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Abstract

One fundamental problem in causal inference is the treatment effect estimation in obser-
vational studies, and its key challenge is to handle the confounding bias induced by the
associations between covariates and treatment variable. In this paper, we study the prob-
lem of effect estimation on continuous treatment from observational data, going beyond
previous work on binary treatments. Previous work for binary treatment focuses on de-
confounding by balancing the distribution of covariates between the treated and control
groups with either propensity score or confounder balancing techniques. In the continuous
setting, those methods would fail as we can hardly evaluate the distribution of covariates
under each treatment status. To tackle the case of continuous treatments, we propose a
novel Generative Adversarial De-confounding (GAD) algorithm to eliminate the associa-
tions between covariates and treatment variable with two main steps: (1) generating an
“calibration” distribution without associations between covariates and treatment by ran-
dom perturbation; (2) learning sample weight that transfer the distribution of observed
data to the “calibration” distribution for de-confounding with a Generative Adversarial
Network. Extensive experiments on both synthetic and real-world datasets demonstrate
that our algorithm outperforms the state-of-the-art methods for effect estimation of con-
tinuous treatment with observational data.
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1. Introduction

Causal inference (Holland, 1986), which refers to the process of drawing a conclusion about
a causal connection based on the conditions of the occurrence of an effect, is a powerful
statistical modeling tool for explanatory analysis. Treatment effect estimation is one fun-
damental problem in causal inference and gains an essential role for explainable decision
making with answering the counterfactual questions (Rubin, 1974; Pearl, 2009), for exam-
ple, how many doses of a medication will cause better outcomes for patients. Pearl (2009)
demonstrates that the gold standard approach for treatment effect estimation is to run a
Randomized Controlled Trial (RCT), for example, A/B testing, where the treatment is ran-
domly assigned to units1 and does not depend on the covariates as shown in Figure 1a. In
many real applications, however, fully randomized experiments are always expensive, un-
ethical, or even infeasible (Kohavi and Longbotham, 2011). In this paper, hence, we focus
on approximately estimating the treatment effect from off-line data collected from observa-
tional studies. In such datasets, the assignment of treatment depends on the covariates as
we shown in Figure 1b, leading to confounding bias between treatment and covariates, i.e.,
P (T |X) 6= P (T ). Therefore, confounding bias removing is the key challenge for treatment
effect estimation in observational sturdies.

In literature, many methods have been proposed for effect estimation with binary treat-
ment (treated or control), including matching methods (Kallus, 2019; Liu et al., 2019),
propensity score based methods (Rosenbaum and Rubin, 1983; Bang and Robins, 2005;
Austin, 2011; Kuang et al., 2017a, 2020a) and confounder balancing techniques (Hain-
mueller, 2012; Kuang et al., 2017b; Athey et al., 2018; Kuang et al., 2019). The motivation
of these methods is to remove the association between treatment and covariates for de-
confounding. Matching methods (Liu et al., 2019) proposed to match units with almost the
same covariates but different treatment. Inverse of propensity weighting (IPW) (Austin,
2011) attempted to re-weight samples for removing confounding bias between treatment
and covariates. Confounder balancing methods (Kuang et al., 2017b) proposed to balance
the distribution of covariates between treated and control groups. These methods achieved
promising performance in treatment effect estimation (Kuang et al., 2020b), however, all of
them focus on the binary treatment and cannot be applied for estimating the causal effect
of continuous treatment.

The classical methods for estimating continuous treatment effect are based on regression
models, including Y-model (Imbens, 2004; Hill, 2011) to regress outcome Y on the covariates
and treatment, T-model (Hirano and Imbens, 2004; Imai and Van Dyk, 2004; Galvao and
Wang, 2015; Galagate, 2016) to regress the treatment T on the covariates, and doubly
robust methods (Robins and Rotnitzky, 2001) by combining both Y-model and T-model.
The performance of these methods entirely relies on the correct specification of their models.
Recently, a non-parametric covariate balancing generalized propensity score (Fong et al.,
2018) was proposed to minimize the association between the covariates and treatment for de-
confounding, and achieved great performance in real applications. However, it is limited by
its linear assumption on T-model. Galagate (2016) extended IPW for continuous treatment
with considering second moments of covariates, but it needs to assume the linear correlation

1. Units represent the objects of treatment. For example, in medical experiments, the units refer to the
patients who take a particular medication.
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(b) Observational Studies

Figure 1: Casual structure for RCT and observational studies, where X denotes the ob-
served covariates, T refers to the treatment variable, and Y is the outcome. In
RCT, the treatment is independent with covariates, while in observational studies,
the treatment is affected by the covariates.

between Y and T . Overall, if one have NO prior knowledge on the grounded models, existing
methods for continuous treatment cannot fully remove the confounding bias in observational
studies, leading to imprecise estimation of continuous treatment effect.

To fully remove confounding bias in observational studies, we propose a non-parametric
data-driven method, named Generative Adversarial De-confounding (GAD) algorithm by
sample re-weighting techniques. Specifically, there are two main components in our GAD
algorithm, including “calibration” distribution generation and approximation. Firstly, we
generate an “calibration” distribution by randomly shuffling the value of each covariate
across units, such that each covariate would become independent with the treatment, where
the confounding bias are fully removed. Then, we propose a sample weight learning schema
on the observed data for approximating the the “calibration” distribution with a Generative
Adversarial Network (GAN), achieving de-confounding between continuous treatment and
covariates. We validate our GAD algorithm with extensive experiments on both synthetic
and real datasets. The experimental results clearly show that our algorithm outperforms the
state-of-the-art methods on continuous treatment effect estimation in observational studies.

The main contributions of this paper are summarized as follows:

• We investigate the problem of causal effect estimation with continuous treatment from
observational data, going beyond previous work on binary treatments.

• We propose a novel Generative Adversarial De-confounding (GAD) algorithm to learn
a sample weight for removing the associations between treatment and covariates, and
estimating the causal effect of continuous treatment.

• Extensive experiments on both synthetic and real world datasets demonstrate the
superior performance of our proposed algorithms on the problem of continuous treat-
ment effect estimation with observational data.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section
3 gives the notations and formulates our problem. The details of our proposed algorithm for
continuous treatment effect estimation are introduced in Section 4. Experimental results
and analyses are reported in Section 5. Finally, Section 6 concludes the paper.
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2. Related Work

Previous work on treatment effect estimation in observational studies can be categorized
by the type of treatment variable as causal effect estimation on binary treatment and
continuous treatment.

On binary treatment. The classical method for causal effect estimation on binary
treatment is propensity score based methods (Rosenbaum and Rubin, 1983; Bang and
Robins, 2005; Chan et al., 2010; Austin, 2011; Kuang et al., 2017a, 2020a). The propensity
score was first proposed by Rosenbaum and Rubin (1983), where it was estimated via a
logistic regression. Then many other machine learning algorithms (e.g., boosting regres-
sion by McCaffrey et al. 2004, bagged CART and neural network by Westreich et al. 2010,
LASSO by Chernozhukov et al. 2016) are employed for estimating propensity score. Various
methods have been proposed based on propensity score, such as propensity score matching,
inverse propensity weighting, doubly robust estimators and data-driven variable decompo-
sition (Bang and Robins, 2005; Chan et al., 2010; Austin, 2011; Kuang et al., 2017a, 2020a).
However, these estimators require correct model specification on treatment assignment or
precise estimation of the propensity score, which may not be the case in many applications.
Moreover, these methods focus on the causal effect estimation on binary treatment.

Bypassing propensity score estimation, recently, researchers proposed direct confounder
balancing via sample weight learning (Imai and Ratkovic, 2014; Kuang et al., 2017b; Athey
et al., 2018; Kuang et al., 2019). Imai and Ratkovic (2014) introduced covariates balancing
propensity score, which models treatment assignment while optimizing covariates balancing.
Kuang et al. (2017b, 2019) proposed a differentiated variable balancing algorithm by jointly
optimizing sample weight and variable weight. Athey et al. (2018) proposed approximate
residual balancing algorithm, which combines outcome modeling using the LASSO with
balancing weight constructed to approximately balance covariates between treatment and
control groups. These methods achieved good performance in many real applications for
treatment effect estimation, but all of these methods also only focused on the problem of
binary treatment and cannot be directly applied to continuous treatment.

On continuous treatment. In practice, the most common approach for estimating
continuous treatment effect is regression model based, including Y-model (Imbens, 2004;
Hill, 2011) and T-model (Hirano and Imbens, 2004; Imai and Van Dyk, 2004; Galvao and
Wang, 2015). Y-model method refers to the regression modeling of how the outcome Y
relates to covariates and treatment. T-model methods mainly adapted propensity score
based approaches to model how the treatment T relates to the covariates, saying modeling
treatment assignment mechanism. However, the performance of these methods relies en-
tirely on the correct specification of either the outcome model or the treatment model. By
combining Y-model and T-model, many doubly robust estimators (Robins and Rotnitzky,
2001) are proposed and achieved consistent estimation of effects of continuous treatment as
long as one of two models is correctly specified and modeled well enough.

Recently, many non-parametric methods (Neugebauer and van der Laan, 2007; Kennedy
et al., 2017; Fong et al., 2018) have been proposed to reduce the model dependency for
continuous treatment effect estimation. Neugebauer and van der Laan (2007) extended
traditional parametric marginal structural model to an nonparametric one and does not
require correct specification of a parametric model but instead relies on a working model
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Symbol Definition

n Sample size

p Dimension of observed variables

T ∈ Rn×1 Treatment

T ′ ∈ Rn×1 Treatment after randomly shuffling

Y ∈ Rn×1 Outcome

X ∈ Rn×p Observed variables

w ∈ Rn×1 Sample weight

Table 1: Symbols and definitions.

for precise prediction. Kennedy et al. (2017) developed a kernel smoothing based non-
parametric method for doubly robust estimation of continuous treatment effect, allowing
for misspecification of either the treatment model or outcome model. Fong et al. (2018)
proposed a non-parametric covariate balancing generalized propensity score to minimize the
association between the covariates and treatment, however, it only focused on the linear
association and would fail if the true T-model is non-linear.

3. Problem and Assumptions

In this paper, we focus on continuous treatment effect estimation based on potential outcome
framework (Imbens and Rubin, 2015) as shown in Figure 1b. With the framework, we define
a treatment as a random variable T and a potential outcome as Y (t) which corresponds
to a specific treatment T = t. The continuous treatment of interest can take values in
t ∈ T , where T is an interval [t0, t1]. Then, for each unit indexed by i = 1, 2, · · · , n, we
observe a treatment Ti, an outcome Y obs

i and a vector of observed variables Xi ∈ Rp×1,
where the observed outcome Y obs

i of unit i is corresponding to its treatment and denotes
as Y obs

i = Y (Ti). The number of units are equal to n and the dimension of all observed
variables is p. Table 1 summarized the symbol and definition. In our paper, for any
column vector v = (v1, v2, · · · , vm)T , let ‖v‖∞ = max(|v1|, · · · , |vm|), ‖v‖22 =

∑m
i=1 v

2
i , and

‖v‖1 =
∑m

i=1 |vi|.
The important goal of causal inference in observational studies is to evaluate the casual

effect of treatment T on outcome Y . In the setting with continuous treatment, the causal
effect of treatment can be captured by the Average Dose Response Function (ADRF) and
Marginal Treatment Effect Function (MTEF) (Kreif et al., 2015). The ADRF refers to the
expectation of potential outcome Y (t) on each treatment status t over all units. Formally,
the ADRF on treatment t is defined as:

ADRF (t) = E[Yi(t)]. (1)

The MTEF represents the effect of increasing the level of treatment on the expected poten-
tial outcome over all units. Formally, the MTEF is defined as:

MTEF =
E[Yi(t)]− E[Yi(t−4t)]

4t
, (2)
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where Yi(t) represents the potential outcome of units i with treatment status T = t and
E(·) refers to the expectation function. 4t denotes the increasing the level of treatment, for
example, with 4t = 1, MTEF captures the incremental change in the potential outcome,
for a unit change in the level of treatment.

The Eq. (1) and Eq. (2) are infeasible because of the counterfactual problem (Chan
et al., 2010), that for each unit i with treatment status T = t, we can only observe one of
the potential outcomes Yi(t), the other potential outcomes Yi(t

′), t′ ∈ T \ t are unobserved
or counterfactual. One can address this counterfactual problem by approximate the unob-
served potential outcome. The simplest approach is to directly estimate the ARDF E[Yi(t)]
on treatment level T = t only over the units with that treatment. However, in observational
studies, the treatment is not randomly assigned to units as we shown in Figure 1b, leading
to the confounding bias between treatment and covariates (Chan et al., 2010), saying the
distribution of covariates would be different over the units with different treatment level.

To address the counterfactual problem and confounding bias issue, throughout this
paper, we assume the following standard assumptions (Rosenbaum and Rubin, 1983) are
satisfied.

Assumption 1: Stable Unit Treatment Value. Given the observed covariates, the
distribution of potential outcome for one unit is assumed to be unaffected by the particular
treatment assignment of another unit.

Assumption 2: Unconfoundedness. Given the observed covariates, the distribution
of treatment is independent of potential outcome. Formally, T⊥Y (t)|X,∀t ∈ T .

Assumption 3: Overlap. Every unit has a nonzero probability to receive either
treatment status when given the observed covariates. Formally, P (r(T = t,X = x) > 0) =
1, where r(T = t,X = x) = fT |X(t|x) denotes the conditional density of treatment given
covariates.

Under these assumptions, we propose a sample re-weighting technique for removing the
confounding bias between treatment T and covariates X. The re-weighting method forms
the surrogates of the unobserved potential outcome Yi(t) over all units by re-weighting
units with sample weight w ∈ Rn×1 to make the treatment T become independent with
the covariates X. Then, the unobserved potential outcome Yi(t) over all units can be
approximated by the observed outcome Yi(t) over the units with treatment T = t. Finally,
with the learned sample weight w, we can approximately estimate the ADRF on each
treatment level t by:

ÂDRF =
∑
i:Ti=t

wi · Yi(t). (3)

Similarity, we can also approximately estimate the MTEF as:

M̂TEF =

∑
i:Ti=twi · Yi(t)−

∑
i:Ti=t−4twi · Yi(t)

4t
. (4)

4. Method

In this section, we give the details of our proposed Generative Adversarial De-confounding
(GAD) algorithm for continuous treatment effect estimation in observational studies.
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4.1 Generative Adversarial De-confounding Algorithm

To fully remove the confounding bias induced by the dependency between treatment T and
covariates X in observational studies as shown in Figure 1b, we propose to make treatment
T become independent with the covariates X by sample re-weighting, that is our Generative
Adversarial De-confounding (GAD) algorithm. In our GAD algorithm, there are two key
components: (i) “calibration” distribution generation: Based on the observed data Dobs =
{T,X}, we generate an “calibration” data Dcal = {T,X′} by changing the distribution
of covariates such that P (T |X′) = P (T ), namely T ⊥ X′. (ii) “calibration” distribution
approximation: We develop a Generative Adversarial Network to learn a sample weight
w on the observed data Dobs such that the distribution of weighted observed data would
be similar even identical with the “calibration” data Dcal, formally wP (T,X) = P (T,X′).
Finally, the learned sample weight w can guarantee precise estimation on the causal effect of
continuous treatment, since it ensures the treatment become independent with the covariates
on the weighted observed data, achieving de-confounding between treatment and covariates.

4.1.1 “calibration” distribution generation

In this component, our goal is to generate an “calibration” distribution Dcal = {T,X′},
where the treatment T is independent with the covariates X′, ensuring there is no con-
founding between treatment and covariates.

Proposition 1 By randomly shuffling the value of each covariate X·,i over all samples in
observed data Dobs = {T,X}, the shuffled covariates would become independent with the
treatment T if sample size n→∞.

The random shuffling process refers to randomly permuting the elements in each covari-
ate X·,i ∈ Rn×1. If n→∞, the shuffled covariates, denoted as X′, should be independently
random variables. Hence, the treatment variable T would be independent with the shuffled
covariates X′.

Therefore, we can obtain an “calibration” data Dcal = {T,X′} under Proposition 1,
where the confounding bias between the treatment T and covariates X′ are fully removed.

Need to note that the “calibration” data is meaningless except for its non-confounding
or independence property between its treatment and covariates. Many other methods can
also be employed for generating an “calibration” data, we leave it in future work.

4.1.2 “calibration” distribution approximation

In this component, we aim to adjust the distribution of observed data Dobs = {T,X}
by sample weighting such that with the identical distribution of the “calibration” data
Dcal = {T,X′}, resulting in the treatment become independent with the covariates in the
adjusted observed data.

Inspired by the immense success of Generative Adversarial Network (GAN) (Goodfellow
et al., 2014) in producing simulated data that highly resembles the distribution of real-world
samples, we propose a novel framework that leverages the objective of GAN to the task of
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generating weight for ensuring the distribution of adjusted observed data has the identical
distribution of the “calibration” one2.

To be self-contained, we briefly revisit the key idea of GAN (Goodfellow et al., 2014).
The goal of GAN is to learn a generative model g(·) of an unknown distribution Ddata using
a class of discriminators d(·) to gauge the similarity between data distributions. The GAN
framework can be described as a game between the generator g(·) and the discriminator
d(·), where the generator g(·) simulates data g(z) with an input random variable z from a
predefined distribution Dz, then the discriminator d(·) attempts to bridge the distribution
between the simulated data g(z) and real samples s in Ddata by minimizing the expected
classification error in the real and simulated samples as:

L(g, d) = Es∼Ddata
[l(d(s), 1)] + Ez∼Dz [l(d(g(z), 0)], (5)

where l(·) is the loss function. Given the discriminator model d(·), the generator g(·)
attempts to maximize the expected error with following objective function to find:

g? = arg max
g

( min
d
L(g, d)). (6)

In our problem, we employ the generator g(·) to optimize a sample weight vector
w = (w1, w2, · · · , wn) to adjust the distribution of observed data Dobs = {T,X} such
that the discriminator d(·) cannot distinguish the adjusted observed distribution and the
“calibration” distribution by minimizing the expected classification error in the adjusted
observed and “calibration” samples as:

L(w, d) = E(t,x)∼Dcal
[l(d(t, x), 1)]

+ E(t,x)∼Dobs
[w(t,x) · l(d(t, x), 0)], (7)

s.t. E(t,x)∼Dobs
[w(t,x)] = 1,w � 0,

where w(t,x) refers to the sample weight related to the sample (t, x) in the observed data, and
l(·) is the loss function. The term E(t,x)∼Dobs

[w(t,x)] = 1 avoids all sample weight to be zero,
and w � 0 constrains each sample weight to be non-negative. Given the discriminator model
d(·), the generator g(·) attempts to maximize the expected error with following objective
function to find:

ŵ = arg max
w

( min
d
L(w, d)). (8)

Following the objective function in Eq. (7) we know only the term E(t,x)∼Dobs
[w(t,x) ·

l(d(t, x), 0)] is related to the parameter w. Then to optimize w with discriminator d(·) fixed,
we could either maximize E(t,x)∼Dobs

[w(t,x) ·l(d(t, x), 0)] with gradient ascending methods, or
instead choose to minimize E(t,x)∼Dobs

[−w(t,x) · l(d(t, x), 0)] or E(t,x)∼Dobs
[w(t,x) · l(d(t, x), 1)]

with gradient descending methods as metioned in Goodfellow et al. (2014). In practice, we
switch 0/1 labels for two data distributions, resulting the following loss functions for both
w and discriminator d(·) to minimize alternately:

Ld(w, d) = L(w, d)

2. Other methods could also be applied for generating sample weights with a “calibaration” distribution,
we leave comparison among these methods for future work.
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Lw(w, d) = E(t,x)∼Dcal
[l(d(t, x), 0)]

+ E(t,x)∼Dobs
[w(t,x) · l(d(t, x), 1)], (9)

s.t. E(t,x)∼Dobs
[w(t,x)] = 1,w � 0,

The details of our GAD algorithm is summarized in Algorithm 1 in Appendix A.

Finally, with the optimized sample weight w by our GAD algorithm, we can estimate
the ADRF with Eq. (3) and MTEF with Eq. (4).

5. Experiment

In this section, we evaluate the effectiveness of our proposed method on both synthetic and
real-world datasets.

5.1 Baseline Methods

We implement or use the following baseline methods for comparison. Parameter settings
are as default, unless otherwise specified.

• Inverse Probability Weighting (IPW) (Robins et al., 2000): This method estimates
conditional probability P (Ti|Xi) by regressing treatment T on covariates X, then uses
it to generate sample weight. Both unstablized (IPWunstable = 1

P (Ti|Xi)
) and stablized

(IPWstable = P (Ti)
P (Ti|Xi)

) versions are evaluated. Performance of IPW largely relies on

estimation of P (Ti|Xi). Thus, it’s not attractive in most real-world applications.

• Inverse Second-Moment Weighting (ISMW) (Galagate, 2016): This method is an
extension of IPW with second-moment. Under linear assumption of Y-T relation,
ISMW generates sample weight matrix in closed form as E(BiB

T
i |Xi)

−1, where Bi =
[1, ti]

T . However, if Y-T relation is more complex, ISMW might be less attractive due
to its restriction to the means of higher-order terms.

• Covariate-Balancing Generalized Propensity Score (CBGPS) (Fong et al., 2018): Based
on Generalized Propensity Score, this method adapts covariate balancing condition
for continuous treatment that E(P (Ti|Xi)TiXi) = E(Ti)E(Xi) = 0, where X and T
are centralized and orthogonalized in preprocessing.

5.2 Evaluation Metrics

In synthetic experiments, we evaluate the performance based on three metrics:

• Bias(MTEF): mean absolute error of MTEF estimation over all samples

• RMSE(MTEF): rooted mean squared error of MTEF estimation over all samples

• RMSE(ADRF): rooted mean squared error of ADRF estimation over all samples

Normally, MTEF-based metrics are more important than ADRF-based in synthetic exper-
iments, as it eliminates effect of intercept which involves means of covariates and noise.
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5.3 Experiments on Synthetic Data

In this section, we introduce data generation process for synthetic datasets, and demonstrate
the effectiveness of our proposed weighting method, with extensive experiments.

5.3.1 Dataset

The process of generating synthetic datasets basically follows Fong et al. (2018) with slight
modification, where we set sample size n = 2000 and the dimension of observed variables
p = 10. We first generate covariates X = (x1, x2, . . . , xp) independently with Standard
Normal distribution as:

x1, x2, . . . , xp
i.i.d∼ N(0, 1)

Then we generate treatment T and outcome Y generally as:

T = f(X) + εt, Y = g(X) + µ(T ) + εy

where f(X) =
∑p

j=1 αmod(j,10) · xj, g(X) =
∑p

j=1 βmod(j,10) · xj, α = [1, 1, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0],
and εt ∼ N(0, 2). Function mod(a, b) returns the modulus after division of a by b. β, µ(T )
and εy varies under different settings with considering the relation (linear and non-linear)
between Y and T , and between Y and X:

YT-linear:

µ(T ) = T and εy ∼ N(0, 5)

YT-nonlinear:

µ(T ) = T 2 + T, εy ∼ N(0, 9) and g(X) = 2g(X)

YX-linear:

β = [0, 1, 0, 0.1, 0.1, 0.1, 0, 0, 0, 0]

YX-nonlinear:

β = [0, 2, 0, 0.5, 0.5, 0.5, 0, 0, 0, 0] and

xj = I(mod(j, 10) = 1) · x2j + I(mod(j, 10) 6= 1) · xj

By combining different YX relations and YT relations, we could evaluate all methods
under 4 different settings which cover a large variety of common cases. In simulation, we
know the ground-truth ADRF and MTEF as:

YT-linear:

ADRF (T ) = T + E(g(X)) and MTEF = 1

YT-nonlinear:

ADRF (T ) = T 2 + T + 2E(g(X)) and MTEF = 2E(T ) + 1

Then, we evaluate the ADRF and MTEF with our algorithm, comparing with baselines.
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Setting Method
n = 2000, p = 10

BIASMTEF RMSEMTEF RMSEADRF

YX-
linear,
YT-

linear

OLS 0.153(0.044) 0.153(0.044) 0.392(0.102)
IPWunstable 0.141(0.082) 0.141(0.082) 0.467(0.184)
IPWstable 0.070(0.081) 0.070(0.081) 0.239(0.194)

ISMW 0.049(0.026) 0.049(0.026) 0.163(0.071)
CBGPS 0.063(0.069) 0.063(0.069) 0.223(0.171)

Our 0.043(0.036) 0.043(0.036) 0.176(0.082)

YX-
linear,
YT-

nonlinear

OLS 0.310(0.078) 0.332(0.079) 0.816(0.181)
IPWunstable 0.286(0.126) 0.337(0.150) 0.885(0.430)
IPWstable 0.211(0.137) 0.252(0.159) 0.589(0.362)

ISMW 1.023(0.521) 1.050(0.520) 2.569(1.310)
CBGPS 0.195(0.126) 0.237(0.152) 0.558(0.334)

Our 0.167(0.072) 0.207(0.091) 0.471(0.144)

YX-
nonlinear,

YT-
linear

OLS 0.353(0.066) 0.353(0.066) 0.882(0.159)
IPWunstable 0.179(0.089) 0.179(0.089) 0.582(0.177))
IPWstable 0.100(0.070) 0.100(0.070) 0.295(0.174)

ISMW 0.050(0.027) 0.050(0.027) 0.206(0.087)
CBGPS 0.096(0.067) 0.096(0.067) 0.294(0.138)

Our 0.068(0.032) 0.068(0.032) 0.291(0.179)

YX-
nonlinear,

YT-
nonlinear

OLS 0.753(0.120) 0.871(0.145) 1.982(0.320)
IPWunstable 0.360(0.123) 0.418(0.133) 1.071(0.398)
IPWstable 0.280(0.144) 0.338(0.181) 0.738(0.372)

ISMW 1.689(0.817) 1.777(0.798) 4.335(2.002)
CBGPS 0.267(0.106) 0.317(0.127) 0.714(0.271)

Our 0.230(0.147) 0.282(0.185) 1.067(0.347)

Table 2: Results on synthetic datasets with sample size n = 2000, feature dimension p =
10. The value in bracket refers to corresponding standard deviations of 10 times
experiments. The smaller of these metrics, the better.

5.3.2 Results

To evaluate the performance of our proposed algorithm on continuous treatment effect esti-
mation, we carry out experiments for 10 times independently for each setting. Based on the
estimated ADRF and MTEF, we report Bias(MTEF), RMSE(MTEF) and RMSE(ADRF),
and their standard deviation (SD) over 10 times experiments in Tables 2. From these
results, we have following observations and analysis:

• Model based regression method, OLS, cannot precisely estimate the causal effect of
continuous treatment even the model is correctly specified, since it ignores the con-
founding bias between treatment and covariates.

• With constraints on the variance of weight, IPWstable achieves better performance
than IPWunstable across most settings. Moreover, with considering the second mo-
ments, ISMW obtains the best performance among IPW based methods under set-
ting with YT-linear. However, in the setting with YT-nonlinear, the performance of
ISMW is very poor and even worse than OLS, since it entirely relies on the linear
assumption between T and Y .
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• By directly minimizing the association between treatment and covariates, CBGPS ob-
tains a good performance across all settings. However, it’s still worse than our method,
since it only considers the linear association between treatment and covariates.

• Our algorithm, by directly making treatment become independent with covariates,
achieves significant improvements over the baselines in different settings, especially on
MTEF-based metrics. Under setting YT-nonlinear where the assumptions in baselines
are violated, our GAD algorithm, a non-parametric method, almost obtains the best
performance. Under setting YT-linear, our algorithm can also achieve comparable
results with the best baseline.

5.4 Real-world Data: TWINS

Considering that few real-world datasets with continuous treatment contain ground-truth
of causal effect. Like previous most work on continuous treatment (Kallus and Zhou, 2018),
we perform a semi-simulation on TWINS, a dataset previously used in binary or categorical
treatment research for evaluation.

5.4.1 Dataset

TWINS is a dataset commonly used in binary treatment research, which totally contains
data of over 70,000 twins. The treatment of this dataset is to be the light one or not when
born. Originally, the treatment is generated from a continuous variable, born weight. The
dataset also includes 50 covariates recording information of parents, which are almost the
same for a pair of twins.

To conduct semi-simulation on TWINS dataset, we first filter dataset by limiting weight
under 2 kilogram. Data of 4,821 pairs of twins are left for further experiments. We set
the difference between born weight with 2 kilogram as treatment T in our experiment.
To ensuring the ground-truth, we propose to semi-simulate the outcome variable Y from
treatment and covariates to represent the risk of death after born. We reorganize a few
columns of covariates according to twins identity, such as birth order. Also, we concatenate
original binary treatment to covariates. From observation of dataset, as weight difference
increases, death rate over dataset population also increases. Thus, we can generate outcome
as follows with different settings of Y-T relations:

YT-linear:

Y = 4 · T − 40 + Xγ + ε

YT-nonlinear:

Y = 0.15 · T 2 + T − 20 + Xγ + ε

where γ ∈ Rp×1 and γi ∼ N(0, 0.25), ε ∼ N(0, 2.25). Then we can get the ground-truth
ADRF and MTEF as YT-linear:

ADRF (T ) = 4T − 40 + E(Xi,·γ) and MTEF = 4

YT-nonlinear:

YADRF = 0.15 · T 2 + T − 20 + E(Xi,·γ) and MTEF = 0.3 · T + 1

12
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Setting Method
TWINS

BIASMTEF RMSEMTEF RMSEADRF

YT-
linear

OLS 0.125(0.082) 0.125(0.082) 0.569(0.371)
IPWunstable 0.480(0.424) 0.480(0.424) 3.844(2.120)
IPWstable 0.818(0.360) 0.818(0.360) 4.899(1.450)

ISMW 0.007(0.005) 0.007(0.005) 0.299(0.188)
CBGPS 0.043(0.040) 0.043(0.040) 0.620(0.378)

Our 0.049(0.048) 0.049(0.048) 0.283(0.183)

YT-
nonlinear

OLS 0.208(0.079) 0.236(0.089) 0.686(0.350)
IPWunstable 1.385(0.757) 1.532(0.890) 5.506(2.061)
IPWstable 1.693(1.599) 1.878(1.849) 6.982(4.453)

ISMW 0.165(0.062) 0.181(0.069) 0.962(0.214)
CBGPS 0.187(0.137) 0.216(0.158) 0.683(0.380)

Our 0.127(0.039) 0.144(0.046) 0.383(0.091)

Table 3: Results on TWINS dataset.

5.4.2 Results

We report the results in Table 3. Though we can only carry out semi-simulation on real
dataset, the hidden T-X relation is still a major challenge to tackle for methods based on
generalized propensity score or other methods requiring a T-model. Thus, IPWunstable and
IPWstable fail on causal effect estimation on continuous treatment due to possibly misspeci-
fied T-model and inaccurate estimation on generalized propensity score as demonstrated in
Table 3. Similar to the results on synthetic data, under the setting with YT-linear, ISMW
achieves the best performance among baselines since its assumptions are satisfied. By di-
rectly make treatment become independent with covariates, our method achieves compara-
ble result with ISMW, and significantly better than other methods. Under the setting with
YT-nonlinear, our algorithm obtains the best performance with a significant improvement
than baselines, since our method is non-parametric and can guarantee the de-confounding
between treatment and covariates.

6. Conclusion

In this paper, we focus on the problem of causal effect estimation on continuous treatment
in observational studies. We argue that traditional methods for continuous treatment effect
estimation are basically regression model based, hence, their performance entirely relies
on the correctly specified models or some impractical assumptions. Hence, we proposed a
non-parametric method, Generative Adversarial De-confoudning (GAD) algorithm to re-
move the confounding bias between treatment and covariates for precisely estimation on
continuous treatment effect. In our GAD algorithm, we proposed a Generative Adversarial
Network based de-confounding algorithm to generative sample weight for making treatment
become independent with covariates. We proved that the learned sample weight from our
GAD algorithm can fully remove the confounding bias from empirical experiments. The
experimental results on both synthetic and real world datasets show that our GAD algo-
rithm outperforms the baselines for causal effect estimation on continuous treatment in
observational studies.
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Appendix A. Our proposed Generative Adversarial De-confounding
(GAD) algorithm

In GAD algorithm, steps 1-4 is for generating the “calibration” distribution Dcal = {T,X′},
and steps 5-11 is for approximating the “calibration” distribution by learning sample weight.

Algorithm 1 Generative Adversarial De-confounding

Input: Observed Data Dobs = {T,X}, stopping criterion h(Dobs,Dtarget,w), optimizer
for discriminator, SGD(θ, Ld(w, d)), and optimizer for w, Ranger(w, Lw(w, d))

Output: sample weight w
1: for i = 1, 2, · · · , p do
2: Generating shuffled covariate X′·,i by randomly permuting the elements in X·,i
3: end for
4: Generate target data Dcal = {T,X′}
5: Initialize sample weight w0 = [1, 1, · · · , 1]
6: Initialize discrimator d(·) with parameter θ0

7: Initialize the iteration variable t← 0
8: repeat
9: t← t+ 1

10: Update θt ← SGD(θt−1, Ld(wt−1, d))
11: Update sample weight wt ← Ranger(wt−1, Lw(wt−1, d))
12: Limit mean of sample weight wt

i ← nwt
i/

∑n
i=1w

t
i, i = 1, 2, · · · , n

13: until h(Dobs,Dcal,w
t) satisfied or max iteration is reached

14: return sample weight w

Appendix B: Implementation of Baselines and Our Algorithm on
Synthetic Data.

We implement both versions of IPW, and ISMW as baseline methods. As for both versions
of CBGPS, we use the R-Package ’CBPS’ to carry out experiments on both synthetic and
real-world datasets. All baseline methods calculate weight first, then use Weighted Least
Square (WLS) to estmiate ADRF and MTEF by regressing Y on T .

The core part of IPW and ISMW is to estimate P (Ti), P (Ti|Xi) and E(BiB
T
i |Xi).

For P (Ti), we estimate a Normal distribution with sample mean and variance of T as its
parameter. For P (Ti|Xi), we estimate a Normal distribution per sample. To generate
its parameter, we first fit a T-model t(Xi) by linearly regressing T on X. Then we take

T̂i = t(Xi) as its mean, 1
N−p

∑N
i=1 (Ti − T̂i

2
) as its variance, where p is degree of freedom.

For E(BiB
T
i |Xi), as it only involves E(Ti|Xi) and V ar(Ti|Xi), we take the fitted value of

T-model as E(Ti|Xi) and estimated residual variance as V ar(Ti|Xi).

Parameters of CBGPS mostly remain default in all experiments, except that iteration
of CBGPS sets to 10000.

Our method uses a neural network with two hidden layers as discriminator, each layer
has 512 hidden units. Mish is used as activation function, and dropout layer with keep
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probability = 0.5 is applied to last hidden layer. We use SGD with learning rate lr = 1e−3

as optimizer of discriminator, Ranger (a combination of RAdam and Look-Ahead) with
learing rate lr = 3e−4, betas = (0.0, 0.9), internal step k = 5 as optimizer of sample weight.
We use cross-entropy as loss function, and optimize both sample weight and discriminator
almost the same way as GAN does. Optimization is performed on full-sample rather than
mini-batch, considering global feature of sample weight. We simply divide sample weight
by their sum after each step, to keep restriction on sum of weight.

Appendix C: Implementation of Baselines and Our Algorithm on
TWINS Data.

As on TWINS the conducted semi-simulation is similar to synthetic experiments, Imple-
mentation details are almost the same as those in synthetic experiments except for a few
changes. Iteration of CBGPS is set to 20000 rather than 10000. For our method, we adjust
number of hidden units from 512 to 256 with fixed number of hidden layers. Z-score stan-
dardization is applied to covariates as data preprocessing. To achieve better performance,
we keep shuffling covariates along every dimension during training, rather than one-time
shuffling used in experiments on synthetic datasets.
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