 (6.266) 5.410 6.752 12.90 (15.89) 15.99 20.47

�ATT E N T 1.908 (1.659) 2.062 2.529 10.88 (6.590) 11.19 12.72 0.780 (0.672) 0.835 1.029 7.509 (3.069) 7.552 8.112

�ATT ARB 0.310 (0.305) 0.371 0.435 2.854 (0.464) 2.854 2.892 0.150 (0.228) 0.215 0.273 2.100 (0.267) 2.100 2.117

�ATT DC B 0.000 (0.251) 0.204 0.251 0.004 (0.314) 0.257 0.314 0.015 (0.160) 0.129 0.160 0.023 (0.175) 0.139 0.176

�ATT U nA 49.87 (5.283) 49.87 50.15 143.6 (15.26) 143.6 144.4 50.13 (3.167) 50.13 50.23 143.5 (10.02) 143.5 143.9

�ATT I PW 31.81 (6.563) 31.81 32.48 105.5 (16.47) 105.5 106.8 32.58 (4.659) 32.58 32.91 104.6 (11.58) 104.6 105.2

rc = 0.8 �ATT DR 10.86 (8.339) 11.57 13.69 24.45 (22.87) 28.56 33.48 11.63 (5.477) 11.67 12.86 28.23 (15.73) 29.17 32.32

�ATT E N T 23.27 (2.175) 23.27 23.37 89.07 (5.759) 89.07 89.26 17.79 (1.395) 17.79 17.85 73.90 (3.717) 73.90 74.00

�ATT ARB 1.032 (0.367) 1.032 1.096 6.783 (0.529) 6.783 6.804 0.774 (0.274) 0.774 0.821 5.697 (0.342) 5.697 5.707

�ATT DC B 0.033 (0.308) 0.246 0.310 0.040 (0.395) 0.324 0.397 0.026 (0.185) 0.147 0.186 0.156 (0.251) 0.246 0.295

(Continued)

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 1, Article 6. Publication date: December 2019.



6:18 K. Kuang et al.

Table 3. Continued

Setting 8: T = Tloдit , Y = Ynonlin , and rc = 0.5

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

sc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

�ATT U nA 10.85 (5.138) 10.87 12.01 41.68 (13.38) 41.68 43.77 11.53 (3.348) 11.53 12.01 41.02 (9.734) 41.02 42.16

�ATT I PW 3.970 (4.980) 5.027 6.369 18.16 (14.94) 19.72 23.51 4.525 (3.891) 4.988 5.968 17.96 (10.84) 18.03 20.98

sc = 0.2 �ATT DR 1.175 (4.624) 3.740 4.771 3.810 (15.86) 12.57 16.31 1.482 (3.303) 2.970 3.620 4.847 (9.978) 8.739 11.09

�ATT E N T 0.154 (0.188) 0.203 0.243 9.315 (3.602) 9.315 9.987 0.101 (0.124) 0.133 0.160 2.035 (0.733) 2.035 2.163

�ATT ARB 0.009 (0.172) 0.139 0.172 1.035 (0.302) 1.035 1.078 0.002 (0.113) 0.092 0.113 0.406 (0.151) 0.406 0.433

�ATT DC B 0.004 (0.159) 0.121 0.159 0.006 (0.192) 0.152 0.192 0.008 (0.112) 0.089 0.112 0.015 (0.142) 0.116 0.143

�ATT U nA 21.48 (5.483) 21.48 22.17 71.82 (14.83) 71.82 73.33 21.98 (3.225) 21.98 22.21 69.41 (9.158) 69.41 70.01

�ATT I PW 10.64 (9.112) 11.94 14.01 49.78 (22.10) 50.77 54.47 12.22 (5.276) 12.23 13.31 47.33 (11.83) 47.33 48.79

sc = 0.8 �ATT DR 5.907 (8.284) 8.353 10.17 21.41 (22.76) 25.53 31.24 6.601 (6.164) 7.591 9.031 21.09 (14.99) 22.45 25.87

�ATT E N T 7.549 (2.105) 7.549 7.837 40.91 (7.127) 40.91 41.53 4.448 (1.021) 4.448 4.564 30.59 (3.313) 30.59 30.76

�ATT ARB 0.596 (0.312) 0.607 0.672 4.843 (0.449) 4.843 4.864 0.356 (0.235) 0.369 0.426 3.884 (0.288) 3.884 3.894

�ATT DC B 0.012 (0.282) 0.221 0.282 0.042 (0.325) 0.253 0.327 0.007 (0.153) 0.121 0.154 0.014 (0.188) 0.145 0.188

The Bias refers to the absolute error between the true and estimated ATT. The SD, MAE, and RMSE represent the standard

deviations, mean absolute errors, and root mean square errors of estimated ATT (�ATT ) after 100 times independently

experiments, respectively. The smaller Bias , SD , MAE , and RMSE , the better.

Fig. 1. MAE on ATT estimation when varying different parameters, with settingT = Tloдit ,Y = Yl inear . The

subfigure on the top left corner of each main figure is plot by freezing MAE on Y-axis with a limit. The results

show our proposed DCB estimator is more precise and robust than the baselines.
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Table 4. Results on Synthetic Dataset by Comparing RA-DCB with DCB in Different Settings

Setting 1: T = Tloдit , Y = Yl inear , and sc = 1

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

rc = 0.2
�ATT DC B 0.024 (0.102) 0.083 0.104 0.024 (0.124) 0.103 0.127 0.004 (0.071) 0.057 0.071 0.003 (0.090) 0.071 0.090

�ATT RA-DC B 0.024 (0.108) 0.088 0.110 0.029 (0.119) 0.099 0.123 0.005 (0.069) 0.056 0.070 0.002 (0.090) 0.074 0.090

rc = 0.8
�ATT DC B 0.022 (0.129) 0.102 0.131 0.011 (0.142) 0.119 0.142 0.011 (0.089) 0.068 0.090 0.003 (0.106) 0.082 0.106

�ATT RA-DC B 0.025 (0.129) 0.104 0.131 0.016 (0.146) 0.120 0.146 0.014 (0.094) 0.075 0.095 0.008 (0.101) 0.081 0.102

Setting 2: T = Tloдit , Y = Yl inear , and rc = 0.5

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

sc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

sc = 0.2
�ATT DC B 0.003 (0.098) 0.078 0.098 0.015 (0.124) 0.102 0.125 0.007 (0.075) 0.057 0.075 0.010 (0.060) 0.049 0.061

�ATT RA-DC B 0.002 (0.104) 0.085 0.104 0.011 (0.129) 0.107 0.129 0.009 (0.074) 0.056 0.074 0.009 (0.066) 0.052 0.067

sc = 0.8
�ATT DC B 0.043 (0.130) 0.107 0.137 0.018 (0.122) 0.103 0.123 0.003 (0.081) 0.065 0.082 0.004 (0.113) 0.097 0.113

�ATT RA-DC B 0.042 (0.133) 0.109 0.139 0.020 (0.129) 0.113 0.130 0.005 (0.082) 0.065 0.082 0.004 (0.111) 0.094 0.111

Setting 3: T = Tmissp , Y = Ynonlin , and sc = 1

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

rc = 0.2
�ATT DC B 0.018 (0.334) 0.270 0.335 0.020 (0.322) 0.249 0.323 0.010 (0.186) 0.147 0.186 0.101 (0.212) 0.185 0.235

�ATT RA-DC B 0.018 (0.336) 0.271 0.337 0.002 (0.327) 0.257 0.327 0.013 (0.187) 0.148 0.188 0.063 (0.202) 0.170 0.211

rc = 0.8
�ATT DC B 0.022 (0.269) 0.211 0.270 0.026 (0.337) 0.260 0.337 0.010 (0.172) 0.133 0.173 0.080 (0.238) 0.211 0.251

�ATT RA-DC B 0.007 (0.262) 0.204 0.262 0.124 (0.385) 0.339 0.404 0.022 (0.173) 0.137 0.174 0.120 (0.181) 0.169 0.217

Setting 4: T = Tmissp , Y = Ynonlin , and rc = 0.5

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

sc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

sc = 0.2
�ATT DC B 0.021 (0.199) 0.157 0.200 0.024 (0.284) 0.228 0.285 0.013 (0.122) 0.097 0.123 0.003 (0.183) 0.140 0.183

�ATT RA-DC B 0.024 (0.200) 0.158 0.202 0.060 (0.278) 0.241 0.284 0.009 (0.122) 0.097 0.122 0.028 (0.181) 0.144 0.183

sc = 0.8
�ATT DC B 0.024 (0.320) 0.270 0.321 0.031 (0.338) 0.278 0.339 0.005 (0.205) 0.163 0.205 0.037 (0.214) 0.178 0.218

�ATT RA-DC B 0.029 (0.327) 0.276 0.329 0.132 (0.359) 0.291 0.382 0.000 (0.204) 0.163 0.204 0.080 (0.198) 0.177 0.213

Setting 5: T = Tmissp , Y = Yl inear , and sc = 1

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

rc = 0.2
�ATT DC B 0.046 (0.114) 0.102 0.123 0.014 (0.121) 0.096 0.122 0.018 (0.076) 0.062 0.078 0.012 (0.083) 0.066 0.084

�ATT RA-DC B 0.045 (0.119) 0.106 0.127 0.015 (0.124) 0.101 0.125 0.020 (0.076) 0.063 0.079 0.014 (0.082) 0.065 0.083

rc = 0.8
�ATT DC B 0.022 (0.134) 0.111 0.136 0.015 (0.146) 0.114 0.147 0.007 (0.089) 0.070 0.089 0.018 (0.078) 0.063 0.080

�ATT RA-DC B 0.023 (0.138) 0.115 0.140 0.013 (0.163) 0.126 0.164 0.017 (0.090) 0.073 0.091 0.007 (0.082) 0.063 0.083

Setting 6: T = Tmissp , Y = Yl inear , and rc = 0.5

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

sc = 0.2
�ATT DC B 0.039 (0.106) 0.086 0.113 0.031 (0.148) 0.121 0.152 0.000 (0.065) 0.054 0.065 0.005 (0.075) 0.060 0.076

�ATT RA-DC B 0.036 (0.104) 0.086 0.110 0.034 (0.151) 0.122 0.155 0.000 (0.065) 0.053 0.065 0.003 (0.077) 0.063 0.077

sc = 0.8
�ATT DC B 0.002 (0.119) 0.094 0.119 0.021 (0.117) 0.089 0.119 0.001 (0.091) 0.073 0.091 0.001 (0.078) 0.065 0.078

�ATT RA-DC B 0.003 (0.124) 0.097 0.124 0.015 (0.118) 0.090 0.119 0.002 (0.092) 0.072 0.092 0.002 (0.082) 0.069 0.082

(Continued)
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Table 4. Continued

Setting 7: T = Tloдit , Y = Ynonlinear , and sc = 1

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

rc = 0.2
�ATT DC B 0.028 (0.260) 0.212 0.261 0.035 (0.272) 0.227 0.274 0.010 (0.150) 0.127 0.150 0.034 (0.206) 0.178 0.209

�ATT RA-DC B 0.029 (0.258) 0.209 0.260 0.058 (0.283) 0.238 0.289 0.013 (0.149) 0.126 0.150 0.015 (0.205) 0.175 0.205

rc = 0.8
�ATT DC B 0.001 (0.296) 0.239 0.296 0.144 (0.291) 0.261 0.325 0.021 (0.169) 0.135 0.170 0.136 (0.237) 0.215 0.274

�ATT RA-DC B 0.011 (0.299) 0.242 0.299 0.159 (0.397) 0.335 0.427 0.019 (0.168) 0.135 0.169 0.042 (0.238) 0.201 0.241

Setting 8: T = Tloдit , Y = Ynonlinear , and rc = 0.5

n/p n = 2,000, p = 50 n = 2,000, p = 100 n = 5,000, p = 50 n = 5,000, p = 100

rc Estimator Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE Bias (SD) MAE RMSE

sc = 0.2
�ATT DC B 0.003 (0.098) 0.078 0.098 0.015 (0.124) 0.102 0.125 0.007 (0.075) 0.057 0.075 0.010 (0.060) 0.049 0.061

�ATT RA-DC B 0.002 (0.104) 0.085 0.104 0.011 (0.129) 0.107 0.129 0.009 (0.074) 0.056 0.074 0.009 (0.066) 0.052 0.067

sc = 0.8
�ATT DC B 0.043 (0.130) 0.107 0.137 0.018 (0.122) 0.103 0.123 0.003 (0.081) 0.065 0.082 0.004 (0.113) 0.097 0.113

�ATT RA-DC B 0.042 (0.133) 0.109 0.139 0.020 (0.129) 0.113 0.130 0.005 (0.082) 0.065 0.082 0.004 (0.111) 0.094 0.111

The Bias refers to the absolute error between the true and estimated ATT. The SD , MAE , and RMSE represent the stan-

dard deviations, mean absolute errors, and root mean square errors of estimated ATT (�ATT ) after 100 times independently

experiments, respectively. The smaller Bias , SD , MAE , and RMSE , the better.

Fig. 2. The effect of hyper-parameters λ, δ , μ, and ν .

Experimental settings. In our experiments, we randomly split the observational data CPS-1 as
six partitions, with the first three partitions, we train our model and baseline models for param-
eters tuning with cross validation by grid searching, and test model performance and robustness
with the last three partitions. We conduct our DCB algorithm and baselines on two variables sets,
V-RAW and V-INTERACTION. The V-RAW refers to the 10 raw observed variables, and the V-
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Fig. 3. Experimental results by comparing RA-DCB algorithm with DCB algorithm under setting T =
Tmissp ,Y = Ynonlin ,n = 5,000,p = 200, sc = 1.0, rc = 0.8.

Table 5. ATT Estimation Results on LaLonde Dataset, Where

the True ATT from Randomized Experiment is 1,794

Variables Set V-RAW V-INTERACTION

Estimator ÂTT Bias (SD) ÂTT Bias (SD)

ÂTT dir −8,471 10,265 (374) −8,471 10,265 (374)

ÂTT I PW −4,481 6,275 (971) −4,365 6,159 (1024)

ÂTTDR 1,154 639 (491) 1,590 204 (812)

ÂTT ENT 1,535 259 (995) 1,405 388 (787)

ÂTTARB 1,537 257 (996) 1,627 167 (957)

ÂTTDCB 1,958 164 (728) 1,836 43 (716)

ÂTT RA-DCB 1,731 63 (523) 1,877 83 (520)

The smaller Bias and SD, the better.

INTERACTION refers to the set of raw variables, their pairwise one-way interaction, and their
squared terms.

Results. We report the results in Table 5, where the smaller Bias and SD, the better. From the
results, we have following observations. (1) Unadjusted estimator failed due to the existing of
confounding bias in the LaLonde data. (2) IPW generates a big error on ATT estimation in both
V-RAW and V-INTERACTION settings. The main reason is that the specification model of IPW is
incorrect and the sample size between treated and control units is unbalanced. (3) Our proposed
DCB and RA-DCB estimators outperform than all the baselines, since our estimators simultane-
ously optimizes sample weights and confounder weights, and requires no any model specification
on treatment assignment. (4) With considering the regression adjustment, our estimator RA-DCB
obtain a more accurate and robust result for ATT estimation than DCB algorithm under both V-
RAW and V-INTERACTION settings, since the regression adjustment can help to further remove
the confounding bias and reduce the variance of estimated ATT. (5) Under V-INTERACTION set-
ting, our DCB and RA-DCB and also obtain a more robust (smaller SD) result than V-RAW setting.
This demonstrates that our estimators can achieve a better confounder balancing and bias remov-
ing with including the high-order terms of observed variables in augmented variables.

In Table 6, we show the confounder weights optimized by our DCB algorithm with V-RAW
variables set. From this table, we know that the confounders of Earnings 1975 & 1974 and Education
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Table 6. Confounder Weights Learned from Our

DCB Algorithm with V-RAW Variables Set

Rank Confounder Weight

1 Earnings 1975 0.335
2 Earnings 1974 0.241
3 Employed 1975 0.141
4 Education 0.138
5 Employed 1974 0.050
6 Married 0.039
7 High School Degree 1975 0.017
8 Age −0.013
9 Black −0.003
10 Hispanic −0.001

are very important for the outcome (Earning 1978), but the Black and Hispanic have few effects on
the outcome. That is the confounders of Earnings 1975 & 1974 and Education are more important,
and should be balanced first.

5.3.2 Online Advertising Dataset. The real online advertising dataset we used is collected from
Tencecnt WeChat App4 during September 2015. In WeChat, each user can share (receive) posts
to (from) his/her friends as like the Twitter and Facebook. Then the advertisers could push their
advertisements to users, by merging them into the list of the user’s wallposts. For each adver-
tisement, there are two types of feedbacks: “Like” and “Dislike.” When the user clicks the “Like”
button, his/her friends will receive the advertisements with this action.

The online advertising campaign used in our article is about the LONGCHAMP handbags for
young ladies.5 This campaign contains 14,891 user feedbacks with Like and 93,108 Dislikes. For
each user, we have 56 features including (1) demographic attributes, such as age, gender, (2) number
of friends, (3) device (iOS or Android), and (4) the user settings on WeChat, for example, whether
allowing strangers to see his/her album and whether installing the online payment service.

Experimental settings. In our experiments, we set the feedback of users on the advertisement as
outcome Y . Specifically, we set the outcome Yi = 1 when user i likes the advertisement and Yi = 0
when user i dislikes it. And we alternatively set one of the user features as the treatment T and
others as the observed variables X. Therefore, we can estimate the ATT for each user feature. We
tuned the parameters in our algorithm and baseline methods with the “approximal ground truth”
via cross validation by grid searching.

Evaluation and baselines. In this dataset, we have no ground truth about the treatment effect of
each user feature, but we are interesting in whether the top k features ranked by our proposed
DCB estimator is able to get good performance in predicting the Like and Dislike behaviors of
users, comparing with all above ATT baseline estimators and two commonly used methods for
correlation-based feature selection, including MRel (Maximum Relevance) [42] and mRMR (Max-
imum Relevance Minimum Redundancy) [35]. Our estimator and other ATT baseline estimator
rank the user features by their absolute causal effect. We use MAE as the evaluation metric, which

4http://www.wechat.com/en/.
5http://en.longchamp.com/en/womens-bags.
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Fig. 4. Our proposed DCB estimator outperforms the baselines when selecting the top k significant causal

features to predict whether user will like or dislike an advertisement.

is defined as

MAE =
1

m

m∑
i=1

|Ŷi − Yi |,

wherem is the number of users in test data, Ŷi and Yi represent the predict and actual feedback of
user i on the advertisement, respectively.

Results. We plot the results in Figure 4. From the results, we can find that our proposed DCB es-
timator achieves the best prediction accuracy with different number of features. Also, our method
can get almost the optimal prediction performance with much less features than other baselines.
The main reason is that with differentiating the confounders, our estimator can estimate the causal
effect of each user feature more precise by better confounding bias removing. Another important
observation is that the two commonly used correlation-based feature selection methods perform
worse than our method and even the other causal estimators. This is because of the sample selec-
tion bias between the training and testing datasets, the correlation-based methods cannot handle
this issue, while the causal estimators can solve the problem to a certain extent by balancing treated
and control units and removing the confounding bias.

The results demonstrate that treatment effect estimation can significantly help to improve the
prediction performance, as long as the confounding problems are appropriately addressed.

6 CONCLUSION

In this article, we focus on how to estimate the treatment effect more precisely with high-
dimensional observational data in the wild. We argued that most previous weighting based es-
timators do not take confounder differentiation into account or require model specification, lead-
ing to poor performance in the setting of high-dimensional variables or in the wild. Therefore,
we proposed the concept of confounder weights for confounders differentiation with theoretical
analysis. We proposed a DCB algorithm to jointly optimize the confounder weights and sample
weights for treatment effect estimation. Then, with considering regression adjustment, we pro-
pose a Regression Adjusted DCB algorithm based on DCB algorithm for further removing con-
founding bias and improve the robustness of treatment effect estimation under some settings with
severe confounding bias. Extensive experiments on both synthetic and real datasets demonstrated
that our proposed algorithms can significantly and consistently outperforms the start-of-the-art
methods, and RA-DCB algorithm can obtain more precise and robust estimation of treatment ef-
fect than DCB algorithm under the settings with severe bias. We also demonstrated that the top
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ranked features by our algorithm have the best prediction performance on an online advertising
dataset.

Our future will focus on causal inference with unobserved confounders in observational studies
by data driven approaches.
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