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Abstract

Retrosynthetic planning occupies a crucial position in synthetic chemistry and,
accordingly, drug discovery, which aims to find synthetic pathways of a target
molecule through a sequential decision-making process on a set of feasible re-
actions. While the majority of recent works focus on the prediction of feasible
reactions at each step, there have been limited attempts toward improving the
sequential decision-making policy. Existing strategies rely on either the expensive
and high-variance value estimation by online rollout, or a settled value estimation
neural network pre-trained with simulated pathways of limited diversity and no
negative feedback. Besides, how to return multiple candidate pathways that are not
only diverse but also desirable for chemists (e.g., affordable building block materi-
als) remains an open challenge. To this end, we propose a Goal-dRiven Actor-critic
retroSynthetic Planning (GRASP) framework, where we identify the policy that per-
forms goal-driven retrosynthesis navigation toward a user-demand objective. Our
experiments on the benchmark Pistachio dataset and a chemists-designed dataset
demonstrate that the framework outperforms existing state-of-the-art approaches
by up to 32.2% on search efficiency and 5.6% on quality. Remarkably, our user
studies show that GRASP successfully plans pathways that accomplish the goal
prescribed with a goal (building block materials).

1 Introduction

Retrosynthetic planning has significantly advanced chemical synthesis, bringing in increasingly
sophisticated medicines that cure diseases and materials that improve life. A retrosynthetic planner
takes the structure of a target molecule as input and recursively selects feasible reactions to unsolved
intermediate molecules until eventually reaching building block molecules. Since an unsolved inter-
mediate molecule usually requires multiple steps of reactions to synthesize and at each step has up
to hundreds of feasible reaction candidates, retrosynthetic planning with an enormous search space
is very challenging even for experienced chemists. Consequently, computer-aided synthesis plan-
ning (CASP) enters the scene to assist chemists in accelerating the process of designing retrosynthetic
pathways.

Computer-aided retrosynthesis planning consists of: 1) a single-step retrosynthesis prediction which
predicts a list of feasible reaction candidates that connect a target molecule to its respective precursors,
and 2) a multi-step planning policy that searches for the optimal synthetic pathway by recursively
applying the single-step prediction model. Recent years have witnessed a plethora of advancements in
single-step prediction models [25, 31, 19, 10], while in this work we are pursuing a more efficient and
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effective planning policy that limits the effective search space to include the most likely successful
pathways.

Prior multi-step planning centered around tree or graph search methods [11, 21], where the search
is guided by only the total reaction cost (quality) from the target molecule to the current node. To
improve the search policy, recent attempts [24, 2, 7] include the estimated value from the current node
to building block molecules, i.e., being building block aware. Unfortunately, the value estimation in
[24, 7] is by online roll-out, unfavorably being of high variance and low search efficiency. Though
[2] addressed this issue by pre-training a value network on simulated pathways, these pathways
constructed from an existing single-step reaction dataset offer limited diversity and no negative
experiences to learn from.

Over and above, scoring and ranking the quality of many feasible pathways towards a target molecule
has been notoriously difficult. The considerations that dictate a high-quality pathway, including high
reaction yields, simple reaction conditions, and low building block molecule costs, are oftentimes
conflicting and require a trade-off; moreover, predicting reaction yields [22] and conditions is very
challenging due to ill-defined and noisy annotations. Chen et al. [2] proposed to evaluate the quality
with the negative log-likelihood of all reactions predicted by the single-step model, while it is
predicated on the assumption that frequent reactions are with high yields or easy conditions and
biased by the seen reactions that train the single-step model. Keeping in mind that the objective of
retrosynthetic planning is to assist chemists, and in practice the challenge of quality evaluation can
be overcome by 1) returning as diverse feasible pathways as possible for chemists to weigh their
preferences, and 2) returning the pathways that meet the qualifying conditions prescribed by chemists,
e.g., a set of very cheap building block materials or easy-to-synthesize intermediate molecules.

Therefore, we are motivated to propose a Goal-dRiven Actor-critic retroSynthetic Planning (GRASP)
framework. Specifically, we formulate retrosynthesis planning as a reinforcement learning (RL)
problem, where we first learn a policy network that takes continuous actions encoding the structure-
level molecular information to allow navigation in the huge discrete action space of single-step
reaction candidates. Moreover, GRASP learns a goal-driven Q-value estimation network to update
the policy, by sampling both successful (positive) and failed (negative) experiences and relabeling the
goals of sampled experiences. Finally, the learned Q-value estimation and policy networks join to
guide the Monte-Carlo Tree Search, after which GRASP returns diverse pathways as a result of a
good exploration-exploitation tradeoff. In summary, our contributions are threefold.

• We propose a novel actor-critic retrosynthetic planning framework GRASP, which learns from
extensive positive and negative experiences to navigate through huge single-step reaction spaces.

• We are the first to empower goal-driven planning, which mitigates the challenge in quality evaluation
of pathways by directly fulfilling the requirements prescribed by chemists.

• We have evaluated the performance of GRASP on both an academic and an industrial benchmark
dataset. The results and user studies demonstrate that GRASP outperforms all baselines in general
retrosynthetic planning metrics by a significant margin and is the first to achieve high-quality
goal-driven retrosynthetic planning.

2 Related Work

Single-step Retrosynthesis Prediction Single-step prediction models can be categorized into two
main classes, i.e., template-based and template-free. Template-based methods rely on templates
that encode chemical reaction cores to convert a product molecule into reactants. The key is
to rank templates and select an appropriate template to apply, for which recent attempts [3, 23]
solve the problem of template selection through a classification neural network. Despite their
superior interpretability, template-based approaches are disadvantaged by 1) the daunting challenge
of atom-mapping for template extraction, and 2) poor generalization to unknown reaction types
or structures beyond templates. On the other hand, template-free methods [14, 13, 20], inspired
by the recent progress of seq2seq [27] and Transformer [28], regard single-step retrosynthesis
prediction as a translation task and translate a product molecule represented in SMILES strings [29]
to reactant SMILES strings. To join the benefits of template-based and template-free methods, recent
works [25, 31, 19] seek semi-template-based methods where the reaction center dictating a reaction
is firstly predicted via graph neural networks and the resulting intermediate synthons are secondly
translated into reactants via seq2seq or graph translation models. Recently, Kim et al. [10] proposed to
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fine-tune a single-step prediction model with the feedback from a multi-step retrosynthetic planning
policy, leading to a search-guided single-step model. We have validated in Section 4.3 that our
planning policy is also compatible with the framework and improves single-step prediction and
thereby final pathways.

Neural-guided
search

building blocks
awareness

Negative
experiences

Exploration-exploitation
tradeoff Goal-driven

HgSearch [21] ✗ ✓ ✗ ✓ ✗
DFPN-E [11] ✗ ✗ ✗ ✗ ✗
MCTS [24] ✗ ✓ ✓ ✓ ✗
Retro* [2] ✓ ✓ ✗ ✗ ✗
Ours ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of different planning frameworks in five dimensions. Neural-guided Search
learns from past multi-step planning experiences a planning policy characterized by a neural network;
Building blocks Awareness: The value of a planning policy is biased towards reactions leading to
building block molecules; Negative Experiences mean planning pathways with failure; Exploration-
exploitation tradeoff: A planning policy balances exploration and exploitation, resulting in more
diverse pathways. Goal-driven: A planning policy is capable of performing planning towards a
specific goal.

Multi-step Retrosynthetic planning We summarize the comparison of existing multi-step retrosyn-
thetic planning policies in Table 1. Specifically, previous planning methods HgSearch [21] and the
proof number search [11] are traditional heuristic search algorithms, where the chemical feasibility
and the value of the negative (failure) pathways are not considered. Inspired by AlphaGo [26], Segler
et al. [24] adopted the Monte-Carlo tree search to generate a search tree on the fly and explore and
generate multiple synthesis pathways. Unfortunately, each node with a combination of all precursors
in a reaction leads to enormous search space, and the value estimation by vanilla online roll-out is of
high variance and high computation cost. Inspired by [11], Chen et al. [2] designed a neural-based
A*-like algorithm that learns an additional value network with automatically constructed and
only successful pathways to bias the search prior. Recently, Han et al. [9] and Xie et al. [30] used
a GNN-based value network to capture inter-molecular/intra-pathway level information to further
improve the A*-like retrosynthetic planning algorithm. However, one disadvantage of A*-like [2]
retrosynthetic planning algorithm is that it fails to balance exploration and exploitation, resulting
in less diverse pathways. Moreover, none of the previous approaches is capable of biasing the
retrosynthetic planning toward a favorable goal prescribed by chemists.

3 Methods

First, Sec. 3.1 introduces Markov decision process (MDP) setting for goal-driven retrosynthetic
planning. Secondly, Sec. 3.2 elaborates on the framework of the GRASP goal-driven actor-critic
agent and the training procedure with TD3 [6] algorithm. Lastly, Sec. 3.3 introduces GRASP planning
for a given target molecule under a goal-driven variant of MCTS.

3.1 Goal-driven MDP for retrosynthetic planning

We denote a finite-horizon MDP by M = {S,A, T ,G, r(s, a, g), H, γ} for our goal-driven retrosyn-
thetic planning task. We use s ∈ S to denote the state (molecule) space, a ∈ A to denote the
action (reaction) space which consists of reaction candidates a generated by the single-step prediction
model, and T (st+1|st, at) to denote the state transition from st to st+1 through performing reaction
a with a deterministic state transition probability. We denote the goal space as G, which has the same
size as the state space S since our goal is to navigate toward particular states. Considering the ultimate
goal for retrosynthesis is to discover retrosynthetic pathways reaching building block molecules, we
denote the goal for the entire set of building block molecules as GB, where each goal gi ∈ GB indicates
a specific building block molecule i. To simultaneously adapt to both general (non-goal-driven) and
goal-driven retrosynthetic planning, we define g = GB as all zero embedding and concatenate the
goal embedding with an additional binary feature embedding, where we use I(g = GB) = 0 for the
general planning and I(g = gi) = 1 for the goal-driven planning towards goal gi. For the reward
design of r(s, a, g), we assign the goal-driven path-finding reward as r(s, a, g) = 1 when the state s
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reaches the desired goal g after taking action a and r(s, a, g) = 0 otherwise. Finally, γ is the discount
factor, and H is the maximum horizon (length) for the pathway.

3.2 GRASP framework and training procedure

GRASP has two parameterized components as shown in Fig. 1: actor network denote by πϕ(a|s, g)
and critic network by Qθ(s, a, g). In the setting of retrosynthetic planning, we regard the upstream
single-step retrosynthesis predictor as the environment and retrosynthetic planner as the agent.
At each time step t, the agent outputs a proto-action ãt with the same size as action embedding,
according to its goal-driven policy network πϕ(ãt|st, g) from observing the current state st and goal
g. Since we are unaware of the possible goal state for a given initial state without prior knowledge,
we use g = GB in πϕ(ãt|st, g = GB) as behavioral policy. Specifically, we add a small amount of
random noises N to the action for exploration during sampling:

ãt
′ = ãt + ϵ; ϵ ∼ N (µ, σ).

After acquiring the proto-action ãt
′, the agent has to identify an actual reaction at from available

reaction candidates A(st) given the state st and action embedding ãt. Inspired by the k-nearest
neighbor (k-NN) trick for large discrete action space similar to the Wolpertinger training [5], we
use the true action embeddings from the available actions A(st) for the k-NN calculation during
the action selection procedure. Furthermore, we may encounter reactions that induce more than
one non-building block molecule as reactants, namely convergent synthesis. Convergent synthesis
reaction, although infrequent in retrosynthesis , introduces a variation in the cardinality of state
representation s that conflicts with MDP settings. In previous work in MCTS for retrosynthesis,
Segler et al. [24] accumulates all non-building block reactants as a set of molecules in state rep-
resentation, but only performs action selection on a single molecule. The combinatorial nature of
state representation introduces bias in reward propagation and sparsity in variance estimation. To
overcome this complexity during the sampling and training phase, we use the average distance among
all reactants for k-NN computation each time we encounter a reaction with convergent synthesis. As
a result, we obtain an actual reaction at by referring to the k-NN computation of the proto-action ãt
over the available actions A(st). If a convergent synthesis reaction is identified as the true action at
by the environment, non-building block reactants are split into separate next states as independent
trajectories to perform parallel sampling. Eventually, the next state st+1 is defined as the non-building
block molecule among the reactants of at. The sampling of a trajectory terminates when the state
reaches the goal g or the length of the trajectory reaches the maximum horizon H .

Goal-driven relabeling: To capture the goal-driven planning insights from a retrosynthesis pathway
and accelerate learning in the sparse reward setting, we are inspired by [1] to relabel transition tuples
in trajectories. The core idea of applying goal-driven relabeling in retrosynthesis is to exploit the
data generated from the general retrosynthesis policy πϕ(a|s, g = GB) to train featured retrosynthesis
planning data, and incorporate the agent with knowledge of navigating toward a specific goal state
g = gi. In practice, we copy the state transition tuple Mi = (si, ai, ri(.|gi = GB), si+1) and
randomly relabel the tuple Mi = (si, ai, ri(.|g′i), si+1) with a relabeling probability pr using future
relabeling strategy. Specifically, for the ith tuple M⟩ in trajectory τ with length T , we perform
goal-driven relabeling by iterating over all future transitions as:

g′i =

{
si+k, pr
GB, 1− pr

for k ∈ (0, T − i]. Since the relabeling probability pr is an important hyperparameter to balance
between general and goal-driven planning, we will further examine the effect of different pr on the
planning performance in the experiment.

The RL agent is trained with TD3 [6] algorithm. For tuple i in a training batch, the target critic
network is first updated using the one-step TD equation as:

ytdi = ri + γQ′(si+1, π
′(si+1, gi+1), gi+1), (1)

where, Q′ and π′ denote the target critic and actor networks with fixed parameters copied from
original critic and actor networks Qθ and πϕ respectively, and ri, si+1, gi+1 represents the reward,
state, and goal at the step t. With the TD target yi, we can calculate the batch mean-square-error loss
on the original critic network Qθ(s, a, g) as:

L(θ) =
1

N

∑
i

(ytdi −Qθ(si, ai, g)). (2)
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1. Initialize by sampling a 
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θ

ϕ

Actor Network 
πϕ(ã |s, g)

si

g

Single-step 
candidates 

𝒜(s)

ã

a

Environment

si+1

r

Replay buffer

Goal-driven relabeling

Training batch

Critic Network 
Qθ(s, a, g)

Q(s, a, g)

Figure 1: GRASP training flowchart (left) and the goal-driven actor-critic framework (right). Grey
boxes indicate the agent-level components that will be used further during GRASP planning, and
green boxes indicate the components used in GRASP training only.

Since the goal of the actor network is designed to maximize the overall return (success rate), and the
goal of critic network is to approximate the overall return, the actor πϕ can be trained by maximizing
the Q value by minimizing:

L(ϕ) = − 1

N

∑
i

(−Qθ(si, πϕ(ã|si, g), g)). (3)

Self-imitation learning: To learn from highly imbalanced pathways in the overall search space
(> 85% failures), we adopt self-imitation learning [17] (SIL) to accelerate the convergence in sparse
reward and enhance the training efficiency. Intuitively, SIL assists the RL agent to emphasize high-
quality planning experiences. Instead of using the Bellman equation for calculating the target Q-value,
SIL directly uses the Monte-Carlo return of each ‘good’ episode as the Q-value target. It is crucial
for the agent to exploit success trajectories in retrosynthetic planning tasks, especially during the
early stage of training when a large proportion of samples in the replay buffer originated from failed
trajectories. We denote the simplified SIL loss for ith tuple in a success trajectory τ with length h as:

L(θ) =
1

N

∑
i

(ysili −Qθ(si, ai, g)), (4)

where ysili =
∑h

i=k γ
h−kri. We also include the full training algorithm in Alg. 1

3.3 GRASP retrosynthetic planning

In this section, we demonstrate the GRASP planning procedure for a target molecule and a specific
goal with GRASP RL agent πϕ(a|s, g) and Qθ(a, s, g).

Since each newly expanded molecule node is the same as the initial state in GRASP , it is natural to
combine our RL agent into Monte-Carlo tree search (MCTS) with goal-driven p-UCT function [26]:

at = argmax
a∈A(st)

Q(st, a, g)

N(st, a)
+ cP (a|st, g)

√
N(st−1, at−1)

1 +N(st, a)
. (5)

In previous MCTS for retrosynthesis, Segler et al. [24] used an online roll-out stage for Monte-
Carlo estimation of success rate for each leaf node, which both suffer from high-variance and heavy
computation. Therefore, one of the key differences between GRASP and Segler et al. during the
planning stage is we completely skip the online roll-out stage and directly refer to the RL agent for
value estimation of the leaf nodes instead of Monte-Carlo estimation from the online roll-out. To
align with our MDP settings in RL, we adopt a goal-driven MCTS planning with individual molecules
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Algorithm 1 GRASP

Initialize Critic network Qθ, Q
′
θ and actor network πϕ, π

′
ϕ, replay buffer B, initial state space S,

action space A, goal space G, reward function r : S ×A× G → R.
for ep = 1 to M do

Sample initial state s0 ∈ S.
for t = 0 to H do

Sample proto-action ãt using behavioral policy and exploration noise for general planning
π′
ϕ(a|st, GB)

Perform k-NN computation and execute action at
Observe reward rt = r(st, at, GB) and next state st+1

end for
for t = 0 to H do

Store original transition (st, at, rt, st+1, g) in B
Generate transition copy and relabel g′ = st+i and r′t = r(st, at, g

′) with probability pr with
future goal-driven relabeling strategy.
Store transition (st, at, r

′
t, st+1, g

′) in B
end for
for t = 0 to N do

Perform actor-critic batched TD training on θ, ϕ with Eq.2 and Eq.3
Perform SIL training on θ with Eq.4

end for
end for

as tree node representation. Specifically, our framework consists of three phases as shown in Fig. 2,
and for simplicity, we ignore all building block molecules in the figure since no selection action will
be performed on:

• Selection: Starting from the root node, the p-UCT function in Eq. 5 is used to iteratively select
an action. At any step t, available actions in candidate set at ∈ A(st) and respective single-step
confidence score pc(at|st) are provided by the single-step retrosynthesis predictor, and we define:

p(at|st, g) = pc(at|st)
exp( 1

D(ã,at)
)∑

aj∈A(st)
exp( 1

D(ã,aj)
)
, (6)

where D(·) is the same distance metric used in the k-NN calculation, ã is produced by policy
network πθ(ã|st, g), and N(st−1, at−1) denotes the visit count of the state-action pair of previous
states. If a convergent synthesis action with multiple non-building block reactants is selected, we
perform parallel selection and select all non-building block reactants as the next state. We iteratively
perform selection on states until reaching a leaf node. Eventually, a set of leaf nodes is identified for
expansion.

• Expansion: Each leaf node st from the selected set is expanded by referring to the single-step model.
Each available action from A(st) is directly appended to the node st. For convergent synthesis
action, we generate the same number of leaf nodes depending on the quantity of unsolved molecules.
For each newly generated leaf node, we evaluate their Q∗ value with the following rule: if there is
no available action for st, we directly apply Q∗ = 0. Before applying Qθ(s, a, g) network to assign
Q∗ value for newly added leaf nodes, we assign Q∗ = 1 and label it as ‘solved’ if the st reaches
g or Q∗ = 0 if the state reaches the maximum horizon. If the state is undetermined, we assign
Q∗ = Qθ(st+1, a, g) by applying Qθ value network.

• Update: During the update phase, the Q∗ values and visit counts N(s, a) are traversed backward
following the selection path from leaf nodes back to the root node. We use a simple moving average
for updating Q value with a discount factor γ:

Q′(st, a, g) = Q(st, a, g) +
1

N(s, a)
[γQ∗ −Q(st, a, g)].
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Figure 2: Overview of GRASP planning procedure. Specifically, the selected pathway (green)
includes 4 specific reactions:A → B,B → C +D,C → E,D → F .

4 Experiments

4.1 Experiment setup
Baseline Algorithms: We compare our approach against a varieties of baselines including:
1. MCTS[24]: The original vanilla version of MCTS for retrosynthesis planning which exploits online
roll-out to obtain Monte-Carlo estimation of future value without data generalization. 2. DFPN-E[11]:
Depth-first proof number search (PNS) performed on AND-OR tree with an additive reaction likeli-
hood as cost. 3. Retro* and Retro*-0 [2]: Different from DPFN-E, Retro* utilizes the AND-OR tree
as a single-player game and utilizes global value estimation. Additionally, Retro* pre-trains a value
network on a simulated retrosynthesis pathway dataset. Retro*-0 denotes its version that performs
the search without the value network. Retro* is reported as the state-of-the-art search algorithm for
retrosynthetic planning. 4. Hyper-Graph Search (HgSearch)[21]: HgSearch is a beam-search-like
algorithm performed on a hyper-graph structure. The heuristics are the product of the single-step
confidence score and molecular complexity score (SCScore) [4].

Evaluation metrics: We use four different metrics to comprehensively evaluate the performance
of different search algorithms: 1. Pathway length: We use the total number of reactions in the
retrosynthesis pathway for length evaluation. 2. Pathway cost: The cost function is defined as
the summation of the negative log-likelihood (confidence score) of the reactions in the pathway
τ provided by the single-step model, i.e., −

∑
a∈τ logpc(a|s) [2]. The cost is also regarded as a

criterion for chemical feasibility. 3. Planning efficiency: Since the primary objective of AI-aided
retrosynthesis is to help chemists find successful pathways faster, efficiency has been a crucial
evaluation criterion for a multi-step retrosynthesis planning algorithm. Therefore, we follow [2] to
take the number of single-step inference calls as a qualified surrogate of time, as single-step inference
(∼ 2s per iter) takes up almost > 99% of the time (only ∼ 0.006s per iter on planning). 4. Success
rate: With a fixed number of single-step inference calls, the success rate is defined as the percentage
of solved molecules in the entire set.

Single-step retrosynthesis predictor: We adopt the template-free single-step retrosynthesis predictor
based on molecular transformer (MT)[20, 13] from Schwaller et al. [21] as our single-step retrosyn-
thesis predictor. Specifically, Schwaller et al. separately trained a pair of backward single-step
generation models and forward single-step prediction models, and cooperatively utilized them to
generate high-quality single-step retrosynthetic candidates with a confidence score pc(a|s) ranging
from 0 to 1. Both statistics [14, 13] and our user study in real-world scenarios demonstrate that
MT-based single-step framework achieves higher accuracy and less chemo-selectivity when compared
with template-based approaches. Eventually, we choose top-k=100 reactions ranked according to
the confidence score predicted by the single-step model as the available single-step candidate set for
a given molecule since top-k=100 is sufficient to represent feasible single-step reaction space for a
molecule.
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PISTACHIO GRASP RETRO* RETRO*-0 HGSEARCH DFPN-E MCTS

AVG. LENGTH 4.12 4.27 4.25 4.38 4.22 4.74
AVG. COST 7.47 7.53 8.44 7.06 12.88 13.72
AVG. TIME 42.6 62.0 82.4 94.5 84.3 116.5

SUCCESS RATE 0.95 0.92 0.92 0.87 0.85 0.81

WUXITEST GRASP RETRO* RETRO*-0 HGSEARCH DFPN-E MCTS

AVG. LENGTH 6.93 7.50 7.38 7.65 7.29 8.15
AVG. COST 21.19 22.55 26.55 21.41 30.89 38.62
AVG. TIME 79.3 112.5 157.2 194.7 183.9 224.5

SUCCESS RATE 0.86 0.80 0.78 0.82 0.64 0.52

Table 2: General planning performance summary on Pistachio and WuxiTest. Average statistics is
calculated among all successful pathways with Nmax = 400 for both datasets.

4.2 Creating benchmark datasets

Single-step reactions and building block molecules dataset: We use the Pistachio reaction
dataset (Ver. 18.11.19) [16] as our benchmark dataset for training our single-step models, and
the implementation details are listed in Appendix A.1. After further pruning and discarding reactions
with multiple products, the entire dataset consists of 2.7M reactions. The dataset is further split
randomly into train/val/test sets following 90%/5%/5% proportions. We use the complete 231M
commercially available molecules presented in eMolecules 1 for the building block molecule set.

Pathway dataset: Since only Retro* requires an additional simulated retrosynthesis pathway dataset
for pre-training its value network for planning, we follow the setting in [2] and construct the Pistachio
pathway dataset similarly. Specifically, we obtained 61554 pathways with an average length of 3.66.
We split the dataset into 40000 training pathways, 21354 validation pathways, and 200 test pathways
for Retro* value network training. Note that constructing an artificial pathway dataset by simply
concatenating single-step reactions is only a reference rather than an optimal/expert pathway for
a given molecule in a given search space. Moreover, an expert pathway dataset is unavailable for
unreported molecules and expensive to obtain in real-world scenarios. Therefore for a fair comparison,
the target molecules in the pathway dataset are simultaneously used as initial states for GRASP
training.

Expert dataset: We also include a real-world expert dataset ‘WuxiTest’ designed by WuxiAppTec
chemists, and each target molecule is provided with one reference pathway. WuxiTest consists of 500
molecules that are specifically designed to consist only of molecules that have never appeared in any
journals and patents. Molecules were split into ten categories in terms of retrosynthesis strategies, and
each category shares similar molecular substructures. We partition the pathway dataset category-wise
as 80%/10%/10% into train/valid/test sets as partitions and follow the same training settings as the
Pistachio.

4.3 Results

The performance of all methods is listed in Table. 2. For both the Pistachio and WuxiTest datasets, our
approach achieves the highest success rate compared with the baselines. We observe that HgSearch
achieves the best performance on the average cost metric in Pistachio, mainly from the near-exhaustive
search performed on less challenging molecules. Our approach outperforms other baselines in average
expansion by a large margin, demonstrating the performance gain in planning efficiency brought
by RL training. In the WuxiTest dataset, our approach outperforms all other baselines in all four
metrics. Since the WuxiTest dataset is designed to emphasize retrosynthesis strategies with more
challenging but strategically similar molecules, the result proves that RL training can generalize
planning knowledge from a molecule with similar substructures. We demonstrate the influence
of time limit on the success rate for different approaches for the WuxiTest dataset in Fig. 3a for
Nmax = 400. We also demonstrate that the success rate tends to saturate when for N > 400 by
extending to Nmax = 1000 in Appendix C for all approaches.

1http://downloads.emolecules.com/free/2019-11-01/
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WUXITEST RETRO* HGSEARCH DFPN-E MCTS GRASP
GENERAL

GRASP
EXPERT

SOURCE AVG. LENGTH 7.50 7.65 7.29 8.15 7.05 N/A
GRASP AVG. LENGTH 7.35 7.55 7.07 7.55 7.05 7.20

SOURCE AVG. RATING (0-10) 7.6 8.1 7.4 6.5 8.3 N/A
GRASP AVG. RATING (0-10) 7.7 8.1 7.6 7.5 8.3 9.2

Table 3: Goal-driven planning performance summary. The experiment is conducted through a double-
blind test with two different chemists to evaluate the quality of the pathway in terms of feasibility,
efficiency, and simplicity.

Goal-driven planning performance Since GRASP is the first and only approach that empowers
goal-driven planning, to evaluate whether GRASP is capable of generating high-quality goal-driven
results, we conduct a double-blind user study of goal-driven planning on the WuxiTest. Specifically,
we run GRASP using the building block molecules in the source pathways from different baselines
as the GRASP’s goal input to obtain a goal-driven result. In addition, we also include goal-driven
planning using the general (GRASP’s general planning without specifying goal) and expert (goal in
the reference routes from the chemists) source pathways. The results in Table. 3 demonstrate that our
approach can perform goal-oriented search and in the meantime generate a high-quality result. We
provide an exemplar of pathway comparison in reference for demonstration in Fig. 5 and Fig. 6 in
Appendix C.

Compatibility to self-improved retrosynthetic planning Self-improved retrosynthetic planning [10]
is an end-to-end framework that fine-tunes the single-step model to imitate successful trajectories
found by a fixed search (Retro* was used in the original work) algorithm by altering the prior
distribution of single-step candidates in the search space. To evaluate the adaptation of GRASP
with the self-improved framework, we follow the training procedure in [10] by replacing Retro*
with GRASP and observe the performance on Pistachio and WuxiTest. As shown in Fig.3b, the
self-improved retrosynthetic planning framework can improve the success rate of GRASP by using
its own planning experience to fine-tune the single-step model.

4.4 Ablation studies

In this section, we investigate the following questions from different ablation studies: 1. The influence
of two components: goal-driven relabeling (GDR) and self-imitation learning (SIL) over episodic
reward during RL training. 2. How does the different probability of GDR affect the performance of
general retrosynthesis planning and goal-driven retrosynthesis planning?

Influence of different components: We cross-check the training statistics of four combinations:
GRASP without GDR and SIL, GRASP with GDR, GRASP with SIL, and GRASP with GDR and
SIL. We evaluate the results on Pistachio by calculating the average reward with respect to training
episodes. In binary reward setting, we use success rate as the criteria for reward evaluation, and the
result is shown in Fig.3c. On the one hand, SIL significantly improves the overall training statistics
but induces a more significant variance in the training process. The phenomenon is attributed to
higher variance when using Monte-Carlo return and inevitable trade-offs in gradient propagation
from different successful pathways under the same target. On the other hand, GDR also offers a
certain amount of performance enhancement by relieving training difficulties induced by the sparse
rewards. However, we are more interested in GDR’s contribution to goal-driven planning.

Influence of GDR probability: The main hyperparameter we are interested in is GDR probability,
which adjusts the distribution of transition tuples in the replay buffer for general and goal-driven
planning. Specifically, we use the WuxiTest to evaluate the trade-off between general and goal-driven
planning success rate for the hyperparameter controlling GDR probability. For goal-driven planning,
we use the building block molecules in expert pathways for goal-driven input. The result is shown in
Fig.3d. As expected, we observe that the success rate of goal-driven planning is lower than general
planning, as it requires both general success and the specific goal reached. However, the success
rate for goal-driven planning improves significantly when relabeling probability ranges from 10% to
70%. Nevertheless, high relabeling probability impairs the success rate for general planning since
GDR might incur failures in general planning pathways, and increasing the proportion of goal-driven
data leads to less proportion of general data. In conclusion, it is crucial to select an appropriate GDR
probability depending on the actual usage of GRASP .
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Figure 3: Experiments and ablation studies

5 Conclusion

This paper proposes GRASP, a novel goal-driven retrosynthetic planning approach. Unlike existing
approaches that limit their generalization planning knowledge in a static dataset, GRASP can capture
synthetic knowledge through self-generated experiences. Moreover, GRASP can perform goal-
driven retrosynthetic planning that none of the existing approaches could explicitly accomplish.
Experimental results on academic and industrial benchmark datasets demonstrate GRASP outperforms
all baselines in general retrosynthetic planning and first achieves high-quality goal-driven planning.
We have deployed GRASP in a real-world company to expedite the planning of synthetic pathways
toward novel chemical compounds. By transforming the originally expertise-intensive pathway
discovery process into efficient automation, GRASP significantly reduces the cost of the workforce
on pathway design in both medicinal and process chemistry. More importantly, GRASP supports the
high customization of goals and further alleviates the cost of human labor on pathway screening and
post-processing. We believe that our work will significantly inspire related research on more efficient
and chemists-machine interactive retrosynthetic planning frameworks. Nevertheless, the planning
results from GRASP still need to be monitored or directed by personnel with chemical expertise if the
target molecule is a novel or a rarely reported compound. The community lacks thorough research
on the robustness of different single-step/multi-step retrosynthetic planning algorithms and how to
generalize to out-of-distribution molecules, which we think could be an appealing research direction.
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