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ABSTRACT
Most of previous machine learning algorithms are proposed based
on the i.i.d. hypothesis. However, this ideal assumption is often vi-
olated in real applications, where selection bias may arise between
training and testing process. Moreover, in many scenarios, the test-
ing data is not even available during the training process, which
makes the traditional methods like transfer learning infeasible due
to their need on prior of test distribution. Therefore, how to address
the agnostic selection bias for robustmodel learning is of paramount
importance for both academic research and real applications. In this
paper, under the assumption that causal relationships among vari-
ables are robust across domains, we incorporate causal technique
into predictive modeling and propose a novel Causally Regularized
Logistic Regression (CRLR) algorithm by jointly optimize global
confounder balancing and weighted logistic regression. Global con-
founder balancing helps to identify causal features, whose causal
effect on outcome are stable across domains, then performing logis-
tic regression on those causal features constructs a robust predictive
model against the agnostic bias. To validate the effectiveness of
our CRLR algorithm, we conduct comprehensive experiments on
both synthetic and real world datasets. Experimental results clearly
demonstrate that our CRLR algorithm outperforms the state-of-the-
art methods, and the interpretability of our method can be fully
depicted by the feature visualization.
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Figure 1: Illustration of the difference between correlation
based and causality based methods in addressing non-i.i.d.
cases.
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1 INTRODUCTION
One common hypothesis in traditional machine learning is that the
testing data is drawn independently from the same distribution as
the training data (i.e. i.i.d hypothesis). Then the model learned from
training data can be directly applied to make predictions with the
smallest empirical error on testing data. The danger and risk caused
by the violation of i.i.d. hypothesis are often being neglected in tra-
ditional machine learning methods, although those methods have
made remarkable success in many difficult tasks, such as image
classification, speech recognition, object localization etc. However,
in many real applications, we can not fully control the data gather-
ing process, then the selection bias may cause the violation of i.i.d.
hypothesis. Furthermore, in most cases the testing data is unseen
during the training process, and thus the selection bias on testing
data becomes agnostic. Therefore, without considering the agnostic
data selection bias, the existing predictive models are lack of ro-
bustness on different biased data, and their prediction results could
be unreliable. As depicted in Figure 1, the classifier for recognizing
dogs is trained by images mostly with dogs on the grass, while
tested by an image with a dog in grass context (i.e. i.i.d case) and
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another image with a dog in snow context (i.e. non i.i.d. case). The
correlation-based method can succeed in the i.i.d. example, but fail
in the non-i.i.d. example. The failure is mainly because the grass
features are assigned with high weights in the classifier due to the
fact that they are highly correlated with the label in the training
set, but they do not appear in the testing image.

Recently, there are several strands of literature aiming at solv-
ing the non-i.i.d. problem induced by selection bias. A variety of
domain adaptation methods were proposed based on feature space
transformation [8, 19, 21, 27], invariant feature learning [10, 33]
and distribution matching [20, 34]. However, these methods require
prior knowledge on testing data which may be unavailable in some
real applications. Domain generalization methods were proposed
to overcome this dilemma, mainly based on the idea of learning a
domain-agnostic model or invariant representation using training
data only [11, 17, 22]. These methods assume the already-known
selection bias(depicted by different domains) in training data and
cannot generalize well to agnostic selection bias. In this work, we
investigate the learning on data with agnostic data selection bias
without knowing testing data or domain information of training
data. The targeting problem is more general than all prior work
and more practical in real applications.

A reasonable way to address the agnostic selection bias is to
learn a predictive model with causal variables, whose effect on
outcome variable are insensitive to selection bias. In finding these
causal variables, we are much enlightened by the literature of causal
inference, a powerful statistical tool for discovering causal variables
and structures. It is well recognized that causal variables are stable
across different domains or data selection bias, due to the rigorous
scrutiny on confounding effects [26] in identifying causal variables.
The stability of causal variables is mainly reflected by the fact that
the conditional distribution of outcome variable given those causal
variables remains invariant across different domains. In contrast,
the correlated variables do not hold this property. A gold standard
for identifying causal effect of a variable is to conduct randomized
experiments like A/B testing. But fully randomized experiments are
usually expensive and even infeasible in some scenarios. Neverthe-
less, as long as the unconfoundedness assumption is satisfied [26],
i.e., all confounding factors are included, and the distribution of
treatment is independent of potential outcome when given the ob-
served variables, we could precisely estimate causal effect directly
from observational data. Recently, causal inference based on obser-
vational data has become popular, and the representative methods
include propensity score matching or reweighting [2, 3, 15], markov
blankets [13, 25] and confounder balancing [1, 12, 14] etc. However,
most of these methods aim to estimate the causal effect of a variable
on the output and few of them takes the advantage of causality,
especially its stability across different environments in predictive
modeling.

In pursuit of marrying causal analysis with non-i.i.d. learning,
we still face two challenges. First, existing causal analysis meth-
ods are proposed in well-designed settings where typically only
a small number of treatment variables are considered. While in
high-dimensional settings of machine learning problems, we have
little prior knowledge on causal relationships, and thus have to
regard all variables as treatment variables. This makes the existing

causal models infeasible due to their high computational complex-
ity. Moreover, although we can first select causal variables and then
learn a model based on these variables, this approach is statisti-
cally sensitive to the threshold for causal variable selection, and
the step-by-step method is difficult to optimize in practice. Hence,
it is highly non-trivial to design a scalable causal learning method
for prediction problems with data selection bias.

In this paper, we mainly consider the classification problem and
propose a novel Causally Regularized Logistic Regression (CRLR)
model for classification on data with agnostic selection bias. The
model consists of a weighted logistic loss term and a subtly designed
causal regularizer. Specifically, the causal regularizer is designed
to directly balance confounder distributions for each treatment
feature through sample reweighting. In order to reduce model com-
plexity, we propose a global sample reweighting method which
learns a common sample reweighting matrix to maximally balance
confounders for all treatment features. In this way, the weighted
logistic loss and causal regularizer are jointly optimized, leading to
the regression coefficients with both predictive power and causal
implication. These merits make the resulted model be able to per-
form accurate and stable predictions without serious influence from
agnostic selection bias.

The technical contributions of this paper are three-fold:
• We investigate a new problem of learning on data with ag-
nostic selection bias. The problem setting is more general
than prior work such as domain adaptation and domain
generalization, and is more practical for real applications.
• We bring causal inference into predictive modeling and pro-
pose a novel Causally Regularized Logistic Regression model
to address the above problem, where the causal regularizer
and prediction loss are jointly optimized in an effective way.
• We conduct extensive experiments in both synthetic and real
data, and the experimental results demonstrate the superi-
ority of our method in learning on data with agnostic bias.
The interpretability of our method is also a notable merit.

The remaining sections are organized as follows. Section 2 re-
views the related work. Section 3 describes the problem formulation
and our CRLR algorithm. Section 4 gives the experimental results.
Finally, Section 5 concludes the paper.

2 RELATEDWORK
In this section, we briefly review and discuss the previous related
works which can be categorized into domain adaptation, domain
generalization and causal inference.

A variety of domain adaptation methods were proposed to ad-
dress the non-i.i.d. problem. One intuition of domain adaptation is
to shift the source domain distribution to align the target domain
distribution and various techniques are proposed such as rejection
sampling [34] and bias-aware probabilistic approach [18]. Another
intuition is to learn a transformation in feature space or directly
learn a domain invariant feature representation [8, 10, 19–21, 27, 33],
leveraging the powerful representation learning techniques such as
deep neural networks. A closely related task to domain adaptation
is domain generalization, while testing data is unavailable during
the training process. In this setting, domain-agnostic classifiers
[11, 17, 22] are learned on multi-domain training data and applied
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to make prediction on unseen domains. All the above methods re-
quire either prior knowledge on the testing data or explicit domain
separation of training data, which is impractical in many real appli-
cations. In this work, we investigate a more general and challenging
problem of learning on data with agnostic selection bias, where the
bias in both training and testing data is unknown. Our targeting
problem is distinct from prior works and more practical in real
scenarios.

Causal inference is a powerful statistical modeling tool for ex-
planatory analysis. The major question in estimating causal effect
is to balance the distributions of confounders across different treat-
ment levels. Rosenbaum and Rubin [26] proposed to achieve the
balance by propensity score matching or reweighting. Methods
based on propensity scores have been widely used in various fields,
including economics [28], epidemiology [9], health care [7], social
science [16] and advertising [29]. But these methods can only han-
dle one or a few treatment variables and cannot be directly applied
in multimedia tasks in which typically a huge number of features
are viewed as potential treatment variables. There is a growing
literature proposed to directly optimize sample weights to balance
confounder distributions. Hainmueller [12] introduced entropy bal-
ancing to directly adjust sample weights by the specified sample
moments. Athey et al. [1] proposed approximate residual balancing
for sample weights learning via a lasso residual regression adjust-
ment. Kuang et al. [14] learned a different weights of confounders
and balanced confounder distributions for treatment effect estima-
tion. These methods provide an effective way to estimate causal
effects without prior on knowledge structure, but they reweight
samples targeting a single treatment variable and cannot be directly
applied into predictive modeling. We will adapt the reweighting
balance technique to large-scale causal effect exploration settings
we target.

3 CAUSALLY REGULARIZED LOGISTIC
REGRESSION

In this section, we provide the problem formulation, preliminaries
on some key concepts of causal inference, confounder balancing,
and a detailed introduction to our proposed Causally Regularized
Logistic Regression (CRLR) method.

3.1 Problem Formulation
Here we formulate our target problem, classification on data with
agnostic selection bias, as follow:

Problem 1 (Classification on Data with Agnostic Selec-
tion Bias). Given the training data Dtrain = (Xtrain ,Ytrain ),
whereXtrain ∈ Rn×p represents the features andYtrain ∈ Rn×1 rep-
resents the label, the task is to learn a classifier fθ (·) with parameter
θ to precisely predict the label of testing data Dtest = (Xtest ,Ytest ),
where Ψ(Dtest ) , Ψ(Dtrain ). And in the agnostic selection bias set-
ting, we do not know how the distribution shifts from training data to
unseen testing data.

To solve this challenging problem, we introduce the causal in-
ference, a powerful statistical modeling tool. The key problem in
causal inference is to estimate the causal effect of each variable on
outcome or in other words, to identify the causal variable, which

can be defined directly by the father nodes of outcome in Pearl’s
causal DAG [24]. When we set each variable as treatment variable
to estimate its causal effect on outcome, the other variables are
viewed as confounding variables. As mentioned before, the stability
of causal variables across different selection bias makes them more
adequate than correlated variables in our targeting problem. To
adapt causal inference into classification problem, we regard each
feature X j as a treated variable (i.e. treatment), all the remaining
features X−j = X \ X j as confounding variables (i.e. confounders),
and the label Y as the outcome variable. As we have no prior knowl-
edge on the causal structure, it is a reasonable way to regard each
variable as treatment and all the other variables as confounders
[12]. Without losing any generality, we assume all the features
and labels are binary for the ease of discussion and understand-
ing(categorical and continuous features can be converted to binary
ones through binning and one-hot encoding). Given a feature as
treatment, if the feature occurs (or does not occur) in a sample, the
sample becomes a treated (or control) sample. To safely estimate
the causal contribution of a given feature X j on label Y , one have
to remove the confounding bias induced by the different distribu-
tions of confounder X−j between the treated and control groups.
After removing the confounding bias, the difference of label Y be-
tween treated and control groups can be regarded as the causal
contribution of feature X j on label Y .

As the causal contribution β ∈ Rp×1 is robust and stable across
different domains, we can seamlessly convert the problem of classi-
fication on data with agnostic selection bias to the following causal
classification problem.

Problem 2 (Causal Classification Problem). Given the train-
ing data D = (X ,Y ), where X ∈ Rn×p represents the features and
Y ∈ Rn×1 represents label, the task is to jointly identify the causal
contribution β ∈ Rp×1 for all features and learn a classifier fβ (·)
based on β for classification.

The key challenge in causal classification problem is how to
jointly optimize the causal contribution identification and classifi-
cation. In our paper, we propose a synergistic learning algorithm
composed of causal regularizer and logistic regression terms.

3.2 Confounder Balancing
Here we briefly introduce some necessary background on con-
founder balancing which enlightens us in designing the causal regu-
larizer. In observational studies, confounder distributions need to be
balanced to correct bias from non-random treatment assignments.
As moments can uniquely determine a distribution, confounder
balancing approaches directly balance confounder moments by ad-
justing weights of samples[1, 12, 14]. The sample weightsW are
learned by:

W = argmin
W
∥X t −

∑
j :Tj=0

Wj ·X j ∥22 . (1)

Given a treatment feature T , X t and
∑
j :Tj=0Wj ·X j represent the

mean value of confounders on samples with and without treatment,
respectively. After confounder balancing, the correlation between
a treatment variable and the output variable represents the causal
effect. Here only first-order moment (adequate for binary variable)
is considered in Eq. 1 and higher order moments can be easily
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incorporated by including more features. Note that confounder
balancing techniques are designed to estimate the causal effect of
a single treatment feature. In our case, we need to estimate the
causal effects of all features. This implies that we need to learn p×n
sample weights, which is apparently infeasible in high-dimensional
scenarios. Thus we propose a global balancing method as the causal
regularizer in section 3.3.

3.3 Causally Regularized Logistic Regression
Inspired by the confounder balancing method, we propose a causal
regularizer to successively set each feature as treatment variables,
and find such an optimal set of sample weights that the distribution
of treated and control group can be balanced for ANY treatment
variable.

∑p
j=1

X T
−j ·(W ⊙Ij )
W T ·Ij

−
X T
−j ·(W ⊙(1−Ij ))
W T ·(1−Ij )

2
2, (2)

whereW is the sample weights.
X T
−j ·(W ⊙Ij )
W T ·Ij

−
X T
−j ·(W ⊙(1−Ij ))
W T ·(1−Ij )

2
2

represents the loss of confounder balancing when setting feature
j as treatment variable, and X−j is all the remaining features (i.e.
confounders), which is from X by replacing its jth column as 0. Ij
means the jth column of I , and Ii j refers to the treatment status of
unit i when setting feature j as treatment variable.

Then we combine the causal regularizer and logistic regression
model and propose Causally Regularized Logistical Regression
(CRLR) algorithm to jointly optimize sample weightsW and re-
gression coefficients β :

min
∑n
i=1Wi · log(1 + exp((1 − 2Yi ) · (xiβ))), (3)

s .t .
∑p
j=1

X T
−j ·(W ⊙Ij )
W T ·Ij

−
X T
−j ·(W ⊙(1−Ij ))
W T ·(1−Ij )

2
2 ≤ γ1,

W ⪰ 0, ∥W ∥22 ≤ γ2, ∥β ∥
2
2 ≤ γ3, ∥β ∥1 ≤ γ4,

(∑n
k=1Wk − 1)2 ≤ γ5,

where
∑n
i=1Wi ·log(1+exp((1−2Yi )·(xiβ))) represents the weighted

logistic loss. Elastic net constraints ∥β ∥22 ≤ γ3 and ∥β ∥1 ≤ γ4
help avoid overfitting. The termW ⪰ 0 constrains each of sample
weights to be non-negative. With norm ∥W ∥22 ≤ γ2, we can reduce
the variance of the sample weights to achieve stability. The formula
(∑n

k=1Wk − 1)2 ≤ γ5 avoids all the sample weights to be 0.
In the traditional logistic regression model, the regression coeffi-

cients capture the correlation between features and labels. But the
highly correlated features do not imply causation due to confound-
ing bias. In our model, the sample weights learned from the causal
regularizer are capable of correcting the bias and globally balancing
the distributions of treated and control group for any treatment
features. Thus the estimated coefficients β can imply causation and
bear predictive power on labels simultaneously.

3.4 Optimization
The goal for optimizing the aforementioned model in Eq. 3 is to
minimize J(W , β) with constraints on parametersW and β .

J(W , β) = ∑n
i=1Wi · log(1 + exp((1 − 2Yi ) · (xiβ))) (4)

+λ1
∑p
j=1

X T
−j ·(W ⊙Ij )
W T ·Ij

−
X T
−j ·(W ⊙(1−Ij ))
W T ·(1−Ij )

2
2

+λ2∥W ∥22 + λ3∥β ∥
2
2 + λ4∥β ∥1

+λ5(
∑n
k=1Wk − 1)2

s .t . W ⪰ 0.

It is difficult to get an analytical solution for the final optimization
problem in Eq. 4. We solve it with iterative optimization algorithm.
Firstly, we initialize sample weightW and causal contribution β .
Then in each iteration, we first update β by fixingW , and then
updateW by fixing β . These steps are described below:
Update β :When fixingW , the problem (4) is equivalent to optimize
following objective function:

J(β) = ∑n
i=1Wi · log(1 + exp((1 − 2Yi ) · (xiβ))) (5)

+λ3∥β ∥22 + λ4∥β ∥1
which is a standard ℓ1 and ℓ2 norm regularized least squares prob-
lem and can be solved with any Elastic net solver. Here, we use
the proximal gradient algorithm [23] with proximal operator to
optimize the objective function in (5).
UpdateW : By fixing β , we can obtainW by optimizing (4). It is
equivalent to optimize following objective function:

J(W ) = ∑n
i=1Wi · log(1 + exp((1 − 2Yi ) · (xiβ))) (6)

+λ1
∑p
j=1

X T
−j ·(W ⊙Ij )
W T ·Ij

−
X T
−j ·(W ⊙(1−Ij ))
W T ·(1−Ij )

2
2

+λ2∥W ∥22 + λ5(
∑n
k=1Wk − 1)2

s .t . W ⪰ 0.

For ensuring non-negativity ofW , we letW = ω ⊙ω, where ω ∈
Rn×1 and ⊙ refers to the Hadamard product. Then the problem (6)
can be reformulated as:

J(ω) = ∑n
i=1(ωi ⊙ ωi ) · log(1 + exp((1 − 2Yi ) · (xiβ))) (7)

+ λ1
∑p
j=1

X T
−j ·(ω⊙ω⊙Ij )
(ω⊙ω)T ·Ij

−
X T
−j ·(ω⊙ω⊙(1−Ij ))
(ω⊙ω)T ·(1−Ij )

2
2

+ λ2∥ω ⊙ ω∥22 + λ5(
∑n
k=1 ωk ⊙ ωk − 1)

2

The partial gradient of term J(ω) with respect to ω is:
∂J(ω)
∂ω

= 2ω ⊙ log(1 + exp((1 − 2Y ) · (Xβ)))

+
∑p
j=1 4 ·

( ∂Jb
∂ω ⊙ (ω · 1

T )
)T · Jb

+ 4ω ⊙ ω ⊙ ω + 4 · λ5(
∑n
k=1 ωk ⊙ ωk − 1)

2,

where 1T = (1, 1, · · · , 1)p , and

Jb =
XT
−j · (ω ⊙ ω ⊙ Ij )
(ω ⊙ ω)T · Ij

−
XT
−j · (ω ⊙ ω ⊙ (1 − Ij ))
(ω ⊙ ω)T · (1 − Ij )

,

∂Jb
∂ω

=
X T
−j ⊙(Ij ·1T )·((ω⊙ω)T ·Ij )−X T

−j ·(ω⊙ω⊙Ij )·I Tj(
(ω⊙ω)T ·Ij

)2
− X T

−j ⊙((1−Ij )·1T )·((ω⊙ω)T ·(1−Ij ))−X T
−j ·(ω⊙ω⊙(1−Ij ))·(1−Ij )T(

(ω⊙ω)T ·(1−Ij )
)2
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Algorithm 1 Causal Regularized Logistic Regression (CRLR)
Input: Tradeoff parameters λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0, λ5 > 0,

Variables Matrix X and Outcome Y .
Output: Causal Contribution β and Sample WeightW
1: Calculate Indicator Matrix I from Variables Matrix X .
2: Initialize Causal Contribution β (0), Sample WeightW (0)

3: Calculate the current value of J(W , β)(0) = J(W (0), β (0))with
Equation (4)

4: Initialize the iteration variable t ← 0
5: repeat
6: t ← t + 1
7: Update β (t ) by gradient descent and fixW (t−1)

8: UpdateW (t ) by gradient descent and fix β (t−1)

9: Calculate J(W , β)(t ) = J(W (t ), β (t ))
10: until J(W , β)(t ) converges or maximum iteration is reached
11: return β ,W .

Then we determine the step size a with line search, update ω
using gradient descent, and updateW (t ) at t th iteration with:

W (t ) = ω(t ) ⊙ ω(t ).

We update β andW iteratively until the objective function (4)
converges. The whole algorithm is summarized in Algorithm 1.

3.5 Complexity Analysis
During the procedure of optimization, the main cost is to calcu-
late the loss J(W , β), update causal feature weights β and sample
weightsW . We analyze the time complexity of each of them re-
spectively. For the calculation of the loss, its complexity is O(np2),
where n is the sample size and p is the dimension of variables. For
updating β , this is standard Elastic net problem and its complexity
is O(np). For updatingW , the complexity is dominated by the step
of calculating the partial gradients of function J(ω) with respect
to variable ω. The complexity of ∂J(ω)

∂ω is O(np2).
In total, the complexity of each iteration in Algorithm 1 isO(np2).

4 EXPERIMENTS
4.1 Dataset
In this paper, we use both synthetic and real world datasets to
validate the effectiveness of our proposed CRLR algorithm.

SyntheticDataset:We generate predictive variablesX = {C,V} ∼
N (0, 1) with independent Gaussian distribution, where the predic-
tive variables X are divided into two parts: causal variables C and
noisy variables V. To make X binary, we set X = 1 if X ≥ 0, other-
wise X = 0. Then, we generate the outcome variable Y with respect
to causal variables as Y = д(C) + N (0, ϵ). To make Y binary, we set
Y = 1 if Y ≥ 0, otherwise Y = 0.

To test the effectiveness of our algorithm on data with agnostic
selection bias, we generate different biased data by varying the dis-
tribution of P(Y |V ). Specifically, we vary P(Y |V ) via biased sample
selection with a bias rate r ∈ (0, 1). For each sample, we select it
with probability r if its noisy features V equal to outcome variable
Y, otherwise we select it with probability (1 − r ). Note that, r > 0.5

corresponds to positive correlation between Y and V, r < 0.5 cor-
responds to negative correlation, and r = 0.5 means V and Y are
independent. By varying the bias rate r , we can generate different
selection bias.

YFCC100M [30] is a large scale dataset which provides 100
million images and each image contains multiple tags. In order to
simulate various non-i.i.d. situations in real world, we construct
a subset of original YFCC100M, which includes 10 categories, and
the images in a category are divided into 5 contexts. For example,
in the dog category, the 5 contexts are grass, beach, car, sea, and
snow. For ease of visualization and interpretation, we use SURF [4]
and Bag-of-Words [6] as features to represent images.

WeChat Ads is a real online advertising dataset collected from
Tencecnt WeChat App1 during September 2015. For each adver-
tisement, there are two types of feedbacks: “Like” and “Dislike”.
The dataset contains user feedbacks with 14,891 Likes and 93,108
Dislikes. For each user, we have 56 features characterizing his/her
profile including (1) demographic attributes, such as age, gender,
(2) number of friends, (3) device (iOS or Android), and (4) the user
settings on WeChat App. It is easy to simulate multiple subsets
with different selection bias with respect to one or more profile
attributes.

Office-Caltech dataset The Office-Caltech dataset is a collec-
tion of images from four distinct domains, Amazon, DSLR, Webcam
and Caltech, which on average has almost a thousand labeled im-
ages. The Office-Caltech dataset has been commonly used in the
area of domain adaptation, due to the biases created from different
data collecting process [32].

4.2 Baselines
Due to the absence of directly related work targeting on the same
problem, we implement several classic correlation-based algorithms
and a two-step causal-based algorithm to compare with CRLR. We
implement classic Logistic Regression (LR) to be the most direct
baseline as our model is based on LR. To avoid overfitting and
achieve more interpretable model, we also impose L1 regularizer
on Logistic Regression (LR+L1) as Lasso [31] did. We also compare
CRLR with Support Vector Machine (SVM) with linear kernel and
Multi-layer Perceptron (MLP)with 3 hidden layers. Furthermore, we
implement a straight-forward two step solution (Two-Step) which
first performs causal feature selection via confounder balancing [1]
and then apply Logistic Regression.

We tuned the parameters in our algorithm and baselines via
cross validation by gird searching with validation set. Note that in
the experiments on image classification, we omit the comparison
with CNN-based image classifiers, as it is infeasible to train a CNN
model from scratch with only thousands of images in our dataset.
Meanwhile, the non-i.i.d. problem setting prohibits us from using
pre-trained deep models, e.g. AlexNet, because these models are
trainedwithmillions of images covering almost all possible contexts.
In our experiments, we aim to evaluate the methods with small or
moderate scale training data where non-i.i.d. problems commonly
happen.

1http://www.wechat.com/en/
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(a) Trained on bias rate r = 0.65
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(b) Trained on bias rate r = 0.75
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(c) Trained on bias rate r = 0.85

Figure 2: Average RMSE and standard Error of outcome prediction over training sample size on various training setting by
varying bias rate r on training set.

bird bridge car cat church
Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

LR 0.629 0.414 0.644 0.450 0.709 0.588 0.617 0.456 0.760 0.637
LR+L1 0.582 0.283 0.630 0.413 0.692 0.559 0.609 0.424 0.699 0.571
SVM 0.612 0.375 0.638 0.446 0.681 0.548 0.615 0.451 0.764 0.660

Two-Step 0.584 0.301 0.639 0.405 0.694 0.539 0.605 0.434 0.767 0.512
MLP 0.568 0.379 0.617 0.337 0.708 0.583 0.586 0.523 0.667 0.634
CRLR 0.657 0.564 0.617 0.472 0.729 0.678 0.669 0.597 0.779 0.633

dog flower horse train tree
Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

LR 0.565 0.370 0.734 0.635 0.580 0.362 0.592 0.398 0.732 0.618
LR+L1 0.576 0.307 0.718 0.613 0.580 0.321 0.589 0.384 0.697 0.569
SVM 0.586 0.360 0.720 0.629 0.612 0.404 0.624 0.448 0.681 0.550

Two-Step 0.574 0.389 0.724 0.602 0.606 0.238 0.621 0.321 0.693 0.498
MLP 0.579 0.360 0.726 0.611 0.606 0.388 0.617 0.432 0.710 0.573
CRLR 0.727 0.574 0.762 0.681 0.649 0.435 0.647 0.479 0.738 0.620

Table 1: Results of classifiers under different contextual bias.

4.3 Experiments on Synthetic Data
We test the algorithm over different bias rate (from 0.1 to 0.9) on
testing set and calculate the average RMSE and standard error. We
plot the result in Figure 2. From the result, we can see clearly that
the performance of Logistic Regression present drastic fluctuation
(larger standard error) over different bias rate on testing set across
different training settings, while our proposed method achieve a rel-
ative more stable and accurate prediction result. It is because CRLR
takes advantage of stability of causal relationships and exploits
causal contribution instead of correlation for prediction.

4.4 Experiments on YFCC100M Dataset
In this experiment, we simulate the non-i.i.d. situation by splitting
different contexts into training, validation and testing set. For each
category, we use context 1,2,3 for training, context 4 for validation
and context 5 for testing. Since each category has different contexts,
selection bias can vary dramatically among different categories.

Moreover, we perform a non-uniform sampling among different
contexts in the training set and make the context 1/2/3 occupies
0.66/0.17/0.17 percentage respectively. This setting is consistent
with the natural phenomena that visual concepts follow a power-
law distribution [5], indicating that only a few visual concepts are

common and the rest majority are rare. We transfer this into visual
contexts with a similar notion.

We report the performances in Accuracy and F1 in Table 1. From
the results, we have following observations. (1) Our CRLR model
achieves the best performance in almost all categories (9/10). Since
the major difference between CRLR and a standard Logistic Re-
gression model is the causal regularizer, we can safely attribute
the significant improvement to the effective confounder balancing
term and its seamless joint with logistic regression model. (2) The
performance of the two-step approach is much worse than CRLR,
which clearly demonstrates the importance of jointly optimizing
causal feature selection and classification. (3) Not surprisingly, the
correlation-based classification methods do not work well in this
setting, mainly because they erroneously put correlational but non-
causal features in important positions, leading to their sensitivity
to data selection bias.

An interesting question is to validate whether CRLR can perform
much better in categories where bias is more serious.

Here we quantify the bias level of a category with the EMD
distance between the average feature vector of training images and
the average feature vector of testing images. We also quantify the
superiority of CRLR by its relative F1 improvement over the best
baseline. Then we show the results in Figure 4. We can see that
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Figure 3: Top 5 features selected by CRLR and Logistic Regression, the red boxes indicate the features that CRLR selects and
the green boxes indicate the features that Logistic Regression selects. Note that each feature represents a visual word andmay
correspond to multiple bounding boxes, so the number of red and green boxes may not be equal.
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Figure 4: The relationship between our CRLR algorithm per-
formance and context bias on each category. The more con-
text bias in data, the more relative F1 improvement of our
CRLR algorithm.

relative F1 improvement and the category bias level are correlated to
some degree. The extreme cases are more obvious. For example, dog
category is most biased where our CRLR’s relative improvement in
F1 can reach about 50%. In contrast, the bias in the church category
is not obvious, which can account for CRLR’s ordinary performance
in church category in Table 1.

A notable merit of introducing causality into predictive tasks is
to make the predictive models more explainable. To demonstrate
the interpretability of our method, we visualize the top-5 features in

each category selected by CRLR and LR respectively. Due to space
limitation, we only show some examples in 4 categories in Figure 3.

We can see that most of the features selected by CRLR are po-
sitioned on the major object. In contrast, many of the features
selected by LR are context features. From the explainable angle of
view, CRLR can provide sufficient explanations on why it classifies
an image into the dog category because it detects the causal features
like dog nose and fur. We still find that our method would exploit
correlation features in some cases, as depicted in Figure 3.(m) and
3.(o). It might because the bias level in the train category is fairly
low, which weakens the effect of the causal regularizer.

4.5 Experiments on Office-Caltech Dataset
In this experiment, we use Office-Caltech dataset to simulate an
implicit distribution shift induced by dataset bias [32]. We use
one domain for training and another for testing, enumerate every
combination and report average accuracy.

Results. From Table 2, we can see that our CRLR algorithm
performs the best at most of settings, showing the robustness of
our algorithm even when there is no explicit distribution or domain
shift. Another interesting observation is that the advantage of our
algorithm is more obvious when we have less training samples
in the source domain. For example, the Amazon dataset is much
larger than DSLR dataset, and the advantage of our algorithm over
the best baseline in ’d->a’ scenario is more obvious than that in
’a->d’ scenario. This coincides with our intuition that selection
bias and non-i.i.d. problems often happens when we do not have
sufficient training samples and our algorithm is able to perform
robust prediction in these scenarios.
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LR LR+L1 SVM Two-Step MLP CRLR
a− > w 0.845 0.886 0.858 0.844 0.885 0.897
a− > d 0.837 0.885 0.858 0.858 0.869 0.887
w− > a 0.787 0.884 0.856 0.826 0.889 0.900
w− > d 0.821 0.901 0.892 0.865 0.890 0.887
d− > a 0.710 0.877 0.856 0.802 0.873 0.900
d− > w 0.789 0.897 0.880 0.817 0.896 0.898
a− > c 0.846 0.885 0.857 0.850 0.874 0.895
w− > c 0.791 0.875 0.843 0.807 0.875 0.896
d− > c 0.738 0.871 0.855 0.782 0.885 0.897
c− > a 0.853 0.904 0.895 0.896 0.899 0.901
c− > w 0.859 0.896 0.887 0.886 0.888 0.898
c− > d 0.841 0.896 0.886 0.885 0.889 0.887
mean 0.810 0.888 0.869 0.843 0.884 0.895

Table 2: Average accuracy on dataset bias. a,d,w, c denote the four different domains Amazon, DSLR, Webcam and Caltech,
respectively.

4.6 Experiments on WeChat Ads Dataset
In this experiment, we simulate the distribution discrepancy of
testing and training data by separating users into different groups
according to their age. Specifically, we split the dataset into 4 subsets
by users’ age, including Aдe ∈ [20, 30), Aдe ∈ [30, 40), Aдe ∈
[40, 50), Aдe ∈ [50, 100). And we train the baselines and CRLR
on users’ Aдe ∈ [20, 30), and test them on all four groups.

Figure 5: Result of classifier under selection bias of age. All
themodels are trained onAдe ∈ [20, 30) and tested on all four
groups.

We plot the RMSE error of each algorithm in Figure 5. We can
see in the group Aдe ∈ [20, 30) where no selection bias exists, our
CRLR algorithm is comparable to baselines. As this is a typical
i.i.d. setting, the correlation between features and labels can be
maximumly leveraged and most algorithms can make fairly precise
predictions. However, when tested on other three groups, where
the age distributions are different from the training data, CRLR con-
sistently outperforms the other baselines and obtains the smallest
error. It is mainly because the regression coefficients in CRLR imply
causations which are more stable and insensitive to distribution

shift induced by selection bias, while correlation-based methods
are highly unreliable in such situations. We also note the unsatis-
factory performance of two-step method. This demonstrates the
importance of jointly optimizing causal inference and predictive
modeling.

5 CONCLUSION AND DISCUSSION
In this paper, we investigate a new problem of learning on data with
agnostic selection bias, which is distinct from prior works and more
practical in real scenarios. We argue that most previous methods
can only preserve their predictive power when training and testing
data conform to i.i.d. hypothesis or the selection bias is already
known during the training process, and can not generalize well to
data with agnostic selection bias. Moreover, the results produced
by those methods can hardly be interpreted and utilized for fur-
ther decision making. To address theses challenges, we introduce
causality into predictive modeling and propose a novel Causally
Regularized Logistic Regression (CRLR) model to jointly optimize
weighted logistic loss and causal regularizer. We conduct compre-
hensive experiments on both synthetic and real world datasets
and the experimental results demonstrate that our CRLR algorithm
outperforms the traditional correlation-based methods in various
settings. We also demonstrate that the top causal features selected
by CRLR can provide explainable insights.
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