
Concept-based Explanation for Fine-grained Images and Its
Application in Infectious Keratitis Classification

Zhengqing Fang1, Kun Kuang2†, Yuxiao Lin2, Fei Wu2†, Yu-Feng Yao1†
1 Zhejiang University School of Medicine Sir Run Run Shaw Hospital
2 College of Computer Science and Technology, Zhejiang University

{zq_fang,kunkuang,yuxiaolinling,wufei,yaoyf}@zju.edu.cn

ABSTRACT
Interpretability has become an essential topic as deep learning is
widely applied in professional fields (e.g., medical image processing)
where high level of accountability is required. Existing methods for
explanation mainly focus on computing the importance of low-level
pixels or segments, rather than the high-level concepts. Concepts
are of paramount importance for human to understand and make
decisions, especially for those fine-grained tasks. In this paper, we
focus on the real application problem of classification of infectious
keratitis and propose a visual concept mining (VCM) method to
explain the fine-grained infectious keratitis images. Based on our
discovered explainable visual concepts, we further propose a visual
concept enhanced framework for infectious keratitis classification.
Extensive empirical experiments demonstrate that (i) our discov-
ered visual concepts are highly coherent with the physicians’ under-
standing and interpretation, and (ii) our visual concept enhanced
model achieves significant improvement on the performance of
infectious keratitis classification.
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Figure 1: Examples of four categories of corneal diseases, in-
clude bacterial keratitis (BK), fungal keratitis (FK), herpes
simplex viral stromal keratitis (HSK), and others referring
to the corneal diseases except aforementioned three types
of corneal infectious diseases (OTHERS), among which the
manifestations of the diseases are subtle for identification
by non-professionals.

1 INTRODUCTION
Artificial intelligence, especially deep learning has demonstrated
remarkable performances in medical image analysis. However, this
increasing performance comes as a cost of increasing model com-
plexity and opacity. As a result, most of those models are used in
a black-box way without being able to explain model decisions.
However, in the medical field, methods require high level of ac-
countability and transparency, which means one need to explain
machine decisions, predictions and justify their reliability [23].

Many machine learning explanation methods have been pro-
posed to bring understanding on black-box learning models, such as
LIME [17], SHAP [29], GradCAM [20] and Guided-Backpropagation
[21]. These methods give explanation for a model by computing or
approximating the importance of each individual feature or low-
level pixel. However, they are found to be algorithm-centric with
few human-subject tests to verify their contributions for human
interpretability [23] and lack of discussion about the relationship be-
tween per-sample saliency and corresponding category. Moreover,
[14] showed that these methods do not increase human understand-
ing and trust of the model.

Recently, a line of research has focused on providing explanations
around deep learning models in the form of human “concepts”
levels, including TCAV [14] and ACE [10]. Instead of computing
†Corresponding Authors.
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the importance of each individual feature or pixel, these methods
output the important concepts that are coherent with the human
understanding. For example, “black and white stripes” is the main
concept for detecting Zebra and “neckline” is the concept to identify
the Shirt as shown in Figure 2a. Concepts are meaningful, coherent
and important visual patterns that could provide great explanations
to increase human understanding of deep models [15]. However,
these concepts based methods come with their own drawbacks. [14]
and [10] concentrated on concepts of each certain class, neglecting
the fact that theremight bemany common concepts among different
categories. For example, the “black and white strips” could be a
common concept for zebra and the black and white shirt as shown
in Figure 2a. Hence, [14] and [10] would lead to misunderstanding
or confusing on those concepts across categories and hurt their
importance for classification, especially in fine-grained tasks.

In this paper, we focus on the concept based explanation for a real
application problem of infectious keratitis classification, which is a
fine-grained task in medical field. As shown in Figure 1, three most
common keratitis are bacterial keratitis (BK), fungal keratitis (FK)
and herpes simplex viral stromal keratitis (HSK). We define those
corneal disease entities other than aforementioned three categories
of infectious keratitis as OTHERS. During diagnosis, physicians
identify the subtle clinical manifestations/concepts on the cornea
lesion area as criterions.

To provide the concept based explanation in fine-grained task,
we propose a novel visual concept mining (VCM) algorithm, which
consists of two main components: potential concept generator and
visual concept extractor. The potential concept generator is de-
signed for catching the subtle concepts by automatically searching
and grouping important pixels via saliencymap calculation, and pro-
ducing salient patches which contain accountable manifestations
as find-grained potential concepts. To address the challenges from
common concepts, we propose a visual concept extractor which
learns the concept similarity and diversity among different classes
with Deepcluster [3] techniques, and quantifies their correlation
and unique contribution to each class. Figure 2b(ii) demonstrates
our discovered visual concepts for a case of fungal keratitis (FK).
In this case, there are 4 kinds of concepts indexed by 1, 2, 3, 4. The
concept 1 is a common concept of classes bacterial keratitis and
fungal keratitis, and concept 2 is a common concept of classes
fungal keratitis and herpes simplex viral keratitis. These common
concepts would not be discovered by previous methods. However,
with considering the correlation between concepts, our algorithm
demonstrates that the combination of concepts 1 and 2 is a great
explanation for the class of FK. Moreover, the explanation is exactly
coherent with the physician understanding as we demonstrated in
Figure 2b(ii).

What’s more, we propose a visual concept enhanced framework
to joint our discovered visual concepts with the features extracted
by traditional deep model for infectious keratitis classification. Ex-
perimental results show that our discovered visual concepts can
significantly improve the performance of the base deep model.

Our Contribution. To summarize, our contributions are listed
as follows:

• We investigate the concept based explanation problem on the
real medical application of infectious keratitis classification,
which is a fine-grained task.

• We propose a novel visual concept mining algorithm, con-
sisting of potential concept generator and visual concept
extractor, to automatically generate explainable visual con-
cepts for fine-grained infectious keratitis classification.

• Wepropose a visual concept enhanced framework to strengthen
the performance of traditional deep model via incorporating
the features of discovered visual concepts.

• Extensive experiments demonstrate that our discovered vi-
sual concepts are (i) meaningful and explainable: they are
coherent with the physician understanding and interpreta-
tion; and (ii) important: they can be used to improve the
performance of infectious keratitis classification.

2 RELATEDWORK
Deep learning in Medical Field. Deep learning methods per-

form better as models become wider [22] and deeper [12] [13], and
are widely used in medical image analysis [18]. These CNN-based
AI algorithms can perform anatomical structure segmentation on
CT images [32], classify normal or abnormal findings of chest ra-
diographs [7], perform screening for lung [1] or breast cancer [24],
detect critical findings in head CT scans [5], classify liver lesion [9]
and detect lymph node metastases in pathology images [2] [8]. In
segmentation tasks, Unet [19] achieved a high performance on cell
tracking challenge. Followed by many frameworks such as Unet++
[33], Unet leads a tendency of combining segmentation and classi-
fication [25] and has been applied in retinal vessel [26] and Nuclei
[28] segmentation.

Explainable Artificial Intelligence. Explainable artificial in-
telligence has become a hotspot in machine learning research com-
munity that intends to figure out why and what is accountable
if things go wrong, or how to leverage them further [23]. A well-
known interpretation method is Class Activation Mapping(CAM)
[30], which produces saliency-maps which correspond to differ-
ent categories. Grad-CAM [20] uses the gradients of any target
class feeding into the final convolutional layer to produce a coarse
localization, which is applicable to a wide variety of CNN model-
familiars. As the combination with Guided Back-propagation [21],
Guided Grad-CAM achieves a fine-grained visualization and could
quantify the contribution of each individual pixel. LIME [17] ex-
plains the predictions of any classifier by learning an interpretable
model locally around the prediction. Shapely values(SHAP [29])’s
interpretation contains the most (and least) important segments of
input images.

Recent researches [31] [14] [4] [10] have focused on providing
explanations in the form of high-level human “concepts”. IBD [31]
decomposes the prediction of one image into human-interpretable
conceptual components. TCAV [14] produces estimation of how
important a concept is for the prediction. ProtoPNet [4] is trained to
learn visual prototype vector and calculate similarity for prediction.
ACE [10] proposed a method to automatically extract visual concept
from certain class’s images.

All the above-mentioned methods neglect the fact that there
are many common visual concepts in different categories and their
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(b) Concept-based Explanation in Fine-grained Images

Figure 2: Examples of visual concepts in general classification and our fine-grained infectious keratitis classification. (a) shows
three common visual concepts and compares their frequency in “zebra” and “shirt”. We can explain why a zebra image is
correctly classified or how wrong classification take place in shirt image once we find the concept “black and white strips”,
because human have prior knowledge that nearly all zebra have this visual concept, while few shirts do. (b) illustrates our
concept based explanation for a case of fungal keratitis (FK). Our visual conceptmining algorithm extracts 4 kinds of concepts,
indexed with 1, 2, 3, and 4, to explain the observed medical image as FK category. Sub-figure (i) illustrates the explanations of
physician and the frequency in sub-figure (ii) demonstrates the distribution of each concept in different keratitis categories.
Our discovered visual concepts shows high coherency with interpretation of physician.

interpretation are limited in certain class. In other words, they just
answer the question that how the image is correctly predicted but
cannot answer the question of what is the distinguishment of one
class from others.

Visual Data Mining. Visual data mining, or unsupervised ob-
ject discovery, aims to find image fragments with same semantic
meaning from a large image dataset automatically. As the popularity
of deep learning grows, many self-supervised deep-learning-based
representation learning methods have emerged. RotNet [6] pro-
posed a self-supervised task of rotation recognition to learn image
feature representation from unlabeled image dataset. DeepCluster
[3] is a clustering method that jointly learns a network generating
image representation and the cluster assignments of the resulting
features. It iteratively uses k-means to group image features, and
uses the subsequent assignment to train the network. BowNet [11]
learns perturbation-invariant and context-aware image features
by training a model to predict bags-of-visual-words representation
of original images given perturbed images as input. We propose
a method based on DeepCluster to automatically learn represen-
tations of collected salient patches and to extract visual concepts
from them.

3 VISUAL CONCEPTS IN INFECTIOUS
KERATITIS INTERPRETATION

In this section, we first introduce the background of diagnosing
infectious keratitis and its necessity to be interpretable. Then we
enumerate some difficulties of applying traditional computer vision

methods to detect related clinical manifestations. Finally, we give
an explanation of why our automatically mined visual concepts are
suitable for representing clinical manifestations.

Background. Infectious keratitis are the most common enti-
ties of corneal diseases, in which pathogen grows in the cornea
leading to inflammation and destruction of the corneal tissues. Mi-
croorganisms that causes corneal infection involve bacteria, viruses,
fungi and protozoa. Triage and diagnosis of diseases are carried
out by physicians through observation based upon experience and
knowledge constructed by individuals so ophthalmologists can only
achieve 49.27±11.5% diagnostic accuracy according to [27]. Though
the deep learning method proposed by [27] could achieve 80.00%
diagnostic accuracy, poor interpretation limits its practicality. For
junior physicians, the difficulty of diagnosing keratitis is the lack
of experience to distinguish subtle manifestations. Thus, interpreta-
tion based on manifestations became a necessity for deep learning
to be reliable and practical.

Representative Clinical Manifestations. The uttermost fea-
ture of infectious keratitis is the pathogen growth in the cornea lead-
ing to focal mass cloudiness and the cornea roughness, ineluctably
bringing out unique characteristics of each pathogenic microorgan-
ism for its growth in the tissue [27]. Experienced ophthalmologists
usually describe them using medical terms subjectively, e.g. “infil-
trate”, “lesion”, “edema”, “cloudiness”, “opacity”, “stroma thinning”,
“dense scarring”, etc. However, manifestations are of indistinct edges
and uncertain amounts in keratitis images. After plenty of surveys,
we conclude that traditional methods under supervised condition
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are not suitable for detecting manifestations, such as multitask
learning, object detection or instance segmentation, because the
collecting of manifestations notations is challenging. Unlike regular
tasks, expertise is highly needed when labeling manifestations, and
moreover, lacking of standards making it more difficult to perform.

Superiority of Visual Concepts. In this paper, we focus on
mining visual concepts for detecting manifestations without any
prior knowledge of the manifestations annotations. Ideally, the dis-
covered visual concepts should be coherent with the manifestations
that have 1) Meaningfulness: an example of a concept should be
meaningful/understandable to human; 2) Coherency, Examples of a
concept should be similar to each other while being different from
examples of other concepts; 3) Importance, a concept should be
important features for prediction or diagnosis.

4 METHOD
In this section, we present the visual concept mining (VCM) frame-
work, which consists of two main components, potential concept
generator and visual concept extractor, as shown in Figure 3. Po-
tential concept generator is designed for automatically searching
salient patches that contain clinical manifestations to distinguish
different keratitis. Those salient patches are with preliminary in-
terpretability for classification, but with large number, hence, we
treat them as potential concepts. Then, the visual concept extrac-
tor is designed for mining meaningful, coherent concepts with a
clustering based method to explain the keratitis.

Next, we will introduce the details of each component1.

4.1 Potential Concept Generator
To approximately locate the representative clinical manifestations
of keratitis in the condition that labeling is challenge, we designed
Potential Concept Generator which employs Guided Grad-CAM, a
widely-adopted interpretationmethod calculating pixel-level impor-
tance, combined Unet to estimate saliency map and produce salient
patches containing most of the accountable manifestations. Three
main procedures are necessary to construct a Potential Concept
Generator: 1) Classification and segmentation model pretraining.
2) Saliency map calculating. 3) Candidate anchors screening.

Calculate Saliency Map. For each sample in the training set,
we applied Guided Back-propagation and Grad-CAM to visualize
salient pixels. As shown in Eq.1, Guided Back-propagation save all
the positive gradient that we can quantify contribution of every
pixel.

Ωni, j = relu(
∂yn
∂Ini, j

) (1)

Grad-CAM was applied for calculating salient regions. Through
weighted combination of forward activation maps, we obtained
a coarse heatmap of 7 × 7 size, as shown in Eq.2, where wyn

k =

1
Z
∑
i
∑
j

∂yn
∂Aki j

, R(.) is linear interpolation operation for scaling to

the same size as input.

1Implementation available at https://github.com/createrfang/VisualConceptMining.git

L
yn
GradCAM = R(relu(

∑
k

w
yn
k Ak )) (2)

So far we have got segments from Unet as location constraint,
heatmap from Grad-CAM as activation constraint and saliency
score for each pixel as saliency constraint. As shown if Eq.3, we
define the saliency map formula for keratitis.

Sn = α1Φ(In ) + α2Ωn + α3L
yn
GradCAM (3)

where Φ(.) denotes parameters of an optional Unet, α1,α2,α3 are
hyperparameters. Sn is the saliency map corresponds to sample In .

Candidate anchors screening. We applied the same anchor
generating strategy as FasterRCNN [16], using 3 scales and 3 aspect
ratios, yielding k = 9 anchors at each sliding position. For a saliency
map of a sizeW ×H (typically 224∗224 in our application), there are
W × H × k anchors in total. With so many candidate anchors, we
design a two-stage screening strategy based on saliency distribution
and similarity.

Screening by saliency. For each anchor p in sample n, we could
calculate corresponding average saliency value s̄ = 1

Ap
∑
i, j⊂p Sni, j ,

and saliency variance ŝ = 1
Ap

∑
i, j⊂p (Sni, j − s̄)2, whereAp denotes

total pixel number in p. A candidate patch would be selected if both
of corresponding average saliency s̄ and saliency variance ŝ rank
in top 50%.

Screening by similarity. In order to remove redundancy, we use
Kmeans clustering to select themost representativem salient patches
(m = 10, in our task). Each candidate patch p cropped from orig-
inal image was encoded to 1024-dimensional feature vector with
pretrained Densenet weightW (.). Here, we obtainedm cluster cen-
troidsC ∈ Rm×1024, and the nearest patch to each centroid is chosen.
The objective of Kmeans training isminC ∈Rm×1024

∑
P ∥W (p)−Cp ∥

2,
whereCp denotes the nearest centroid to patch p. As shown in Fig3,
we obtain K distinctive salient patches which are high-resolution
and vital to prediction.

4.2 Visual Concept Extractor
Since we have N training samples andm salient patches for each
sample, a new dataset P with NP =m×N unlabeled salient patches
could be constructed, representing the most typical manifestations
of keratitis. To figure out the correlation of all salient patches and
their medical explanation for clinical diagnosis, we propose to
learn the pattern similarity and diversity of samples in P in an
unsupervised manner. Deepcluster [3], an inspiring self-supervised
representing learning method, is suitable for our task. Given a set
P , DeepCluster iteratively learns the features Θ(P) ∈ RNp×d and
groups them into K clusters. The training process, precisely, learns
a K × d centroid matrix C and the cluster assignments yp of each
salient patch p by solving the following problem:

min
C ∈RK×d ,Θ

∑
P

∥Θ(p) − yp ∥
2 (4)

where Θ(.) denotes parameters of AlexNet. In our implementation
details K = 32, d = 256 after PCA Dimensionality Reduction from
Θ(p) ∈ R4096.
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Figure 3: Overview of the VCM framework. The Potential Concept Generator uses correctly predicted images as input, gen-
erates and selects K salient patches for each image based on the result of Unet, GuidedBP and GradCAM, then crops the
corresponding patches from original high-resolution image. The Visual Concept Extractor uses DeepCluster to group salient
patches acquired from previous step, results in k different visual concepts.

The cluster assignments yp of each salient patch can be viewed
as pseudo labels, which are used to update Θ, after calculating cross
entropy loss and backward gradient. We repeat these procedures
until the loss converges and labels become stable. According to ACE
[10], the patches in final clusters satisfy the three properties: mean-
ingfulness, coherency and importance. So we can claim that each
cluster represents an individual visual concept, and the patches in
this cluster are examples of corresponding visual concept. Because
it is too professional and too subjective to name each visual concept
properly, we used the cluster index k ∈ {1, 2, . . . , 31}in terms of
corresponding visual concept.

4.3 Statistical Analysis on Visual Concepts
So far, we have got K=32 visual concepts which are highly related
to 4 infectious keratitis categories: several of them are general in
all images, some of them are common in certain two categories
and some of them are unique for certain category. To estimate the
correlation of concepts and classes, we construct a 32 × 4 metric
M , whereMi j denotes the number of patches belong to i-th visual
concept and cropped from j-th class’s images. Then the frequency
of i-th visual concept in j-th category is P(k = i |C = j) =

Mi j∑32
k=1 Mk j

,
as shown in Figure 4.

According to the frequency in 4 categories, we can easily deter-
mine which class a visual concept appears most, marked as cmax .

Figure 4: A histogram presents visual concepts’ frequency
in four categories, sorted by specificity score in ascending
order from left to right.

In some ways, if we find a visual concept in an unknown image,
we tend to guess it belongs to class cmax . To imitate this process,
we design a value function to quantify the relationship between
visual concept i and its cmax , shown as Eq.5.

Si =
P(k = i |C = cmax )∑

c j ∈C−cmax P(k = i |C = c j )
(5)

where Si denotes the specificity score. We sort visual concepts by
specificity score in ascending order and present the result in Figure
4.

Interpretation Framework. The clusteringmodel and its weights,
concepts’ centroids with samples and their statistical results men-
tioned above are saved as parts of our framework. When interpret-
ing new samples, We follow the procedures shown below:

(1) Fed test samples into Potential Concept Generator and obtain
several high-resolution patches that model interested in.

(2) Extract patches’ features via saved model and weights, and
find the nearest centroid for each patch.

(3) Visualize prior knowledge of corresponding visual concepts.
We not only provide statistical results, but also present simi-
lar visual concept examples for the convenience of analog
learning.

5 VISUAL CONCEPT ENHANCED
CLASSIFICATION

Figure 4 suggests that some visual concepts are of high specificity
that are worthy to focus on, for example, the concept 8 is almost
unique for the OTHERS class, while several are so confusing that
we want the algorithm to ignore, for example, concepts 21 is a
common concept for all classes. To achieve this goal, we creatively
designed a Visual Concept Enhanced Classification model with
addition of Selective Concept Branch. The overview of architecture
is introduced as Figure 5.

Overall Architecture. It’s an end-to-end model incorporating
discovered visual concepts and pixel-level features of image for clas-
sification. We put input into backbone(Densenet121 in our experi-
ment) and get feature f containing global information, meanwhile
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Figure 5: The overall architecture of Visual Concept Enhanced Classification. The framework incorporates image feature f
produced by DenseNet and high-resolution patches’ feature fsp produced by Potential Concept Generator and Visual Concept
Extractor, guided by a selection strategy that refers to prior statistical results.

we obtain local feature fsp from Selective Concept Branch, repre-
senting information of high-resolution visual concepts’ patches.
After concatenating f and fsp , we apply a two-layer fully con-
nected(FC) network for classification. The trainable part are back-
bone network(Denset121) and FC layers.

Selective Concept Branch. The branch’s workflow is based on
interpretation framework, joint with a selecting procedure. The
choice strategy is determined by statistical results and objectives:
to remove confusing concepts, to pick specify concepts and to
reinforce certain category for example. Finally, wemerge the feature
of selected concepts’ patches with linear addition and obtain fsp .

6 EXPERIMENT
In this section, we evaluate the meaningfulness and coherency of
our discovered visual concepts based on the understanding and
interpretation of physician, also check their importance via visual
concept enhanced approach for infectious keratitis classification.

6.1 Dataset descriptions
Microorganisms causing corneal infection involve bacteria, viruses,
fungi and protozoa, and have different manifestations due to dif-
ferent pathogens. Figure1 presents the representative slit-lamp
microscopic images of bacterial keratitis (BK), fungal keratitis (FK),
herpes simplex viral stromal keratitis (HSK), and the OTHERS rep-
resents those corneal disease entities rather than aforementioned
three categories of the corneal diseases. These images are selected
from a high-quality infectious keratitis dataset proposed by Xu
et al. [27], in which images are taken from patients with corneal
infection at the active stage, including bacterial keratitis, fungal
keratitis and herpes simplex viral stromal keratitis.

The dataset we used involved 3,319 images from 867 patients. The
training set consists of randomly selected 400 images of bacterial
keratitis, 800 images of fungal keratitis, 400 images of HSV stromal
keratitis, and 800 images of other corneal diseases, from 747 patients.
The testing set consists of randomly selected 50 images of bacterial

keratitis, 460 images of fungal keratitis, 100 images of HSV stromal
keratitis, and 309 images of other diagnosis, from 120 patients.

6.2 Baseline
In our paper, we have two main tasks, one is interpretation on
keratitis images, the other is infectious keratitis classification.

In the task of interpretation, we evaluate the performance of
concept based interpretation of our VCM algorithm, comparing
with Grad-CAM [20] for interpretation on pixel or patch level, and
ACE [10] for interpretation on concept level. We also compare these
interpretations with the physician interpretations.

In the task of classification, we applied traditional deep model,
such as DenseNet121 [13], ResNet [12] and VGG16 [22] for baselines.
To comprehensively demonstrate the importance of our discovered
visual concept, we first implement a simple method, named VCSP,
by directly using visual concepts feature for classification, then,
we implement our visual concept enhanced classification (VCEC)
based on the DenseNet121 model by fusing features from both
DenseNet121 and our discovered visual concepts for classification.

6.3 Results on Interpretation
In this section, we evaluate the visual interpretation performances
of our visual concept mining approach for concept based interpreta-
tion. Figure 6 compares the interpretation of baselines (Grad-CAM
[20] and ACE [10]) and our model with the gold-standard physi-
cian’s interpretation on four kinds of keratitis images. From figure
6, we have following observations and analyses:

(1) Grad-CAM only highlight the position of important pixels
for its interpretation, which can be considered emphasize
the salient region for the given class. From the results, the
emphasized salient region overlaps the lesion intuitively, but
it is hard for us/physician to distinguish the subtle difference
between different keratitis.

(2) The discovered concepts by ACE is too coarse to explain
the keratitis images. Although these concepts can cover the
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Figure 6: The comparison of different interpretations for keratitis images fromeach category. OurVCM interpretation contains
salient patches, related visual concepts with extra examples for better comprehension, and corresponding frequency plots in
different classes(BK, FK,HSK andOTHERS). Coherent clinicalmanifestations and visual concepts are shown in the same color.

physician interpretation, for example, the discovered concept
in FK class contains the part of “dense scarring”, and concept
in HSK class includes the part of “coarse scarring”, they are
hardly to provide concept explanation in our fine-grained
keratitis image classification.

(3) Our discovered visual concepts present significant coherency
with the physician’s understanding and interpretation, for
example, the discovered concept 9 in BK class is exactly the
“lesion of infiltrate” in the physician’s interpretation, and the
meaning and position of concept 25 in HSK class is highly
coherent with the physician’s interpretation. Moreover, the
representative concepts are different across classes, bringing
a more meaningful and human-friendly explanation for each
kind of keratitis.

6.4 Results on Classification
In this section, we evaluate the importance of our established visual
concepts by visual concept enhanced framework for infectious
keratitis classification.

Experimental Settings. All reported results are the average of
the last epoch in an 100-epoch training, with a 10-step schedule
decreasing learning rate beginning from 0.1 on a single 10 Gbs
Titan V GPU. In DenseNet121 and ResNet50, images are scaled to
224 × 224 with 32 batch size while the size is 299 × 299 in VGG16.

Evaluation Metrics. In this paper, we focus on the problem of
infectious keratitis classification. Hence, we use the accuracy(Acc =

T P+T N
P+N ), F1 = 2T P

2T P+FN+F P as evaluation metrics, where P and N
denote the numbers of positive and negative samples, and TP , TN ,
FP and FN denote the numbers of true positive, true negative, false
positive and false negative samples in prediction correspondingly.
With considering on the data imbalance among different keratitis
classes as we demonstrated in the data descriptions. We also em-
ployed Macro-F1 (MF1 = 1

n
∑n
i=1 F

i
1) as an important evaluation

metric, where n refers to the number of classes. In our problem,
n = 4.

Experimental Results. We report the results on classification
in Table 1, where we also demonstrate the accuracy of SOS model in
[27]. From the results, we have following observations and analyses:

(1) Among the three deepmodel baselines, DenseNet121, ResNet
and VGG16, the DenseNet121 achieved the best performance.
That’s why we choose DenseNet121 as backbone in our
VCEC algorithm.

(2) By utilizing the sequential relation among different image
patches, the SOS model revives a great accuracy with 80.2%.
Here, we directly use the results in [16], since SOS need
hand-labeled or predefined patches sequence as input.

(3) Our naive model, VCSP, achieved 0.49 on F1 score and 59.30%
on accuracy, which is still better than the average perfor-
mance from human. This demonstrates our discovered visual
concepts are informative for infectious keratitis classifica-
tion.

Oral Session E2: Media Interpretation MM '20, October 12–16, 2020, Seattle, WA, USA

706



Table 1: Results of infectious keratitis classification.

Algorithm Acc
F1 Score

MF1BK FK HSK Others
DenseNet 78.56 0.431 0.872 0.651 0.790 0.686
VGG 65.18 0.254 0.764 0.548 0.745 0.578
ResNet 69.10 0.275 0.810 0.566 0.750 0.601
SOS [27] 80.20 - - - - -
Human [27] 49.3±11.5 - - - - -
VCSP 59.30 0.257 0.743 0.434 0.529 0.490
VCEC 80.52 0.418 0.886 0.651 0.837 0.698
VCEC-P1 82.26 0.454 0.890 0.670 0.856 0.717
VCEC-P4 83.35 0.487 0.891 0.682 0.872 0.733
VCEC-P7 80.73 0.452 0.868 0.655 0.865 0.710
VCEC-P10 81.50 0.470 0.881 0.664 0.834 0.721
VCEC-P12 84.78 0.559 0.893 0.705 0.885 0.760
VCEC-P15 81.61 0.503 0.890 0.682 0.872 0.723
VCEC-D1 82.37 0.492 0.894 0.686 0.842 0.728
VCEC-D6 82.92 0.488 0.883 0.701 0.872 0.736
VCEC-D11 80.84 0.466 0.887 0.656 0.828 0.709

(4) By roughly incorporating all discovered visual concepts in
our VCEC framework, our method VCEC achieved the best
performance comparing with all the baselines. But the im-
provement is puny, since there are some common or confus-
ing visual concepts incorporated.

To deeply demonstrate the importance of our discovered visual
concepts, we propose following two strategies to select (or delete)
the most informative (or confusing) visual concepts based on our
statistical analysis in section 4.3:

• Pick-strategy: we pick the top-k specific visual concepts to
enhance the base model for classification, our VCEC frame-
work with this strategy mark as VCEC-Pk .

• Drop-strategy: we drop the top-k confusing visual concepts
to enhance the basemodel for classification, our VCEC frame-
work with this strategy mark as VCEC-Dk .

From Table 1, we observed (i) by picking the first specific visual
concept (concept 8 as shown in Figure 4), our model VCEC-P1 can
significantly improve accuracy and MF1 from our rough model
VCEC; (ii) by dropping the most confusing visual concept (concept
21 as shown in Figure 4), our model VCEC-D1 can also improve the
performance of classification; (iii) By picking the top-12 specific vi-
sual concepts, our model VCEC-P12 achieved the best performance
with 84.78% on the accuracy and 0.76 on theMF1.

Overall, the visual concepts discovered by our VCM model and
picking/dropping strategies are important, and can indeed enhance
the deep model on the problem of infectious keratitis classification.

7 DISCUSSION
7.1 Quality of Visual Concepts
In this section, we discuss how to improve quality of automati-
cally learned visual concepts. In our method: (1) Unet segmentation
limits patches in cornea and lesion area and reinforces their mean-
ingfulness. (2) Guided Grad-CAM adds probability in active area
while generating salient patches and guarantees their importance.

(3) Deepclustering aggregates salient patches which contain same
patterns as visual concepts’ examples, guaranteeing coherency.

Consequently, in our framework, quality of visual concepts is
determined by segmentation task, saliency evaluating task and clus-
tering task correspondingly. There are various developing methods
to solving these three tasks nowadays, and they could be applied
to take place the methods we present individually and freely. We
admit that there is room for further investigation, which remain
open for future work.

7.2 Contributions of Visual Concepts
In this section, we analyze how visual concepts play a role in in-
terpretation and classification. For interpretation, visual concepts
provide a semantic way to express the information in each sample,
and the distribution of visual concepts also helps a lot.

We have done quantity of experiments that outperforms base-
lines. A reasonable guess about our performance is the increasing
parameters and extra information from high-resolution patch. The
comparison of experiments VCEC and DenseNet denied it. We uti-
lized all salient patches and retrain the whole network and got
1.96% promotion while the best performance got 6.22% with 0.76
F1 score achieved by picking-12 strategy. Experiment results in
Table1 demonstrate our visual concept enhanced model achieves
significant improvement on the problem of infectious keratitis clas-
sification.

8 CONCLUSION
In this work, we developed the VCM framework for interpreting
CNN for fine-grained tasks. The framework includes a Potential
Concept Generator which produces salient patches containing most
accountable features, and a Visual Concept Extractor which clusters
salient patches into several groups as visual concepts. We also
developed the VCEC framework which utilizes the interpretation
result to improve the performance of the model.

In our experiment, we applied our framework on infectious ker-
atitis classification task. The result indicated that, although without
detailed clinical manifestations annotations, the discovered visual
concepts are coherent with the physicians’ understanding. The
classification result using only the visual concept is on par with the
average performance of ophthalmologists. By enhancing the base
model using the discovered visual concept, our method significantly
improved the performance of the base model, and beat the previous
state-of-the-art method on this task.
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