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ABSTRACT
Interpreting model knowledge is an essential topic to improve hu-
man understanding of deep black-box models. Traditional methods
contribute to providing intuitive instance-wise explanations which
allocating importance scores for low-level features (e.g., pixels for
images). To adapt to the human way of thinking, one strand of
recent researches has shifted its spotlight to mining important
concepts. However, these concept-based interpretation methods
focus on computing the contribution of each discovered concept
on the class level and can not precisely give instance-wise expla-
nations. Besides, they consider each concept as an independent
unit, and ignore the interactions among concepts. To this end, in
this paper, we propose a novel COncept-based NEighbor Shapley
approach (dubbed as CONE-SHAP) to evaluate the importance
of each concept by considering its physical and semantic neigh-
bors, and interpret model knowledge with both instance-wise and
class-wise explanations. Thanks to this design, the interactions
among concepts in the same image are fully considered. Mean-
while, the computational complexity of Shapley Value is reduced
from exponential to polynomial. Moreover, for a more comprehen-
sive evaluation, we further propose three criteria to quantify the
rationality of the allocated contributions for the concepts, includ-
ing coherency, complexity, and faithfulness. Extensive experiments
and ablations have demonstrated that our CONE-SHAP algorithm
outperforms existing concept-based methods and simultaneously
provides precise explanations for each instance and class.
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1 INTRODUCTION
Deep neural networks have demonstrated remarkable performance
in many data-driven and prediction-oriented applications [19, 21,
47], and sometimes even perform better than humans. However,
their most significant drawback is the lack of interpretability, which
makes them less attractive in many real-world applications. When
relating to the moral problem or the environmental factors that
are uncertain such as crime judgment [10], financial analysis [5],
and medical diagnosis [37], it is essential to mine the evidence for
the model’s prediction (interpret model knowledge) to convince
humans. Thus, investigating how to interpret model knowledge
is of paramount importance for both academic research and real
applications.

The mainstream approaches to interpret model knowledge are
feature-based methods [2, 4, 9, 24, 26, 28, 29, 31–33, 36, 39, 41, 46],
which provide instance-wise explanation. They allocate the impor-
tance scores for each individual feature in each instance (e.g., each
pixel in an image). Based on these importance scores, a saliency
map that reflects the accordance for a model’s decision intuitively
for each instance is provided to improve humans’ trusts. For ex-
ample, in Figure 1(a), those red areas indicate the pixels which
contribute most to the model to classify the image as basketball.
However, those feature-based interpretations are not consistent
with human understanding [23], hence cannot help more on human
decision and inference. Humans understand an image always based
on high-level concepts, such as segments of basketballs, arms
and jerseys as shown in Figure 1(b), rather than low-level pixels.

To bridge the gap between human understanding and model in-
terpreting, some concept-based methods [15, 18, 20, 23, 42, 43, 45]
which provide class-wise explanation have been proposed recently.
A concept can be a color, texture, or a group of similar segments that
is easy for humans to understand. These methods focus on mining
a set of meaningful and representative concepts for an explained
class and assigning importance scores according to their contribu-
tions to this class. Then, prototypes of the most important concepts
found by the model are enumerated to convince humans. However,
all of the existing concept-based methods ignore differentiating the
importance of concepts on each instance in a class. For example,
steering wheel is a key concept for a model to recognize a car,
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Figure 1: Interpreting the knowledge of a classification
model to recognize an image of basketball by (a) feature-
based explanation and (b) concept-based explanation.

these methods assigned the same importance score for steering
wheel on all images, even for those without steering wheel visu-
ally. Hence, they lack the capacity for the instance-wise interpreta-
tion of model knowledge. Meanwhile, these methods regard each
concept as an independent component, ignoring the interactions
among concepts. For example, guitar’s string is an important
concept, but without the participation of the guitar’s body, the
model can not distinguish whether the object in the image is a guitar
or a violin. Thus, it is not appropriate to calculate the contributions
for each individual without considering its collaborators.

Hence, we are still facing the following challenges in interpret-
ing model knowledge based on the concept to increase human
understanding and trust in models: (i) Class-wise and instance-
wise explanations. Class-wise explanations interpret the decision
boundary of the model, while instance-wise explanations show the
unique importance of concepts for each instance. Both of them are
important and necessary to increase human understanding and
trust in models. (ii) Interactions among concepts. Concepts are
far from independent, they could be physically interacted (each
segment cooperates with its adjacent areas) or semantically inter-
acted (each segment cooperates with its semantically similar areas).
(iii) Evaluation of concept. As stated in ACE [15], a good concept
should satisfy the properties of meaningfulness, coherency, and
importance, but how to quantify those properties of discovered
concepts is still a problem.

To address these challenges in interpreting model knowledge
based on the concept for increasing human understanding and
trust in models, we first propose a novel COncept-based NEigh-
bor Shapley (dubbed as CONE-SHAP) method to approximate the
importance of each concept with considering its interactions with
the physical and semantic neighbors. Meanwhile, we interpret the
model knowledge from both instance-wise and class-wise, i.e., we
calculate the neighbor Shapley Value of each possible concept in
each instance and the top-ranked concepts give an explanation
on the instance level (instance-wise) and average the importance
of concepts over all instances in a class and selecting top-ranked
concepts for explaining on the class level (class-wise). Finally, to
comprehensively quantify the discovered concepts and their impor-
tance score for interpreting model knowledge, we propose three
criteria: coherency, complexity, and faithfulness. We validate our
CONE-SHAP with extensive experiments. The results demonstrate

that our algorithm outperforms both feature-based and concepts-
based methods in interpreting model knowledge.

The main contribution we made in this paper can be summarized
as follows:

• We investigate the problem of how to interpret model knowl-
edge with concept-based explanations from both instance-
wise and class-wise.

• We propose a novel CONE-SHAPmethod to approximate the
Shapley Value of each segment with considering its physical
and semantic neighbors

• We propose three criteria (coherency, complexity, and faith-
fulness) to comprehensively quantify the quality of the dis-
covered concepts and their importance scores.

• Extensive experiments show our CONE-SHAP outperforms
the existing feature-based and concept-based methods on
both class-wise and instance-wise explanations on models.

2 RELATEDWORK
2.1 Feature-based Explanation
Feature-based explanation methods focus on assigning importance
scores for the features in an instance (e.g., pixels for an image,
words for a text). These methods can be further categorized into
several branches: (i) Perturbation-based methods [2, 13, 44, 48], they
quantify each feature by measuring the variation of outputs when
masking or disturbing that feature while keeping the remaining
fixed; (ii) Backpropagation-based methods [3, 29, 39], they compute
the importance scores of all features through a few times gradient-
related operations; (iii) Model-based methods [32, 33], they employ
an explainable model to interpret the original model locally or train
an extra deep network, which can output the feature importance
directly. These methods can visualize the important features in each
instance for explanation (e.g., highlight the pixels in an image). But
these feature-based explanations are always not consistent with
human understanding [23]. Moreover, these methods above assume
all the features are independent and underestimate the interactions
among features.

2.2 Concept-based Explanation
Humans always understand an object based on high-level concepts
rather than fine-grained features. Concepts are defined as a group
of similar prototypes which can be understood easily by humans.
Given a human-defined concept, Been et al. [23] proposes TCAV
to quantify the significance of the concepts in a class different
from other categories based on trained linear classifiers. ACE [15]
employs super-pixel segmentation and cluster methods for min-
ing concepts automatically, and then adopted TCAV [23] for the
concept-based explanation. ConceptSHAP [43] defines the notion
of completeness score to measure the semantic expression ability of
a concept and utilized Shapley Value [34] to find a complete set of
concepts. All of these concept-based methods explain deep models
on the class-level, but underestimate the local structure of each
instance.



2.3 Shapley Value for Explaining Models
Shapley Value [25, 34, 35] originated from cooperative game the-
ory and is the best way to distribute benefits fairly by considering
the contributions of various agents. Thus, some of the recent stud-
ies borrow the idea from Shaley Value to interpret deep neural
network [2, 7, 16]. Nevertheless, its computational complexity in-
creases exponentially with the number of participating members.
Since there may exit a large number of features in an explained
instance, it is exorbitant for a computer to calculate the Shapley
Value. To overcome this challenge, the approximation of Shapley
Value [6, 12, 22, 27, 30], is used as a substitutionwhichmight slightly
break some properties of Shapley Value. Ghorbani et al. [17] utilize a
sample-basedmethod to estimate the Shapley Value for each neuron
in the model. Ancona et al. [2] also adopt a sample-based method to
approximate the Shapley Value and allocate the importance for all
features via one-time forward propagation. Chen et al. [7] propose
L-Shapley and C-Shapley to approximate Shapley value in a graph
structure. Though these approximations have made excellent per-
formance in many tasks, most of them focus on features and play
roles on the instance level.

Our method overcomes the above shortcomings and explains
the model knowledge from both class-level and instance-level. The
details will be demonstrated in Section 5.

3 PRELIMINARIES OF SHAPLEY VALUE
Shapley Value [7, 18, 34] is designed in cooperative game theory
to distribute gains fairly by considering the contribution of several
players working in a big coalition. Assume a game consists of 𝑁
players and they cooperate with each other to achieve a common
goal. let𝑢 (·) represents the utility function to measure the contribu-
tions made by an arbitrary set of players. For a particular player 𝑖 ,
let 𝑆 be an arbitrary set that contains player 𝑖 , and 𝑆\{𝑖} represents
the set with the absence of 𝑖 , then the marginal contribution of 𝑖 in
𝑆 is defined as:

𝑚(𝑖, 𝑆) = 𝑢 (𝑆) − 𝑢 (𝑆\{𝑖}) . (1)

The Shapley Value of player 𝑖 is defined as:

𝜙𝑣 (𝑖) =
1
𝑁

∑𝑁
𝑘=1

1
(𝑁−1
𝑘−1 )

∑
𝑆 ∈𝑆𝑘 (𝑖)𝑚(𝑖, 𝑆), (2)

where 𝑆𝑘 (𝑖) denotes a set with size 𝑘 that contain the player 𝑖 .
Shapley Value is the unique value to satisfy the following properties:

• Efficiency: The value of the whole union 𝑣 ({1, ..., 𝑁 }) − 𝑣 (𝜙)
is equal to the sum of the Shapley Values of all of the players∑𝑁

𝑖=1𝜙𝑣 (𝑖).
• Symmetry: If Δ𝑣 (𝑖, 𝑆) = Δ𝑣 ( 𝑗, 𝑆) for all subsets 𝑆 then 𝜙𝑣 (𝑖) =
𝜙𝑣 ( 𝑗).

• Dummy: If Δ𝑣 (𝑖, 𝑆) = 0 for all subsets 𝑆 then 𝜙𝑣 (𝑖) = 0.
• Additivity: Let𝑢 and𝑤 represent the associated utility functions,
then 𝜙𝑣+𝑤 (𝑖) = 𝜙𝑣 (𝑖) + 𝜙 (𝑖) for every 𝑖 ∈ 𝑁 .

• Coherency: Given another value function Δ𝑣
′ (𝑖) to measure the

marginal contribution of 𝑖 , if Δ𝑣 (𝑖, 𝑆) ≥ Δ𝑣
′ (𝑖, 𝑆) for all subsets

𝑆 , then 𝜙𝑣 (𝑖) ≥ 𝜙
′
𝑣 (𝑖).

4 EVALUATING CONCEPTS
4.1 Problem Formulation
Given a trained neural network 𝑓 , and a set of input examples
𝑋𝑘 = {𝑥𝑘1 , 𝑥

𝑘
2 , ..., 𝑥

𝑘
𝑛 } to be explained for a target class 𝑘 , where

𝑥𝑘
𝑖
denote the 𝑖𝑡ℎ example of class 𝑘 , concept-based methods aim

at finding out a set of meaningful concepts 𝐶𝑘 = {𝐶𝑘
1 ,𝐶

𝑘
2 , ...,𝐶

𝑘
𝑚}

as well as importance scores 𝑆𝐶𝑘 = {𝑆𝐶𝑘
1 , 𝑆𝐶

𝑘
2 , ..., 𝑆𝐶

𝑘
𝑚} for each

concept according to its contribution to the model for class 𝑘 . For
convenience, we omit the superscript of the above symbols and
rewrite 𝑋𝑘 as 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛}, 𝐶𝑘 as 𝐶 = {𝐶1,𝐶2, ...,𝐶𝑚} and
𝑆𝐶𝑘 as 𝑆𝐶 = {𝑆𝐶1, 𝑆𝐶2, ..., 𝑆𝐶𝑚} without causing ambiguity.

4.2 Criteria for Evaluating Concept Score
PreviousMethods and Shortcomings.ACE [15] utilizes smallest
sufficient concepts (SSC) and smallest destroying concepts (SDC) to
quantify the quality of the concepts. SSC means to find a set of
concepts which are enough for the model to make a prediction,
and it is used to measure the representation ability of the extracted
concepts. SDC means to look for a set of concepts that will cause a
poor prediction when these concepts are removed, and it reflects the
necessity of the concepts for a model’s decision. ConceptSHAP [43]
proposes completeness to measure the expression ability of concepts.
These existing metrics for evaluating concepts only consider part of
the concepts’ properties for a model’s decision and lack the capacity
to measure the concepts from different aspects. Thus, in this paper,
we quantify three criteria (coherency, complexity, and faithfulness)
to comprehensively evaluate concepts.
High Coherency. A concept with a higher score should have a
stronger ability to express the semantic of its original inputs, we
define this property as high coherency. Let 𝑓 be a pre-trained model,
which maps a input 𝑥 to an output 𝑓 (𝑥). And letℎ(·) be the function
that maps input 𝑥 to a representation layer. We define the similarity
between the 𝑖𝑡ℎ concept and its original input as:

𝜂 (𝐶𝑖 ;𝑋 ) = 1
|𝐶𝑖 |

∑ |𝐶𝑖 |
𝑗=1 Sim(ℎ(𝑥 |𝑐𝑖, 𝑗 ), ℎ(𝑐𝑖, 𝑗 )), (3)

where |𝐶𝑖 | denotes the numbers of segments in the inputs which
belongs to concept 𝑖 , 𝑐𝑖, 𝑗 denotes the 𝑗𝑡ℎ segment of the 𝑖𝑡ℎ con-
cept, 𝑥 |𝑐𝑖, 𝑗 denotes the original input instance which contains 𝑐𝑖, 𝑗
and Sim(·, ·) denotes the function which measure the similarity be-
tween two tensor such as cosine similarity. Assuming that {1 : 𝑘}
represent the first 𝑘 value of a variable, thus𝐶{1 : 𝑘} was the top-𝑘
concepts with the highest contribution, and 𝑆𝐶{1 : 𝑘} are their
corresponding importance scores, the top-𝑘 coherency is defined
as:

𝜁𝑘 (𝑆𝐶, 𝜂;𝐶,𝑋 ) = corr(𝑆𝐶{1 : 𝑘}, 𝜂 (𝐶;𝑥){1 : 𝑘}), (4)

where corr(·, ·) represents correlation coefficient between two vari-
ables.
Low Complexity. We want the distribution of the scores of dif-
ferent concepts should be distinguished from each other as much
as possible. The concepts’ scores are considered complex if they
are the same or very close to each other. First, we normalize the
scores of top-𝑘 concept, and the normalized concept score of the
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Figure 2: The framework of our CONE-SHAP. (a) Segmenting all the samples via super-pixel operation and then cluster the
segments into concepts according to their representations in the explained model. (b) Calculating the importance scores for
the concepts in each instance and allocate the concepts’ scores for an explained class by averaging the importance of concepts
over all instances in this class. (c) Providing instance-wise explanation via concept-based saliencymaps and provide class-wise
explanation via concepts with importance scores.

𝑖𝑡ℎ concept is defined as:

˜𝑆𝐶𝑖 =
𝑆𝐶𝑖∑𝑘
𝑗=1 𝑆𝐶 𝑗

. (5)

Note that ˜𝑆𝐶𝑖 can also be treated as valid probability distribution,
then we define the top-𝑘 complexity of the concepts as the entropy
of 𝑆𝑖 :

𝜉𝑘 ( ˜𝑆𝐶) = −
∑𝑘

𝑖=1
˜𝑆𝐶𝑖 ln ˜𝑆𝐶𝑖 . (6)

High Faithfulness. The change of the model’s outputs when the
concepts are removed or set to baseline should be correlated with
the concepts’ scores, we define this property as high faithfulness. Let
𝑋\{𝐶𝑖 } = {𝑥1\{𝐶𝑖 }, 𝑥2\{𝐶𝑖 }, ...𝑥𝑛\{𝐶𝑖 }} denotes the input samples
with the absence of all the segments belongs to the 𝑖𝑡ℎ concept,
where 𝑥 𝑗\{𝐶𝑖 } denotes the 𝑗𝑡ℎ processed input instance by setting
all the segments in the 𝑖𝑡ℎ concept as zero or baseline. Let:

𝜑 (𝐶𝑖 ;𝑋 ) = 1
𝑛

∑𝑛

𝑗=1 (𝑓 (𝑥 𝑗 ) − 𝑓 (𝑥 𝑗\𝐶𝑖 )), (7)

where 𝜑 (𝐶𝑖 ;𝑋 ) represents the degree of the degradation of the
model’s performance. Since the number of the segments of the
concepts various, we normalize 𝜑 (𝐶𝑖 ;𝑋 ) as:

�̃� (𝐶𝑖 ;𝑋 ) = 1
|𝐶𝑖 |

𝜑 (𝐶𝑖 ;𝑋 ) . (8)

Then the faithfulness of the top-𝑘 concepts’ scores is defined as:

𝜃𝑘 (𝑆𝐶, 𝜑 ;𝐶,𝑋 ) = corr(𝑆𝐶{1 : 𝑘}, �̃� (𝐶;𝑋 ){1 : 𝑘}) . (9)

5 EXPLAINING MODEL VIA CONE-SHAP
To bridge the gap between model decision and human understand-
ing, we propose a post-hoc approach, namely COncept-basedNEigh-
bor Shapley (CONE-SHAP), to interpret the decision procedures of
any deep neural network from both instance-wise and class-wise
levels with human-friendly concepts. The framework of our CONE-
SHAP is exhibited in Figure 2. In order to interpretmodel knowledge
for a target class, our method first extracts concepts automatically
and then computes an importance score for each concept according
to our proposed CONCE-SHAP. Finally, the concept-based saliency
maps of each instance are given for instance-wise explanation,
and the concepts’ contributions for the whole class are given for
class-wise explanation.

5.1 Concept Discovery
Concepts are defined as prototypes that are understandable for
humans [42, 43]. In computer vision tasks, it can be a color, tex-
ture, or a group of similar segments, and in natural languages, it
can be a group of sub-sentences with the same meaning. Since
there are no user-defined concepts in real-world applications, a
method to discover concepts automatically is needed. Following
ACE [15], we assume a set of semantically similar images’ seg-
ments as a visual concept. To collect such kind of concept, firstly, a
super-pixel method is performed on each sample of the inputs 𝑋 ,
thus we get a dozen segments from a particular class. Then, these
segments are clustered into𝑚 different concepts according to their
representations computed by model 𝑓 . We denote the concepts as
𝐶 = {𝐶1,𝐶2, ...,𝐶𝑚}, where 𝐶𝑖 = {𝑐𝑖,1, 𝑐𝑖,2, ..., 𝑐𝑖, |𝐶𝑖 |}, 𝑐𝑖, 𝑗 denotes



the 𝑗𝑡ℎ segment in the 𝑖𝑡ℎ concept, |𝐶𝑖 | is the number of the seg-
ments belong to the 𝑖𝑡ℎ concept, and𝑚 denotes the number of the
discovered concepts.

Notice that such an approach relies on a good super-pixel method
because the objects of different sizes occupy different proportions
in the image which may keep somemeaningful concepts from being
discovered. For example, the ‘jersey’ in Fig 1 is divided into two
parts, though they are a whole. To avoid the meaningful concepts
are missed, the multi-grained super-pixel method with three differ-
ent sizes (small, medium, large) is adopted thus we get the segments
with multi-resolution. The details and the hyperparameters will be
discussed in Section 6.

5.2 Concept-based Neighbor Shapley
To measure the contribution of a segment in an instance for an
explained model, we apply a counterfactual method which consid-
ers how the prediction of the model will change if this segment
is absent. For classification tasks, let 𝑔 be the last layer before the
softmax operation and 𝑔𝑘 represents the logit values of class 𝑘 . The
value of a sgement 𝑠 of class 𝑘 for the model is calculated as:

𝑣𝑘 (𝑠) = 𝑔𝑘 (𝑥) − 𝑔𝑘 (𝑥\{𝑠}) . (10)

For convenience, we denote 𝑣𝑘 (𝑠) as 𝑣 (𝑠).
Shapley Value. We consider all the 𝑁 segments in an image as
a union, and each of them is a player. Given a particular player
𝑖 , let 𝑆 be a subset that contains player 𝑖 and 𝑆\{𝑖} denotes the
subset without the participation of 𝑖 , then the contribution of 𝑖 to
the subset 𝑆 is computed as:

Δ𝑣 (𝑖, 𝑆) = 𝑣 (𝑆) − 𝑣 (𝑆\{𝑖}) . (11)

When we treat 𝑣 (·) as the utility function, then Δ𝑣 (·) becomes the
marginal contribution of the Shapley value. Thus, the Shapley Value
of player 𝑖 is the weighted average of marginal contribution in all
of the subsets:

𝜙𝑣 (𝑖) =
1
𝑁

∑𝑁

𝑗=1
1(𝑁−1
𝑗−1

)∑
𝑆 ∈𝑆 𝑗 (𝑖)

Δ𝑣 (𝑖, 𝑆), (12)

where 𝑆 𝑗 (𝑖) denotes the set with size 𝑗 that contains the 𝑖𝑡ℎ segment.
However, the computational complexity for Shapley Value in-

creases exponentially as the number of players rises [14, 25, 38].
Since each image contains more than a hundred segments, it is
costly for a computer to calculate the truly Shapley Value. Thus,
recent studies replaced the truly Shapley Value with its approxima-
tion [2, 7, 8, 17] in different situations.
Approximation of Shapley Value. Inspired by [14], the players
can be treated as the nodes of a fully connected graph, where any
two players are connected since theymight have correlations during
a game. In the application of image classification, the segments of an
image can also be treated as nodes, but each node only connectswith
its neighbors. Here, we define the neighborsN(𝑖) of the 𝑖𝑡ℎ segment
are those segments which are adjacent to it (physical neighbors)
or belong to the same concept as it (semantic neighbors). Based on
the assumption that participants which are not the neighbors of 𝑖
hardly affect its contribution for a model’s inference procedure, the

Shapley Value of 𝑖 in Equation 12 can be approximated as:

𝜙N
𝑣 (𝑖) = 1

|N (𝑖) |
∑ |N (𝑖) |

𝑗=1
1( |N (𝑖) |−1
𝑗−1

)∑𝑖∈𝑆
𝑆⊆N(𝑖 )

Δ𝑣 (𝑖, 𝑆) . (13)

Considering that a segment may contain a large amount of neigh-
bors in an instance, we adopt sample-based method to estimate
𝜙N
𝑣 (𝑖) in order to further reduce the computational costs. Con-

cretely, we first sample 𝑘 nodes from N(𝑖) and denote it as N𝑘 (𝑖),
and then compute the Shapley Value in the N𝑘 (𝑖). This procedure
will repeat𝑀 times, and we take the average of these results as the
COncept-based NEighbor Shapley Value (CONE-SHAP) of 𝑖:

𝜙N
𝑣 (𝑖) = 1

𝑀 |N𝑘 (𝑖) |
∑𝑀

𝑡=1

∑ |N𝑘 (𝑖) |
𝑗=1

1( |N𝑘 (𝑖) |−1
𝑗−1

)∑𝑖∈𝑆
𝑆⊆N𝑘 (𝑖 )

Δ𝑣 (𝑖, 𝑆) .

(14)
Next, we will introduce how to employ the approximation of

Shapley Value from Equation 14 to interpret model knowledge from
both instance-wise and class-wise. And more discussion between
CONE-SHAP and other approximations of Shapley Value can be
found in Appendix.

5.3 Model Explaining
Instance-wise Explanation. In order to help users understand
the basis for a model’s reasoning procedure intuitively, we provide
concept-based saliency maps to interpret model knowledge on the
instance-level. The contribution of each segment of each instance is
assigned according to its CONE-SHAP Value 𝜙N

𝑣 (𝑖). Compared to
perturbation-based methods which explain a model in fine-grained
features, our CONE-SHAP focuses on the concept-based explana-
tion, which is more human-friendly.
Class-wise Explanation. To interpret model knowledge on the
class level, our method distributes the concept scores to indicate
which concept contributes more to the model’s prediction on the
explained class. A concept is considered important if all of its be-
longings own a high Shapley Value. Since we have gotten a group
of possible concepts in the concept discovery procedure, for a con-
cept 𝐶𝑖 , we compute its score by averaging all of the approximate
Shapley Values of its segments:

𝑆𝐶𝑖 =
1
|𝐶𝑖 |

∑
𝑐𝑖,𝑗 ∈𝐶𝑖

𝜙N
𝑣 (𝑖). (15)

5.4 Analysis on CONE-SHAP
Analysis of Computational Complexity. The Shapley Value of
a segment is computed according to Equation 12.When we interpret
an target instance, let 𝑛 be the average number of segments per
instance, then the computational complexity of Equation 12 is𝑂 (2𝑛).
When we approximate Equation 12 via Equation 13 which assume
that the participated players only cooperate with its neighbors, the
computational complexity downgrade to𝑂 (2 |N |).N is the average
number of the neighbors for a segment which is much more smaller
than 𝑛. When N is large, our proposed CONE-SHAP estimates
Equation 13 via Equation 14, then the computational complexity
becomes𝑂 (𝑀2𝑘 ). Since both 𝑘 and𝑀 are small constants, the final
computational complexity can be written as 𝑂 (𝑑), where 𝑑 is a
positive integer.
Analysis of the Approximation.



Figure 3: The comparison of the saliencymaps of ourmethod and existing popularmethods (feature-based and concept-based).
Three images in ImageNet are selected as examples and pre-trained densenet-121 is used as the explained model.
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Figure 4: Show cases of class jeep in ImageNet and their 5
most important explained by ourmethod. The same concept
might have different importance across instances (images).

Theorem 1. When the mutual information between a player 𝑖
and any of its neighbors is bounded by 𝜖 , the expected error between
Equation 13 and Equation 12 is bounded by 2𝜖 :

E|𝜙N
𝑣 (𝑖) − 𝜙𝑣 (𝑖) | ≤ 2𝜖. (16)

Theorem 2. Equation 14 converges to Equation 13 as𝑀 → ∞.

We leave the proofs in Appendix.

6 EXPERIMENTS
In this section, we first discuss the experimental settings and the
hyperparameters we adopt. Then, we demonstrate the interpreta-
tion ability of our method from both instance-wise and class-wise.

Meanwhile, we evaluate the efficiency of the top-ranking concepts.
Finally, the rationality of the allocated concepts’ scores is measured
according to the criteria that we proposed.

6.1 Experimental Settings
Our method can be applied to any task without further training. In
order to demonstrate the superiority of our method intuitively, we
focus on image classification in this paper.
Models and Dataset.We interpret two most commonly used of-
ficial models Densenet-121 [21] and Inception-V3 [40] which pre-
trained on the ImageNet dataset [11] in the experiments. The former
is used for instance-wise explanation and the latter is used for class-
wise explanation.
Settings for Concept Discovery. For each explained instance, we
first picked out all of the samples that belong to the same class,
and then mine out the candidate concepts for this class by seg-
menting these instances and using K-means method to cluster the
fragments. Since the meaningful concepts for an object are usually
no more than 20, we set the cluster center to 20 for each class.
As we mentioned before, the discovery of the concepts relies on
a good segmentation method, in order to avoid neglecting mean-
ingful segments, we perform multi-resolution super-pixel for each
image. Concretely, SLIC [1] is used to segment input samples for
speed, and each instance is divided into three granularities with the
resolutions of 15, 50, 80 segments separately. Thus, the concepts
with different sizes are captured.
Settings for Feature Extraction. As for the features we used to
cluster the image fragments, we resize the segments to the size of
the original images via bicubic interpolation, and feed them to the
explained model to get the representations of the middle layer of
the neural network. We adopt ave-pool layer in Inception-V3 [40]
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Figure 5: The comparison of performance of the top-ranked concepts computed by our CONE-SHAP and ACE. (a) The changes
of the model’s performance when the most important 5 concepts are added/removed gradually. (b) An example of remov-
ing/adding the top-ranked concepts of an image in class jeep.

and global ave-pool layer in Densenet-121 [21] as the representation
layer respectively.
Settings for Approximated Shapley Value. For the importance
of each segment, we compute the approximated Shapley Value
according to Equation 14. To make the balance between the compu-
tational complexity and the interpretation performance, we set the
hyperparameter 𝑘 as 5 and𝑀 as 1 to sample while calculating the
approximated Shapley Value. The choice of these hyperparameter
will be discussed in Subsection 6.3.

6.2 Instance-wise Explanation
For instance-wise explanation, we compare ourmethod to LIME [32],
SHAP kernel [29], Integrated Gradients (IG) [39], DeepLIFT [36],
and ACE [15] via saliency maps. Specially, ACE is a concept-based
method, and can’t provide saliency maps directly, thus we got
the saliency maps by assigning the TCAV [23] scores to its seg-
ments. We demonstrate ACE here in order to show that the other
concept-based methods lack the capability to explain the model
from instance-wise.
Explanation with Saliency Maps. We provide coarse-grained
saliency maps with the same size of the inputs to indicate which
part of an instance is more important. Since we have got the ap-
proximated Shapley Value of each segment of each image with
three different granularities, we treat these values as the scores
in saliency maps, and then we get three saliency maps focus on
different scales. For each instance, we average the multi-grained
saliency maps to get the final saliency map. Our method provides
concept-based saliency maps which are coarse-grained but more
human-friendly.

Figure 3 shows the comparison of the saliency maps between
our CONE-SHAP and baselines, where the importance scores of
each unit are scaled between -1 and 1 by dividing the absolute
value of the maximum number, and the units with scores below
zero were set to green and beyond zero were set to red. There
exist more green areas in our method because we consider the
correlation between each area adequately, and the backgrounds
and the meaningless segments hardly cooperate with the others.
Compared with methods that distribute importance scores for each
pixel, our concept-based saliency maps are easier for humans to

understand. ACE [15] focus on interpreting concepts from class-
wise thus fails to provide precise explanations for each instance.
Different Importance of Concepts on Different Instances. In-
tuitively, even the same concept might have different importance
for different instances/images. Based on the value of CONE-SHAP
on each segment, our method can estimate the importance of each
concept on each instance as follows: Firstly, we find out all of the
concepts in an instance. Then, for each concept, we compute the
CONE-SHAP value of each segment that belongs to the concept
with Equation 14. Finally, we can estimate the importance of the
concept by sum up the CONE-SHAP values of its segments.

Figure 4 exemplifies the interpretation of our CONE-SHAP for a
model to recognize jeep. In the class-level, our method shows the
concept of bodies, windows, plates, and wheels gears are very
important for the class of jeep, while in a specific instance/image, dif-
ferent concepts have different importance. For example, in the first
picture of Figure 4, the most important concept is front window
with the score 0.49, but we can not see the font window in the
third picture, hence the most important concept in the third image
changes to jeep’s body. And wheel is important in all of the three
pictures but it plays different roles in different instances.

6.3 Class-wise Explanation
The compared baselines 1 for class-wise explanation includeACE [15],
SHAP(MC), which approximates the Shapley Value with Monte
Carlo sampling, and Ocllusion which compute the importance for
each segment according to Equation 11.
Validating the Performance of Concepts. To measure the top-𝑘
important concepts on the explained model, we employ the same
metrics (i.e., SSC and SDC) as ACE [15], where SSC/SDC represents
the accuracy of model prediction when we add/remove the most
important concepts on the image. We use official Inception-V3 [40]
without any further training as the explained model. 20 classes in
ImageNet are selected randomly to explain, and we calculate SSC
and SDC for each class separately and take an average.

Table 1 reports the changes of the prediction accuracy by grad-
ually removing/adding the top-𝑘 important concepts, where the
1We did not compare with TCAV [23] and ConceptSHAP [43], since they rely on the
dataset with human-labeled concepts.



Table 1: (a) The changes of the prediction accuracy when gradually removing the top-𝑘 important concepts (the lower the
better). (b) The changes of the prediction accuracy when gradually adding the top-𝑘 important concepts (the higher the better).

(a)

Methods SDC (removing top-𝑘 important concepts)
top-1 top-2 top-3 top-4 top-5

ACE 60.97 48.07 36.27 25.98 17.88
Ocllusion 34.58 19.93 14.10 11.61 8.38
SHAP (MC) 34.48 18.58 13.15 10.42 5.91
Ours 34.15 18.11 9.75 6.08 4.73
Ours (𝑤/𝑜 PN) 36.56 17.72 12.42 9.44 4.92
Ours (𝑤/𝑜 SN) 34.75 19.45 12.29 6.08 4.86

(b)

Methods SSC (adding top-𝑘 important concepts)
top-1 top-2 top-3 top-4 top-5

ACE 11.63 21.28 32.78 42.09 48.57
Ocllusion 44.40 51.35 55.96 59.67 61.36
SHAP (MC) 44.56 52.36 55.43 60.36 63.36
Ours 46.56 55.76 62.01 64.68 67.78
Ours (𝑤/𝑜 PN) 44.02 54.86 59.62 63.36 66.00
Ours (𝑤/𝑜 SN) 45.56 54.59 60.50 64.90 66.41

Table 2: (a) The mean changes of the quality of the concepts when the number of sample times 𝑀 increases when we classify
5 classes selected randomly in the test set of ImageNet. (b) The mean changes of the quality of the concepts when the number
of sampled neighbors 𝑘 increases when we classify 5 classes selected randomly in the test set of ImageNet.

(a)

Metrics M=1 M=2 M=3
SSC-most 43.20 44.00 42.00
SSC-least 6.40 6.80 5.20
SDC-most 33.20 34.00 33.20
SDC-least 82.80 85.20 86.00

(b)

Metrics k=1 k=2 k=3 k=4 k=5
SSC-most 31.60 34.00 38.80 40.80 42.80
SSC-least 11.20 8.80 8.00 8.00 5.60
SDC-most 41.20 40.40 36.80 36.40 32.40
SDC-least 83.20 83.80 82.40 84.00 84.80

method𝑤/𝑜 PN and𝑤/𝑜 SN refer to the ablations from our method
by removing the Physical Neighbor (PN) and Semantic Neighbor
(SN) in Equation 13 & 14, respectively. From the results, we can
conclude that (i) By removing/adding the top-𝑘 important concepts,
our method makes the model achieve the lowest/highest accuracy.
This is because our method can estimate the importance of each
concepts more precisely than baselines. (ii) Both of the ablations
(𝑤/𝑜 PN and 𝑤/𝑜 SN ) would lead a worse performance on our
method, which indicates that both of the physical and semantic
neighbor considered in our CONE-SHAP method is necessary. We
also plot Figure 5 to clearly demonstrate the advantages of our
CONE-SHAP compared with ACE. From the Figure 5(a), we have
following observations: (i) By adding/deleting the most important
concepts from the image, our method changes (improve/reduce)
the model accuracy more remarkably than baseline ACE. (ii) By
adding/deleting the least important concepts, our method have less
influence on the model accuracy than baseline. Moreover, we show
an example of adding/removing the most important concepts of an
image in Figure 5(b).
Analysis of the Hyperparameters for Approximating Shap-
ley Value. We approximated the truly Shapley Value via sampling
from the neighbors as depicted in Equation 14. A large 𝑀 and 𝑘

will bring pressure to computation costs, and a small𝑀 and 𝑘 will
lead to inaccurate estimates. We performed extensive experiments
to find moderate 𝑀 and 𝑘 . For choosing 𝑀 , we select five classes
randomly to interpret. We fix 𝑘 to 5 and increase 𝑀 gradually to
compute SSC-most, SSC-least, SDC-most, and SDC-least of the se-
lected classes. The results shown in Table 2(a) demonstrate that in
our settings, set𝑀 to 1 is enough to approximate the Shapley Value.
Then for choosing 𝑘 , we set𝑀 to 1 and increase 𝑘 gradually. We find
that 5 neighbors is sufficient to reach relatively high performance.

Table 3: The quality of the allocated scores for the top-5 con-
cepts on the criteria we proposed.

Methods Criteria top-5
Coherency Complexity Faithfulness

ACE 0.4090 1.5943 0.4516
Ocllusion 0.7437 1.4051 0.9245
SHAP (MC) 0.7602 1.3930 0.9325
Ours 0.9299 1.2622 0.9542
Ours (𝑤\𝑜 PN) 0.8423 1.3135 0.9427
Ours (𝑤\𝑜 SN) 0.9235 1.2422 0.9462

Table 2(b) shows the mean results of 5 classes selected randomly to
exhibit how the performance changes with the growth of 𝑘 . Thus,
we set𝑀 to 1 and 𝑘 to 5 in our experiments.
Evaluation of Concept Scores. SSC and SDC merely take into
account whether concepts are ranked rationally, and it is also nec-
essary to evaluate the quality of the distributed scores. Hence, we
evaluated the scores computed by various methods based on the
three criteria we proposed. We adopt Pearson correlation coeffi-
cient to compute the coherency in Equation 3 and faithfulness in
Equation 9 , and the results are depicted in Table 3. As the table
shows, our CONE-SHAP obtains the best score on coherency and
faithfulness that reach 0.93 and 0.95 respectively. That means the
concept score and expressive ability are highly consistent, and the
scores are highly correlated with its contributions to model perfor-
mance. Besides, the low complexity reflects our scoring mechanism
can distinguish concepts from each other very well.



7 CONCLUSION
In this paper, we investigate the problem of post-hoc explanation
for deep neural networks in a human-friendly way. First, we pro-
pose a method named CONE-SHAP which can explain any model
from both instance-wise and class-wise without further training.
Especially, by considering the interaction neighbors, our CONE-
SHAP downgrades the computational complexity of Shapley Value
from exponential to polynomial. Since there are no unified metrics
to measure the performance of concepts’ scores, we proposed three
criteria to evaluate the scoring mechanism of concept-based expla-
nation methods. Extensive experiments demonstrate the superior
performance of our method. Applying our method to real-world
applications, users can easily understand the important shreds of
evidence for a model’s prediction so as to make a decision confi-
dently.
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