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ABSTRACT
In causal inference, it is common to select a subset of observed

covariates, named the adjustment features, to be adjusted for esti-

mating the treatment effect. For real-world applications, the abun-

dant covariates are usually observed, which contain extra variables

partially correlating to the treatment (treatment-only variables, e.g.,

instrumental variables) or the outcome (outcome-only variables,

e.g., precision variables) besides the confounders (variables that

affect both the treatment and outcome). In principle, unbiased treat-

ment effect estimation is achieved once the adjustment features

contain all the confounders. However, the performance of empirical

estimations varies a lot with different extra variables. To solve this

issue, variable separation/selection for treatment effect estimation

has received growing attention when the extra variables contain

instrumental variables and precision variables.

In this paper, assuming nomediator variables exist, we consider a

more general setting by allowing for the existence of post-treatment

and post-outcome variables rather than instrumental and preci-

sion variables in observed covariates. Our target is to separate the

treatment-only variables from the adjustment features. To this end,

we establish a metric named Optimal Adjustment Features (OAF),
which empirically measures the asymptotic variance of the esti-

mation. Theoretically, we show that our OAF metric is minimized

if and only if adjustment features consist of the confounders and
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outcome-only variables, i.e., the treatment-only variables are per-

fectly separated. As optimizing the OAF metric is a combinatorial

optimization problem, we introduce Reinforcement Learning (RL)

and adopt the policy gradient to search for the optimal adjustment

set. Empirical results on both synthetic and real-world datasets

demonstrate that (a) our method successfully searches the opti-

mal adjustment features and (b) the searched adjustment features

achieve a more precise estimation of the treatment effect.
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1 INTRODUCTION
Causal inference [13, 18], which refers to inferring the variation of

potential outcomes by intervening treatments, is a fundamental re-

search area in decision-making [7, 35, 39] and interpretable artificial

intelligence [14, 38]. Under the potential outcome framework [13],

we aim to estimate the average effect of intervening the (binary)

treatment T on the outcome Y given a set of covariates, as shown in

Figure 1c. For example, a researcher attempts to assess the average

treatment effect (ATE) of a drug (T) on patients’ recovery (Y) from
population data given some patients’ characteristics. One funda-

mental problem of causal inference is the non-random treatment
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assignment between the control and treated groups, where the

treatment is assigned with some explicit/implicit assignment policy

manifested as correlations with some predictive covariates called

confounders (X in Figure 1c) [32, 39]. As a consequence, direct

regression of T on Y will introduce systematic bias without consid-

ering diverse treatment assignments across different groups [13].

To overcome this issue, the randomized control trial (RCT) provides

the golden standard [5], while the ethical problems or the expensive

practical cost become the obstacle to performing RCT in realistic

cases. Fortunately, observational studies provide the practical al-

ternative to infer the treatment effect from the non-randomized

data [13, 39].

Despite remarkable progress, an important but easily overlooked

problem raises in realistic applications: the collected covariates usu-

ally contain extra variables aside from the confounders X, which
profoundly affects the treatment effect estimation[9, 15] (as shown

Figure 1b and 1c). Recalling the drug-recovery example, the drug

analyzer often collects the covariatesU to be as abundant as enough

such that all the confoundersX (e.g., gender or age) are observed (X ⊆
U). Meanwhile, extra variables are also collected into U besides X,
which is often divided into two types: (a) the treatment-only vari-

ables I, denoting the extra variables partially correlating to the treat-
ment T (e.g., income); (b) the outcome-only variables Z, denoting
the extra variables partially correlating to the outcome Y (e.g., living

environment). According to previous literature [6, 8, 20], adjusting I
will decrease the precision, while adjusting Zwill benefit the estima-

tion. Therefore, even though the estimation is unbiased (X belongs

to the adjustment set), the choice of different adjustment features

selected from the covariates still plays a vital role in determining

the performance of ATE estimation.

However, due to the lack of prior guidance, it is a common

practice to include each observed covariate into the adjustment

feature set [21, 22], which we call the brute-force approach. Due to

the (potential) large asymptotic variance, the brute-force approach

is inefficient with poor empirical performance in some real-world

cases [9]. To overcome this issue, previous approaches [9, 15] have

attempted to separate the confounders from the precision vari-

ables (pre-outcome variables in Figure 1b, a special case of Z in

Figure 1c) or instrumental variables (pre-treatment variables in

Figure 1b, a special case of I in Figure 1c). However, two drawbacks

prevent these strategies to be applied in realistic scenes. To be

first, these settings only consider pre-treatment and pre-outcome

variables, e.g., instrumental and precision variables, as shown in

Figure 1b. Such kind of methods fails in more general settings when

post-treatment and post-outcome variables exist in observed co-

variates. Second, these approaches are heuristics as they cannot

clarify what adjustment features are expected by their methods

and how the selected adjustment features affect the estimation,

while our approach is well supported by semi-parametric inference

theory [20].

In this paper, we consider a more general problem setting as

shown in Figure 1c by allowing I and Z to be pre-treatment/post-

treatment and pre-outcome/post-outcome variables or both. To

facilitate the efficiency analysis, we pose a prior assumption that

there are no mediator variables (no variables are lying on the path

from 𝑇 to 𝑌 ). To support the efficiency (variance) analysis, such

an assumption is necessary as in previous works [20]. We target

to separate the treatment-only variables I from the confounders X
and outcome-only variables Z for more efficient ATE estimation.

To achieve this target, we draw inspiration from semi-parametric

inference [20, 27] and establish a computationally tractable metric

named Optimal Adjustment Features (OAF), which empirically

characterizes the asymptotic variance of the ATE estimation. The-

oretically, in the non-parametric regime, we show that our OAF

metric decreases within the supplementation of Z or the deletion of

I into the adjustment set. Therefore, the minimization of the vari-

ance metric implies that the optimal adjustment feature set ({Z,X})
is selected, i.e., the estimator achieves a minimal asymptotic vari-

ance. As our OAF varies discretely within the change of adjustment

features, we treat its minimization as a combinatorial optimiza-

tion problem. Regarding optimization efficiency, we introduce re-

inforcement learning (RL) and propose a policy gradient-based

optimization framework named OAF by Policy Gradient (OAFP).
More specifically, we construct the actor with an encoder-decoder

model [4] to generate the binary feature mask on the original co-

variates, where the feature mask serves as the differentiable policy.

On the other hand, the OAF metric plays the role of the reward

function to guide the policy gradient (e.g., the update of the feature

mask). In summary, our contributions are highlighted as follows:

i We propose a computational tractable metric, named OAF, to

measure the optimality of the adjustment features for treat-

ment effect estimation with a non-parametric theoretical

guarantee;

ii We design an RL-based combinatorial optimization frame-

work, named OAFP, to optimize the proposed OAF metric

and generate the corresponding feature mask for selecting

adjustment features;

iii Extensive results on both synthetic and real-world datasets

verify that: (a) our method can efficiently search the optimal

adjustment features, (b) the searched adjustment features

significantly improves the precision of treatment effect esti-

mation.

2 RELATEDWORK
2.1 Confounder Balancing
To estimate ATE/CATE, statistical methods focus on balancing the

confounder across different groups via diverse strategies, includ-

ing reweighting [15], matching [25] or covariate alignment [2]. To

overcomearehe model misspecification for the high-dimensional

data, a bunch of machine learning methods is further combined

to capture the non-linear relationships among variables [16, 19,

21, 27, 29, 33, 39]. In detail, the representative non-parametric ap-

proach is to discretely fit the potential outcome using a regression

tree or random forest (e.g., CF tree or CF forest) [29]. The typical

semi-parametric approaches includes TMLE [27], doubly-robust

methods [14] and DragonNet [22], which is asymptotically unbi-

ased and efficient. The mainstream of deep methods models the

confounder balancing as the domain adaptation problem, which

learns the group invariant representation by minimizing the distri-

bution divergence across different treatment arms [21, 33]. Besides,

some methods also use sample-wise reweighting to make treatment

and confounder independent in the representation space [19].
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a Brute-force. b Separation. c Ours.

Figure 1: The distinction among the settings, where arrows and dashed lines refer to the causal relationship and the correlation,
respectively. (a) Setting of brute-force adjustment, where each covariate is considered as the confounder for adjustment. (b)
Setting of the previous separation approach, which only allows I and Z to be pre-treatment and pre-outcome variables. (c)
Setting of our approach, which I and Z to be pre-treatment/post-treatment and pre-outcome/post-outcome or both. Meanwhile,
the correlations between I,Z and X are allowed as well.

2.2 Covariate Separation
Recent methods have already noticed the problem of separating

confounder from the instrumental/precision variables [9, 15]. For in-

stance, [15] proposed a data-driven variance reduction approach [15]

named DVD to separate the confounders from the precision vari-

ables, while DVD does not consider the treatment-only variables. To

overcome this gap, [9] introduces the instrumental variables with

non-linear deep networks to achieve disentanglement in the repre-

sentation space. However, our paper contrasts the above-mentioned

methods from three aspects: (a) they only consider the instrumental

variables and precision variables, while we allow a much broader

setting for I and Z in Figure 1c, (b) they are lack of theoretical un-

derstanding on how their methods achieve variable separation for

better ATE estimation, while our method is well supported by the

semi-parametric inference theory; (c) [9] achieves disentanglement

in the representation space; while our methods directly separate I
from {Z,X} among the original covariates.

2.3 Reinforcement Learning for Combinatorial
Optimization

Beyond sequential decision-making tasks (e.g., MDP), recent ad-

vances on reinforcement Learning (RL) has brought new opportu-

nity for combinatorial optimization (CO) problems [4, 37]. Orig-

inally, [4] proposed a policy-gradient-based framework to solve

the Travelling Salesman Problem (TSP). Traditional approximation

methods for NP-hard CO often require some parametric assump-

tion, such as sub-modular objectives [26]. By contrast, the RL-based

framework fits arbitrary objective functions such that they could

solve more general CO problems. For instance, [37] has adopted the

RL-based CO method for causal discovery by differentiably search-

ing the causal DAG. Our paper adopts the RL-based CO framework

to minimize the proposed variance metric. Although the metric is

a function of different sets, it does not share some ideal properties

such as sub-modular. Hence, traditional greedy methods cannot be

applied to optimize our metric, while the RL-based CO framework

is a proper candidate.

3 PROBLEM SETUP
Notations For concreteness, we consider the estimation of the

average effect of a binary treatment. Suppose the data we own

is generated independently and identically: {𝑌𝑖 ,𝑈𝑖 ,𝑇𝑖}𝑛𝑖=1 ∼ 𝑃 𝑗 ,
where 𝑃

𝑗
,𝑛 and U refer to the underlying joint distribution density,

the sample size, and the collected covariates, respectively. Follow-

ing notations in [13], we define the potential outcome under the

treatment arm T = t as Y(t) (We use upper-case (e.g. T) to denote

random variables, and lower-case (e.g. t) for realizations.). Then
the average treatment effect (ATE) equals to the expected differ-

ence between the treated (T = 1) and the control (T = 0) groups:
𝛾(𝑃) = 𝔼(︀Y(T = 1) − Y(T = 0)⌋︀, where we refer ATE as 𝛾(𝑃) for
the convenience of later analysis. Given the collected covariates

U = {Z,X, I}, one has to select V ⊆ U as the adjustment feature set

for ATE estimation. To facilitate the efficiency analysis, we pose a

prior assumption that there is no mediator variables (no variables

are lying on the path from 𝑇 to 𝑌 ).

Basic Assumptions To guarantee the validity of V, three prior
assumptions should be satisfied: [a] Stable Unit Treatment Value:
𝑌𝑖(t) for sample i is independent of the treatment assignments on

sample 𝑗 ≠ 𝑖; [b] Unconfoundedness: 𝑌(t) á T ⋃︀ V; [c] Overlap:
For arbitrary V ∈ 𝒱 , 𝑝(t ⋃︀ V) for t ∈ {0, 1}, where 𝒱 is the domain

of V. When the above-mentioned assumptions are mentioned, the

selected V supports the unbiased estimation of ATE via diverse

methods. For instance, the outcome regression (stratification) esti-

mate𝛾(𝑃) =𝑚T=1
V (Y)−𝑚T=0

V (Y), where𝑚T=t
V (Y) = 𝔼(︀Y ⋃︀ T = t,V⌋︀

refers to the conditional outcome. Alternatives include using the

propensity score 𝜋
T(V) = 𝑃(T = t ⋃︀ V) for inverse-reweighting.

The adjustment set V satisfying the above three principles is valid,

and invalid otherwise.

No Mediator Assumption Notably, we allow post-treatment

and post-outcome variables to be contained in the observed co-

variates𝑈 in this paper, which breaks the constraints of previous

works [9, 15, 31] and can deal with more general problem settings.

However, it does not mean any post-treatment variables are allowed.

To be specific, variables that are simultaneously the descendants

of 𝑇 and ancestors of 𝑌 , e.g., the mediator variables, are not al-

lowed [20]. In other words, in our causal graph, no variables lie on

any path from 𝑇 to 𝑌 . Posing such an assumption is necessary to
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derive the efficiency analysis, while also bringing limitations to our

methods. However, compared to previous research, our method has

made a breakthrough in allowing post-treatment and post-outcome

variables.

4 ESTABLISHING THE VARIANCE METRIC
4.1 Semi-parametric Inference for ATE

Estimation.
Beyond estimating the whole underlying distribution 𝑃 , previous

literature in semi-parametric inference [27] concerns estimating the

ATE parameter 𝛾 as a function of the underlying density 𝑃 . More-

over, we denote the estimated density from {𝑌𝑖 ,𝑈𝑖 ,𝑇𝑖}𝑛𝑖=1 as 𝑃 (via

diverse machine learning methods) and the empirical distribution

of 𝑃 as 𝑃𝑛 . In the case that 𝛾 is pathwise differentiable to 𝑃 (this

holds for ATE) and the underlying statistical model is convex, the

following convergence result is obtained through Central Limit

Theorem (CLT) once one of 𝜋
T(V) and𝑚T

V is consistent:

⌋︂
𝑛 (𝛾 (⧹︂𝑃) − 𝛾(𝑃)) 𝑑Ð→ 𝑁 (0,Var(︀𝐷eff(V)⌋︀), (1)

where

𝑑Ð→ refers to the convergence in distribution. The function

𝐷
eff(V) of V denotes the efficient influence curve [27], which has

an unique expression [12]:

ℐ(T = 1) − ℐ(T = 0)
𝜋T(V)

(Y −𝑚T
V(Y)) +𝑚T=1

V (Y) −𝑚T=0
V (Y) − 𝛾(𝑃).

(2)

The above conclusion reflects two critical intuitions: (a) the

Cauchy–Schwarz inequality and Cramer-Rao bound [27] guaran-

tees that 𝐷
eff(V) achieves the efficient estimation (with optimal

asymptotic variance as Var(︀𝐷eff(V)⌋︀) of 𝛾 concerning each V; (b)
different V determines different Var(︀𝐷eff(V)⌋︀, which further deter-

mines the ATE estimation. However, these pure theoretical results

suffer from two drawbacks: (a) they require prior causal graphs

to guide the choice of adjustment sets, which is not realistic for

practical applications; (b) the formulation of Var(︀𝐷eff(V)⌋︀ is too
complicated for computation, which requires further simplification.

4.2 Optimality of Adjustment Features
Previous theoretical research has already established the connec-

tion between the optimality of the adjustment features V and the

minimization of asymptotic variance: Var(︀𝐷eff(V)⌋︀ is minimized
if and only if V = {X,Z} [8, 20]. Although all these methods share

unbiased estimation, their empirical performance is distinct from

each other. This is caused by that different estimators use different

adjustment features with asymptotic variances such that they have

diverse empirical bias (see in Lemma 4).

Overall, we judge whether a set of features is optimal if and only

if the corresponding estimator achieves the minimal asymptotic

variance [20]. Notably, if several sets of features share the minimal

asymptotic variance, they are all considered as optimal adjustment

features.

4.3 Theoretical Properties of OAF Metric
Different from [20], we adopt the decomposed version (in Chapter

6.2 in [28]) of the efficient influence curve (2) as 𝐷
eff

𝑑 (V), which is

computationally tractable and also satisfies the linear asymptotic

results in (1):

𝐷
eff

𝑑 (V) = ℐ(T = 1) − ℐ(T = 0)
𝜋T(V)

(Y −𝑚T
V(Y)), (3)

where the validity of such decomposition is supported in the fol-

lowing lemma:

Lemma 4.1 (Validity of𝐷eff

𝑑 (V)). Similar to𝐷eff,⧹︂𝛾(𝑃) is asymptoti-

cally linear with𝐷eff
𝑑
, and

⌋︂
𝑛 (𝛾 (⧹︂𝑃) − 𝛾(𝑃)) 𝑑Ð→ 𝑁 (0,Var(︀𝐷eff

𝑑
(V)⌋︀).

Moreover, we strengthen the viewpoint that the asymptotic vari-

ance is critical for the precision of estimating ATE in the case of

finite samples using the following proposition:

Lemma 4.2. Suppose that the cumulative distribution function 𝐹𝑛 of
𝛾 (⧹︂𝑃) − 𝛾 (𝑃) is continuous within the sample size 𝑛 increasing, then
for any 𝛼 ≥ 0 and 𝑛,

𝑃(⋃︀𝛾 (⧹︂𝑃) − 𝛾 (𝑃) ⋃︀ ≥ 𝛼) ≤ 𝛿𝑛 + 1 − 𝐹
⎛
⎜
⎝

⌋︂
𝑛𝛼⌉︂

Var(︀𝐷eff
𝑑
(V)⌋︀

⎞
⎟
⎠
, (4)

where 𝐹 refers to the cumulative distribution function of the nor-

mal distribution 𝑁 (0, 1) and 𝛿𝑛 = sup ⋃︀𝐹𝑛 − 𝐹 ⋃︀ describes the point-
wise convergence of {𝐹𝑛 } to 𝐹 with increasing 𝑛. According to the

above lemma, we conclude that smaller Var(︀𝐷eff

𝑑 (V)⌋︀ implies the

smaller right-side in (4), which further results in more precise 𝛾 (⧹︂𝑃).
Therefore, choosing different adjustment features V from the covari-

ate set U determines different asymptotic variance Var(︀𝐷eff

𝑑 (V)⌋︀,
which further affects the precision of ATE estimation. Naturally, we

propose our metric named Optimal Adjustment Features (OAF),
as a functional of the adjustment features V↦ 𝑅+ ∶:

ROAF(V) = Var(︀𝐷eff

𝑑 (V)⌋︀

= Var(︀ℐ(T = 1) − ℐ(T = 0)
𝜋T(V)

(Y −𝑚T
V(Y))⌋︀.

(5)

Nevertheless, one might be still confused about howℛOAF
varies

within V changing. We provide theoretical insights to answer this

problem using the following theorem:

Theorem 4.3 (Connections betweenℛOAF
and V). We denote the

selected features for adjustment as V ⊆ {X∪ I∪Z}. Meanwhile, we de-
note the optimal adjustment set as V0 = {X∪Z}. Then the optimality
of our reward is stated from the following three sub-theorems:

(a) If V is a valid adjustment set, then ROAF(V′) ≤ ℛOAF(V)
holds for V′ = V ∪ Z′, where Z′ ⊆ Z.

(b) If V is a valid adjustment set, then ROAF(V) ≤ ℛOAF(V′)
holds for any V′ = V ∪ I′, where I′ ⊆ I.

(c) We assume that the {X ∪ I ∪ Z} contains all the parents of
Y, which implies that Z contains all the outcome-precision
variables of Y. Then ROAF(V0) ≤ℛOAF(V′) holds for any V′

which is not a valid adjustment set.

Remark. Overall, ROAF(V) = Var(︀𝐷eff

𝑑 (V)⌋︀ achieves the min-

imum if V = {X ∪ Z}. Meanwhile, we argue that if ROAF(V) =
Var(︀𝐷eff

𝑑 (V)⌋︀ then V = {X ∪ Z} is the optimal adjustment features.

To be specific, V must equal to {X,Z} when ROAF(V) achieves

the minimum in the case that all the inequalities in Theorem 4.3
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Figure 2: The framework of our OAFP method.

strictly hold (otherwise ROAF({X,Z}) <ℛOAF(V) contradicts the
assumption). The case that some equalities hold is meaningless

since Lemma 4 implies that any valid adjustment features achieve

the minimal asymptotic variance is optimal for ATE estimation. Fi-

nally, we claim that the proposed ROAF(V) achieves the minimum

if and only if V = {X,Z} are the optimal adjustment features.

4.4 Empirical Estimation for Computation
Recalling the empirical data {𝑌𝑖 ,𝑈𝑖 ,𝑇𝑖}𝑛𝑖=1, it is necessary to find

an unbiased estimation of ROAF(V) = Var(︀𝐷eff

𝑑 (V)⌋︀ in the case of

finite samples. Fortunately, the M-estimation theory [24] provides

the empirical sandwich estimator as an unbiased solution. Although

the influence curve approach is more general than the M-estimator

approach, they are equivalent in the case of ATE estimation [24].

More specifically, supposing that 𝜋T(V) and ̂
𝑚T=1

V (Y) represents
the estimated propensity score and the conditional outcome, respec-

tively, the corresponding empirical M-estimator can be written as

⧹︂𝜙(𝛾) = ℐ(T=1)−ℐ(T=0)
𝜋T(V)

(Y − 𝜋T(V)), where the “sandwitch” terms

can be further calculated as
⧹︂𝐴(𝛾) = 𝐼 (𝐼 is identity matrix) and

⧹︂𝐵(𝛾) = 1

𝑛 ∑
𝑛
𝑖=1 ⧹︂𝜙𝑖=1(𝛾)

2

. Finally, the empirical estimation of our

metric, namely ⧹︂ROAF(V), is derived as follows:

⧹︂ROAF(V) = ⧹︂𝐴(𝛾)⧹︂𝐵(𝛾)⧹︂𝐴(𝛾)𝑇

= 1

𝑛

𝑛

∑
𝑖=1

⎛
⎝
ℐ(t𝑖 = 1) − ℐ(t𝑖 = 0)

𝜋 t𝑖 (v𝑖)
(y𝑖 −

̂
𝑚

T=ti
V (Y))

⎞
⎠

2

.

(6)

Remark In fact, the term in (6) is similar to the additional term

of doubly-robust methods (e.g., AIPW) or the iteration term in

TMLE, as both TMLE and AIPW tune the estimator or estimated

distributions to compensate for the term 𝑃𝑛𝐷
eff

𝑑 (V) [12] such that

the error term convergences to a zero-mean Gaussian distribution.

5 POLICY-GRADIENT BASED
COMBINATORIAL OPTIMIZATION

As mentioned above, the empirical variance metric ⧹︂ROAF(V,T,Y)
in (6) varies discretely with different adjustment features V, where
we rewrite⧹︂ROAF(V,T,Y) here to strengthen the point that the calcu-
lation of

⧹︂ℛ depends on T,Y as well. Hence, it is difficult to optimize

⧹︂ROAF(V,T,Y) in a differentiable approach. As an alternative, we

consider the minimization of
⧹︂ℛOAF

as a combinatorial optimization

problem.

Motivated by the recent advances in neural combinatorial search

area [4, 37], we introduce the reinforcement learning (RL) to effi-

ciently search V. To this end, we define the binary feature mask M

on the original covariatesU = {Z,X, I} such that the ultimate goal is

to find M corresponding to the optimal adjustment features {Z,X}.
We suppose the policy for mask generation is 𝑞Φ(⋅ ⋃︀ {T,Y,U}),
where Φ is the network parameter. Then the expected reward is

defined to be our training objective as follows:

𝐽(𝜓 ⋃︀ s) = 𝔼M∼𝑞Φ(⋅⋃︀{T,Y,U}) −ℛ
OAF(U⊙M,T,Y), (7)

where 𝑠 is the joint of 𝑡,𝑦,𝑢, and we use the notation ⊙ to denote

the selection of V = U ⊙M. In detail, we adopt the policy gradi-

ent method with variance reduction (reinforcement) to optimize

the objective in (7), where the total framework is named OAF by
Policy Gradient (OAFP) (as shown in Figure 2). Previous work

for combinatorial optimization adopts the parametric approach

by building a critic network to estimate the reward and reduce

the variance [4, 37]. However, the critic can estimate the reward

accurately only when the reward design is relatively simple (e.g.,

the traveling salesman problem [4]). By contrast, the ⧹︂ROAF(V,T,Y)
in our problem is more complex, which is calculated upon two

estimators 𝜋T(V) and𝑚T
V(Y). Therefore, we alternatively use the

non-parametric approach as reinforcement [30] to calculate the

gradient of 𝐽(𝜓 ⋃︀ s) concerning 𝜓 . Moreover. we also add an en-

tropy regularization term to encourage the exploration of the actor

during the search process [37].

Regarding the implementations, we follow previous paradigms

[4] and build the actor-network in the encoder-decoder architec-

ture, as shown in Figure 2. The encoder is a multi-block transformer

and the decoder is a Multi-layer-perception (MLP) perception. We

leave the detailed settings of the actor-network in the appendix.

To improve the efficiency during the optimization, we sample 𝐾

arrays {𝐵1, 𝐵2, . . . , 𝐵𝐾} as a batch, where 𝐵𝑖 = {t𝑖 ,u𝑖 ,y𝑖}𝑛𝑏𝑖=1 with
𝑛𝑏 as the sample size for each array. As such operation implies the

computation of ⧹︂ROAF(V,T,Y)𝑖 for each 𝐵𝑖 , calculating the reward

becomes more time-consuming than updating the actor-network,

especially in the case that 𝜋T(V) and𝑚T
V(Y) are non-linear esti-

mators. To alleviate this problem, we training 𝜋T(V) and𝑚T
V(Y)

in parallel with multiples processes.

Remark Our OAFP framework is designed for searching the ad-

justment feature set, which is a combinatorial optimization problem.

Notably, although RL is typically applied in a sequential decision-

making context, we do not use it to tackle any sequential problem.

Alternatively, RL is also widely adopted to achieve non-sequential

combinatorial optimization problems, such as causal discovery or

the Travelling Salesman Problem [4, 37]. Detailed procedure of our

OAFP framework is provided in the Algorithm 1.
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Algorithm 1 Training procedure of OAFP Framework

1: InputThe dataset𝒟 = {𝑡𝑝𝑖 ,𝑦
𝑝
𝑖 ,𝑢

𝑝
𝑖 }
𝑛
𝑖=1, the transformer encoder

network 𝜙 , and the MLP decoder network 𝜓 , the iterations

number ℐ .
2: for itr = 1 to ℐ do
3: Sampling {𝑡𝑝𝑖 ,𝑦

𝑝
𝑖 ,𝑢

𝑝
𝑖 }
𝑛𝑏
𝑖=1 for a mini-batch;

4: Compute the mask𝑀 =𝜓(𝜙(t, y,u));
5: Compute the selected features v =M⊙ u;
6: Estimate 𝜋T(v) and𝑚T

v(Y);
7: Calculate the reward with 𝜋T(v) and𝑚T

v(Y) as in (6);

8: Update the whole network {𝜙,𝜓} based on the policy gradi-

ent in (7);

9: end for
10: Output Select adjustment features v based on the final mask

𝑀 .

6 EXPERIMENTS
6.1 Benchmarks
To evaluate the effectiveness of the proposed method, we conduct

experiments on three datasets including the synthetic data, the semi-

synthetic IHDP dataset [11] and the real-world Twins dataset [1],

respectively. Details are present in the appendix for saving space.

Synthetic. Our synthetic datasets are generated according to

the following process, which takes as input the total sample size

𝑁 , the feature dimension 𝑑 of the covariate𝑈 . In general, we first

generate the pre-treatment part of Z, the confounders X with the

post-treatment part of I. Then Y and T are generated, where the

post-treatment part of I and the post-outcome part of Z are further

generated. To be specific, we first generate X with feature size 𝑑𝑥 ,

the pre-treatment I𝑒 with size 𝑑𝐼𝑒 and the pre-outcome Z𝑒 with size

𝑑𝑍𝑒 :

X1,⋯,X𝑑𝑥 ,Z
𝑒
1
,⋯,Z𝑒𝑑𝑧𝑒 , I

𝑒
1
,⋯, I𝑒𝑑𝐼𝑒

𝑖𝑖𝑑∼ 𝒩 (0, 1) (8)

The treatment T is then sampled from the logistic transformation

of I𝑒 and X as

T ∼ Bernoulli (1⇑ (1 + exp (− (I𝑇X + I𝑇 I𝑒) ⋅ 𝑟))) , (9)

where 𝑟 = 𝑑𝑥+𝑑𝐼𝑒
20

is the scaling factor. Meanwhile, following previ-

ous protocols [15], the outcome Y is generated under both the linear

and non-linear setting. More specifically, the linear generation of Y
is

𝑌 = X𝛽𝑥𝑦 + z𝑒𝛽𝑧𝑦 + T + 𝜎𝑌 , (10)

where the non-linear generation is

𝑌 = X𝛽𝑥𝑦 +
𝑑𝑧𝑒

∑
𝑖=1

z𝑒𝑖 z
𝑒
𝑖+1 ⋅ 𝛽𝑧𝑦𝑖 + T + 𝜎

𝑌
, (11)

where the term 𝑖 + 1 is modulated by 𝑑𝑧𝑒 . Furthermore, the post-

treatment variables I𝑜 and the post-outcome variables Z𝑜 are gener-
ated as I𝑜 = 𝛽𝐼𝑜T + 𝜎𝐼𝑜 and Z𝑜 = 𝛽𝑍𝑜Y + 𝜎𝑍𝑜 . Overall, the ATE for

the synthetic dataset is 1 and the covariate is U = {X,Z𝑒 ,Z𝑜 , I𝑒 , I𝑜}.
To increase the challenging of separating I from {Z,X}, we set

𝑑𝐼𝑜 = 0.3𝑑 , 𝑑𝐼𝑒 = 0.2𝑑 , 𝑑𝑋 = 0.3𝑑 , 𝑑𝑍𝑜 = 0.1𝑑 and 𝑑𝑍𝑒 = 0.1𝑑 by

enlarging the ratio of I. Besides, the sample size 𝑁 is set to 2000. We

set the coefficient 𝛽
𝑥𝑦 = 4 and 𝛽𝑧𝑦 = −2 for more significant differ-

ence between the effects of X and Z𝑒 on Y. Meanwhile, we sample

𝛽
𝐼𝑜
, 𝛽
𝑍𝑜

from𝑈 (0, 1), together with 𝜎𝑌 , 𝜎𝐼𝑜 and 𝜎𝑍𝑜 sampled from

𝑁 (0, 2).
IHDP. Based on the original RCT data, the selection bias is intro-

duced by [11] via removing a non-random subset of the treated pop-

ulation. The resulting dataset contains 747 instances (608 control,

139 treated) with 25 covariates collected from the real-world [22].

We follow the classical surface-B setting in [11] to generate the

IHDP dataset with the real-world 25 covariates. In detail, we set 5

continuous covariates (as all) as the confounders X. Meanwhile, we

randomly select half of the rest 20 discrete variables as I, with the

rest as Z. To this end, we select Z or I from the Bernouli distribution

𝐵(0.5) for each discrete variable. The effect coefficients of X and Z
on Y, namely 𝛽𝑥𝑦 and 𝛽𝑧𝑦 , is generated in the same protocol in [11].

The effect coefficients of I and X on T, namely 𝛽𝑖𝑡 and 𝛽𝑥𝑡 , are

generated from𝑈 (−2, 2) as the uniform distributions. Furthermore,

the Y1, Y0 and T are generated as follows:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

Y1 = 𝛽𝑇𝑥𝑦X + 𝛽𝑇𝑧𝑦Z −𝜔 + 𝑁 (0, 1),

Y0 = exp(𝛽𝑇𝑥𝑦X + 𝛽𝑇𝑧𝑦Z) + 𝑁 (0, 1),

T ∼ Bernoulli (1⇑ (1 + exp (− (𝛽𝑇𝑥𝑡X + 𝛽𝑇𝑖𝑡 I))))

,

[︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌊︀

(12)

where 𝜔 refers to the term to keep the Average Treatment Effect

on the Treated (ATT) close to 4 [11]. As the covariates X are fixed,

we do not distinguish pre-outcome and post-outcome variables in

IHDP.

Twins. The original Twins dataset is derived from all twins born

in the USA between the year 1989 and 1991 [1]. Following previous

protocol [22], we consider 28 variables related to parents, pregnancy,

and birth, where the outcome is the children’s mortality after one

year. We introduce 5 pre-treatment I𝑒 and 5 post-treatment I𝑜 by
adding them to covariates, resulting in the 38-dimension covariates.

In detail, we sample I𝑒 from 𝑁 (0, 1). Then T is sampled from the

Bernoulli-logistic approach as follows:

T ∼ Bernoulli (1⇑ (1 + exp (− (𝛽𝑇𝑥𝑡X + 𝛽𝑇𝑖𝑡 I𝑒) + 𝑁 (0, 0.5)))) ,
(13)

with 𝛽𝑖𝑡 and 𝛽𝑥𝑡 sampled from 𝑈 (−2, 2). Moreover, I𝑜 is generated

as I𝑜 = 𝛽𝐼𝑜T + 𝜎𝐼𝑜 , with 𝛽𝐼𝑜 ∼ 𝑈 (−2, 2) and 𝜎𝐼𝑜 ∼ 𝑁 (0, 0.5).

6.2 Baselines and Implementations
Baselines The baselines we compared in this paper can be summa-

rized into three classes:

(a) Statistical methods, which include the direct differencemethod

(Direct) [15], the inverse propensity score reweighting (IPW)

[3], Augmented IPW (AIPW) [28] which is doubly robust to

model misspecifications and the TMLE method [28] which

starts from an initial distribution and iteratively updates the

estimation;

(b) Machine Learning methods including the DragonNet [22]

which is a deep version of TMLE, Generative adversarial

Network (GANITE) [34] which designs a GAN-style frame-

work to balance the confounders, the Bayesian regression

Tree (BART) [11] which is a typical nonparametric with
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uncertainty estimations, and the orthogonal regularized net-

work (DNOUT) [10];

(c) Previous covariate disentanglement/separation methods in-

cluding the LASSO regularized AIPW (AIPW-L), the DVD

method in [15] which is a data-driven separation approach,

the TEDVAE approach [36] which achieves promising dis-

entanglement using autoencoder, the DR-CFR method in [9]

which utilizes the mutual information to build a disentangle

framework, and the multi-environment invariant method

NICE [23].

Implementations of baselines For baselines we have com-

pared in this paper, we exactly follow the optimal hyper-parameters

with the original network architectures in their open-source im-

plementations. Notably, the NICE [23] method requires multiple

environments to support the identification of optimal adjustment

features, where the different environment is generated using a dis-

tinct causal graph. For our problem, to adapt the NICE method,

we randomly split the training data into three environments to

simulate the heterogeneous training domains.

Implementations of ourmethod.Roughly speaking, we imple-

ment both the linear and the non-linear versions of our method, re-

spectively. For the linear implementation, we implement the 𝜋T(V)
as the logistic regression and 𝑚T

V(Y) as the linear regression to

search the adjustment features. The downstream estimator for ATE

estimation is the doubly-robust AIPW. For the non-linear imple-

mentation, we build a two-layer MLP as 𝜋T(V) with a four-layer

MLP as𝑚T
V(Y)for searching features, with the DragonNet as the

downstream estimator for estimating ATE. To ease the notation,

we name our method OAFP_L implemented for the linear case, and

OAFP_N implemented for the non-linear case. Our implementation

in Python will be released to the public once accepted.

Metric. We mainly focus on two metrics: the bias of ATE and

the accuracy of feature selection. The former metric is quantified by

𝜖
ATE
= ⋃︀ATE −⇓ATE⋃︀, where ATE = 1

𝑁 ∑
𝑁
𝑖=1𝑌

1

𝑖 − 1

𝑁 ∑
𝑁
𝑗=1𝑌

0

𝑗 is the

underlying truth. Notably, as the underlying ATE for Twins is close

to zero (0.025), we report the relative error as 𝜖
ATE
= ⋃︀ATE−⇓ATE⋃︀

ATE

for Twins dataset. For the latter metric, we use Acc = ⋃︀⧹︂M−M0⋃︀1
𝑑

to

measure the feature accuracy, where ⧹︂M refers to the optimized

feature mask and M0
refers to the ground truth feature mask with

M0

𝑖 = 0 when U𝑖 ∈ I and M0

𝑖 = 1 otherwise.

6.3 Results and Analysis
In this section, we first propose three questions on the evaluation

of the proposed OAFP method:

(a) Whether OAFP searches the adjustment features accurately;

(b) Whether the adjustment features searched by our OAFP

achieve better ATE estimation compared to baselines;

(c) Whether the search process of OAFP is efficient on the time

cost.

6.3.1 Results and Analysis on Searching Adjustment Features. To
answer the first question, we report results on Results on feature

search (Fs_Acc) with the relative error (R_err) in Table 4, where

R_err = ⋃︀𝑅(⧹︂V)−𝑅(V)⋃︀
𝑅(V) measure the relative distance between the

a Reward b Accuracy

Figure 3: Reward and feature accuracy curves in the setting of non-
linear synthetic data with 𝑑 = 20.

optimal variance metric as 𝑅(V) and the metric for our searched

features ⧹︂V as 𝑅(⧹︂V). Notably, we search non-linear synthetic data,

IHDP, and twins using the non-linear OAFP-N, while the linear

synthetic dataset is searched using OAFP-L. The feature accuracy

in Table 4 reflects that our method OAFP_L and OAFP_N success-

fully search the optimal adjustment features {Z,X} in linear and

non-linear cases, respectively. Meanwhile, the relative error of the

variance metric R_err in Table 4 also reflects that our searched ad-

justment features achieve the empirical asymptotic variance close

to the optimal one achieved by {Z,X}. Moreover, we provide an

intuitive illustration of how the reward
⧹︂ℛ and the feature accuracy

vary in the training process during the search process in Figure 3a

and Figure 3b, respectively. As shown in 3a, the average reward

converges stably under the threshold at around 4000 steps, where

the corresponding feature accuracy also achieves 95% after 3000

steps. Besides, the reasons behind that the feature accuracy cannot

achieve 100% can be attributed to (a) error between the empirical

⧹︂ℛin (6) andℛ; (b) the effect of some covariates are too small in the

underlying structural equation such that their existence or not is

less important.

6.3.2 Results and Analysis on ATE estimation. We then report the

downstream results on ATE estimation in Table 2, Table 3 (results on

linear simulation is present in appendix), respectively. For results on

non-linear simulation, our method, OAFP_L and OAFP_N, achieve

significant improvement in the estimation performance compared

to other baselines. Results on the semi-synthetic IHDP and the real-

world Twins further verify the superiority of our method. Mean-

while, the poor performance for methods without covariate separa-

tion also strengthens our view that the existence of treatment-only

variables I will hurt the ATE performance in finite-sample cases.

Notably, our linear implementation OAFP_L performs less
accurately than some deep methods (e.g., DragonNet) due to
the model misspecification problem for the IHDP dataset.

6.3.3 Results on the efficiency of our method. To verify how our

RL framework improves the searching efficiency, we compare the

search process of our OAFP to that of the brute-force approach

(traversing the powerset of U and find the minimalℛ) in Table 5.

Obviously, it is meaningful for us to design the RL framework as

it significantly reduces the time cost for searching the optimal

adjustment features. (The brute-force approach is even impossible

when the feature dimension is larger than 20.)
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Table 1: Linear simulation results. The metrics are Mean±STD over 10 repeated experiments.

Linear Simulation
Settings In_sample Prediction Out_of_sample Prediction

Feature Dimension 20 40 80 20 40 80

Statistical

Direct 5.33±0.53 6.88±0.69 8.66±0.85 5.54±1.41 7.36±1.26 6.25±1.84
IPW 0.68±2.20 0.93±2.90 1.11±2.59 0.87±2.33 1.51±3.11 2.28±3.87
AIPW 0.30±0.64 0.93±2.90 1.11±2.59 0.27±2.00 0.76±1.96 1.39±1.41
TMLE 0.25±0.07 0.58±0.11 0.61±0.05 0.48±0.10 0.60±0.13 0.65±0.11

Machine

DragonNet 0.05±0.48 0.29±0.15 0.49±0.37 0.93±0.42 0.90±0.37 1.05±0.86
GANITE 0.86±0.00 0.97±0.00 1.01±0.00 0.99±0.00 1.00±0.00 1.01±0.00
DNOUT 0.46±0.03 0.51±0.03 0.64±0.14 0.40±0.02 0.49±0.04 0.62±0.11
BART 1.02±0.12 2.13±0.15 2.56±0.61 1.51±1.00 1.99±0.28 2.87±0.57

Decomposed

AIPW_L 0.50±0.41 0.57±0.49 0.64±0.35 0.60±0.34 0.67±0.38 0.91±0.52
DVD 1.02±0.15 0.74±0.46 0.84±0.14 1.06±0.04 0.70±0.00 0.91±0.00

DR-CFR 0.66±0.26 0.44±0.18 0.30±0.13 0.69±0.12 0.68±0.08 0.46±0.06
TEDVAE 0.31±0.01 0.41±0.02 0.54±0.02 0.32±0.03 0.46±0.03 0.51±0.02
NICE 1.02±0.09 1.05±0.11 1.34±1.08 0.90±0.18 0.96±0.13 1.18±0.84

Ours

OAFP_L 0.03±0.01 0.01±0.01 0.08±0.02 0.14±0.03 0.15±0.07 0.12±0.08
OAFP_N 0.01±0.02 0.02±0.01 0.01±0.01 0.06±0.08 0.03±0.05 0.02±0.03

Table 2: Non-Linear simulation results. The metrics are Mean±STD over 10 repeated experiments.

Settings In_sample Prediction Out_of_sample Prediction

Feature Dimension 20 40 80 20 40 80

Statistical

Direct 4.69±0.62 7.09±0.68 8.92±0.76 5.23±0.41 6.28±1.41 9.28±1.32
IPW 0.99±4.50 1.27±3.13 4.36±2.37 1.33±1.92 2.22±5.39 4.51±3.33
AIPW 1.32±1.95 0.99±0.27 2.35±0.83 0.21±1.19 0.55±0.47 3.88±1.23
TMLE 0.42±0.11 0.59±0.07 0.62±0.02 0.50±0.12 0.66±0.18 0.81±0.20

Machine

DragonNet 0.19±0.19 0.20±0.14 0.57±0.38 0.99±0.16 0.84±0.70 0.87±1.02
GANITE 0.80±0.01 0.87±0.01 0.99±0.01 0.99±0.01 1.08±0.01 1.10±0.01
DNOUT 0.47±0.01 0.62±0.04 0.92±0.09 0.50±0.02 0.61±0.05 0.95±0.09
BART 0.92±0.20 2.03±0.27 2.89±0.98 0.92±0.20 2.25±0.16 2.98±1.10

Decomposed

AIPW_L 0.59±0.10 0.66±0.05 0.89±0.10 0.54±0.29 0.74±0.13 0.96±0.22
DVD 0.95±0.03 0.83±0.01 0.76±0.01 1.06±0.08 0.64±0.01 1.05±0.73

DR-CFR 0.88±0.08 1.18±0.16 2.08±0.69 1.28±0.08 1.69±0.73 1.52±0.51
TEDVAE 0.37±0.01 0.43±0.02 0.55±0.03 0.38±0.03 0.49±0.04 0.60±0.02
NICE 1.08±0.32 1.24±0.60 1.81±0.22 1.10±0.37 1.23±0.41 1.93±0.35

Ours

OAFP_L 0.03±0.13 0.12±0.10 0.23±0.13 0.24±0.22 0.20±0.13 0.32±0.34
OAFP_N 0.01±0.10 0.09±0.07 0.13±0.11 0.15±0.09 0.16±0.07 0.14±0.08

Table 5: Comparison on the time cost (hours) of searching
for features.

Method Syn_20_l Syn_40_l Syn_20_n Syn_40_n

Ours 0.22 0.27 28.055 41.94

Brute-force 11.65 1.83⋅107 2.94⋅103 4.61⋅109

Comparison with a simple greedy method. To show the necessity

and superiority of our RL-based optimization framework, we design

another greedy-based feature selection baseline. To be specific, the

greedy baseline starts from setting the whole set as the adjustment

features. Then adding a variable decreases R𝑂𝐴𝐹 , then the baseline

judges it as a variable from V. Otherwise, the baseline judges it

as a variable from I. Finally, the baseline ends up at steps equal to

the feature size. As shown in the following Table 6, we observe

that the greedy baseline achieves very poor feature selection result

compared to the optimal adjustment set {Z,X}. This is inherent to
the theoretical fact that the optimization objective R𝑂𝐴𝐹 is not a

sub-modular function. As a consequence, the greedy baseline does

not benefit from the near-optimal result [26].

Ablation Studies. We conduct ablation studies on data simulation

to examine the impact of variations in the ratio of I. For our study,
we use non-linear synthetic data with a total dimension of 𝑑 =
20. The original ratio of I:X:Z is 5 ∶ 3 ∶ 2, and we simulate five

additional cases by adjusting the ratio: 5 ∶ 2 ∶ 3, 3 ∶ 2 ∶ 5, 3 ∶ 5 ∶ 2,
2 ∶ 3 ∶ 5, and 2 ∶ 5 ∶ 3. Figure 4 shows the results, demonstrating

that our method accurately selects the optimal adjustment set and

estimates the ATE. Interestingly, as the ratio of I decreases, the
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Table 3: Results on IHDP and Twins datasets. The metrics are Mean±STD over 10 repeated experiments. The best performance
is marked in bold.

Benchmark IHDP Twins
Settings In_sample Out_of_sample In_sample Out_of_sample

Statistical

Direct 3.36±3.70 3.70±3.36 1.50±0.03 4.34±0.14
IPW 3.48±5.92 3.48±5.91 1.79±0.05 9.29±0.39
AIPW 1.82±2.99 1.82±2.99 1.79±0.05 9.29±0.39
TMLE 2.71±1.80 2.52±1.07 1.76±0.02 4.01±0.02

Machine

DragonNet 1.19±1.04 1.37±0.95 1.05±0.01 1.03±0.01
GANITE 5.40±0.04 5.60±0.01 15.60±0.08 19.6±0.19
DOUT 3.16±1.41 3.08±1.26 2.04±0.02 2.20±0.02
BART 3.12±2.42 3.28±2.60 0.95±0.03 0.97±0.03

Decomposed

AIPW_L 1.85±2.64 1.85±2.64 1.03±0.03 3.35±0.12
DVD 2.79±0.82 0.73±0.03 1.42±0.01 7.78±0.05

DR-CFR 2.45±1.05 1.74±1.00 3.64±0.03 6.00±0.01
TEDVAE 0.46±0.04 0.52±0.05 0.71±0.02 0.72±0.02
NICE 2.75±3.91 2.68±2.25 42.92±0.02 53.12±1.84

Ours

OAFP_L 1.14±0.47 1.24±0.33 0.65±0.02 1.98±0.06
OAFP_N 0.28±0.07 0.29±0.09 0.30±0.01 0.43±0.01

Table 4: Results on feature search, where S-20-l refers to the syn-
thetic data with 20 features in the linear setting.

Dataset Fs_Acc R_err

S-20-l 95.0% 0.02

S-40-l 92.5% 0.04

S-80-l 90.0% 0.11

S-20-n 95.0% 0.06

S-40-n 95.0% 0.10

S-80-n 90.0% 0.13

IHDP 92.0% 0.11

Twins 94.7% 0.13

performance gap between the original DragonNet and our OAFP_N

narrows, supporting our claim that including I is detrimental for

ATE estimation.

Table 6: Comparison on the greedy baseline (%), where
Syn_20_l refers to synthetic data with 20 covariates gener-
ated under the linear setting. For each method, we report the
feature selection accuracies on each dataset.

Method Syn_20_l Syn_40_l Syn_20_n Syn_40_n

Ours 98 96 94 90

Greedy 51 32 47 10

7 FUTUREWORKS AND CONCLUSION
This paper addresses the problem of estimating average treatment

effect (ATE) from observational studies. We explore the benefits of

separating treatment-only variables (I) and outcome-only variables

(Z) from the collected covariates (U), along with the confounder

𝑋 , using semi-parametric inference. We propose a variance metric

a Feature Accuracy b ATE Estimation

Figure 4: Results with different variable ratios.

to evaluate adjustment features and develop an RL-based frame-

work for efficient optimization. Experimental results confirm the

effectiveness of our method in identifying optimal features and

accurately estimating ATE. However, two challenges require fur-

ther attention: (a) Relaxing the no mediator assumption, which

constrains the applicability of our method and calls for extending

the analysis to mediators. (b) Estimating individualized treatment

effects (ITE) remains an open and challenging problem due to the

lack of a closed form of efficient influence curve.
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A THEORETICAL PROOF
Proof of Lemma 4.1.

𝔼(︀𝐷eff

𝑑 (V)⌋︀

= 𝔼 ⌊︀ℐ(T = 1) − ℐ(T = 0)
𝜋T(V)

(Y −𝑚T
V(Y))}︀

= 𝔼 ⌊︀ℐ(T = 1)
𝜋T(V)

(Y −𝑚T
V(Y))}︀ −𝔼 ⌊︀ℐ(T = 0)

𝜋T(V)
(Y −𝑚T

V(Y))}︀ ,

We then expand the first term as follows:

𝔼 ⌊︀ℐ(T = 1)
𝜋T(V)

(Y −𝑚T
V(Y))}︀

= 𝔼 ⌊︀ℐ(T = 1)
𝜋T=1(V)

(Y(1) −𝑚T=1
V (Y))}︀

= 𝔼V𝔼 ⌊︀ℐ(T = 1)
𝜋T=1(V)

(Y(1) −𝑚T=1
V (Y)) ⋃︀ V}︀

= 𝔼V {𝔼 ⌊︀ℐ(T = 1)
𝜋T=1(V)

⋃︀ V}︀𝔼 [︀(Y(1) −𝑚T=1
V (Y)) ⋃︀ V⌉︀(︀

= 0,
where the first equality is due to the consistency of Y, the second
equality is due to the tower property of expectation. Meanwhile,

the third equality is due to the fact that Y(t) á 𝜋T(V) ⋃︀ V. Finally,
𝔼 [︀(Y(1) −𝑚T=1

V (Y)) ⋃︀ V⌉︀ = 0 derives the last equality. Then (b)

follows immediately:

Var(︀𝐷eff

𝑑 (V)⌋︀ = 𝔼(︀(𝐷eff

𝑑 (V))2⌋︀− (𝔼(︀𝐷eff

𝑑 (V)⌋︀)2 = 𝔼(︀(𝐷eff

𝑑 (V))2⌋︀.
□

LemmaA.1 (Validity of𝐷eff

𝑑 (V)). Similar to𝐷eff,⧹︂𝛾(𝑃) is asymptoti-

cally linear with𝐷eff
𝑑
, and

⌋︂
𝑛 (𝛾 (⧹︂𝑃) − 𝛾(𝑃)) 𝑑Ð→ 𝑁 (0,Var(︀𝐷eff

𝑑
(V)⌋︀).

Proof. First, recalling the the original derivation of 𝐷
eff
, a pre-

vious proved conclusion is provided such that the estimator ⧹︂𝛾(𝑃)
is asymptotically linear with influence curve as 𝐷

eff
[28]:

𝛾 (⧹︂𝑃) − 𝛾(𝑃) = 1

𝑛

𝑛

∑
𝑖=1

𝐷
eff

𝑖 (V) +𝒪( 1⌋︂
𝑛
). (14)

Moreover, the decomposition of 𝐷
eff

is also proposed in [28]:

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝐷
eff

𝑑 = 𝐷
eff1 = ℐ(T = 1) − ℐ(T = 0)

𝜋T(V)
(Y −𝑚T

V(Y))

𝐷
eff2 =𝑚T=1

V (Y) −𝑚T=0
V (Y) − 𝛾(𝑃),

(15)

where the second term equals to zero under the integral of the

empirical distribution 𝑃𝑛 : 𝑃𝑛𝐷
eff2 = 0 [27]. Thus we conclude

that ⧹︂𝛾(𝑃) is asymptotically linear with influence curve as 𝐷
eff2

:

1

𝑛 ∑
𝑛
𝑖=1𝐷

eff

𝑖 (V) = 1

𝑛 ∑
𝑛
𝑖=1𝐷

eff2

𝑖 (V) +𝒪(1). Meanwhile, combined

with previous conclusion in Lemma that 𝔼(︀𝐷eff

𝑑 (V)⌋︀ = 0, we have
the following derivation:

lim

𝑛→+ inf

⌋︂
𝑛 (𝛾 (⧹︂𝑃) − 𝛾(𝑃))

= lim

𝑛→+ inf
{ 1⌋︂

𝑛

𝑛

∑
𝑖=1

(𝐷eff1

𝑖 (V) +𝐷eff2

𝑖 (V)) +
⌋︂
𝑛𝒪( 1⌋︂

𝑛
)(︀

= lim

𝑛→+ inf
{ 1⌋︂

𝑛

𝑛

∑
𝑖=1

𝐷
eff1

𝑖 (V)(︀ ,

(16)

Then the claim follows from the CLT. □

Proof of Lemma 4.2. We first claim that although we suppose

the continuity of the CDF, the similar conclusion can be extended

to CDFs with non-left-continuous points as well. As the term

𝛿𝑛 controls the convergence of the series {𝐹𝑖}𝑛𝑖=1 to 𝐹 , results in
Lemma A.1 imply that for any 𝛼 in the support of 𝑃 , the following

inequality holds:

⋃︀𝐹(𝛼) − 𝐹𝑛(𝛼)⋃︀ ≤ 𝛿𝑛 Ô⇒ 1 − 𝐹𝑛(𝛼) ≤ 1 − 𝐹(𝛼) + 𝛿𝑛 . (17)

where 𝐹 is the CDF of the normal distribution 𝑁 (0,Var(︀𝐷eff

𝑑 (V)⌋︀).
Meanwhile, we observe that𝑁 (0,Var(︀𝐷eff

𝑑 (V)⌋︀) 𝑑= 𝑍∗
⌉︂

Var(︀𝐷eff

𝑑
(V)⌋︀,

where
𝑑= refers to the in-distribution equality and 𝑍 ∼ 𝑁 (0, 1).

Therefore, the above inequality can be derived as follows:

𝑃(𝑋 ≥ 𝛼) ≤ 𝛿𝑛 + 1 − 𝑃(𝑋 ≥ 𝛼)

≤ 𝛿𝑛 + 1 − 𝑃(𝑍 ∗
⌉︂

Var(︀𝐷eff

𝑑
(V)⌋︀ ≥ 𝛼),

(18)

where the final conclusion is obtained when we further let 𝑋 =⌋︂
𝑛⋃︀𝛾 (⧹︂𝑃) − 𝛾 (𝑃) ⋃︀ and 𝛼0 =

⌋︂
𝑛𝛼 . □

Proof of Theorem 4.3. (a) Some of the techniques in our proof

here are inspired by [14]. First, V′ = V ∪ Z′ implies that Z′ á T ⋃︀ V.
Then 𝜋

T(V) = 𝜋T(V′) holds, which further derives the following

equation:

𝐷
eff

𝑑 (𝒱) = 𝐷eff

𝑑 (𝒱 ′) + ℐ(T = 1) − ℐ(T = 0)
𝜋T(V)

(𝑚T
V′(Y) −𝑚

T
V(Y))
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𝐷𝑀

.

Then we obtain the fact that 𝔼(︀𝐷𝑀𝐷eff

𝑑 (V′)⌋︀ = 0:

𝔼(︀𝐷𝑀𝐷eff

𝑑 (V′)⌋︀ = 𝔼V′𝔼(︀𝐷𝑀𝐷eff

𝑑 (V′) ⋃︀ V′⌋︀ = 0,
where the first equality is due to the tower property, and the sec-

ond equality is due to the fact that 𝔼(︀Y(t) −𝑚T
V′(Y) ⋃︀ V′⌋︀ = 0.

Meanwhile, we derive the expectation of the term 𝐷𝑀 as follows:

𝔼(︀𝐷𝑀 ⌋︀

= 𝔼 ⌊︀ℐ(T = 1) − ℐ(T = 0)
𝜋T(V)

(𝑚T
V′(Y) −𝑚

T
V(Y))}︀

= 𝔼 ⌊︀ℐ(T = 1)
𝜋T(V)

(𝑚T
V′(Y) −𝑚

T
V(Y))}︀

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
𝐷1

𝑀

−𝔼 ⌊︀ℐ(T = 0)
𝜋T(V)

(𝑚T
V′(Y) −𝑚

T
V(Y))}︀

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
𝐷2

𝑀

,

where the term 𝐷
1

𝑀 is then simplified as follows:

𝐷
1

𝑀 = 𝔼 ⌊︀ℐ(T = 1)
𝜋T=1(V)

(𝑚T=1
V′ (Y) −𝑚T=1

V (Y))}︀

= 𝔼V ⌊︀𝔼 [︀(𝑚T=1
V′ (Y) −𝑚T=1

V (Y)) ⋃︀ V⌉︀𝔼 ⌊︀ ℐ(T = 1)
𝜋T=1(V′)

⋃︀ V}︀}︀ ,

where the term 𝔼 [︀(𝑚T=1
V′ (Y) −𝑚T=1

V (Y)) ⋃︀ V⌉︀ = 0 due to the fact
that 𝔼(︀𝑚T=1

V′ (Y) ⋃︀ V⌋︀ = 𝑚T=1
V (Y). The simplification of 𝐷

2

𝑀 is
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similar to that of 𝐷
1

𝑀 . Thus we derive that 𝔼(︀𝐷𝑀 ⌋︀ = 0. Finally, we
derive the formulation of Var(𝐷eff

𝑑 (V)) as follows:
Var(𝐷eff

𝑑 (V))

= Var(𝐷eff

𝑑 (V′)) + Var(𝐷𝑀)

= Var(𝐷eff

𝑑 (V′)) + 𝔼 [︀𝐷2

𝑀⌉︀

= Var(𝐷eff

𝑑 (V′)) + 𝔼 ⌊︀(ℐ(T = 1) − ℐ(T = 0)
𝜋T(V)

(𝑚T
V′(Y) −𝑚

T
V(Y)))

2

}︀

= Var(𝐷eff

𝑑 (V′)) + 𝔼V ⌊︀Var(𝑚T
V(Y) ⋃︀ V)(

1

𝑝(T = 1 ⋃︀ V)
+ 1

𝑝(T = 0 ⋃︀ V)
)}︀ ,

where the last equality is due to the fact that 𝔼(︀𝑚T
V′(Y) ⋃︀ V⌋︀ =

𝑚
T
V(Y) with some algebra on the term 𝔼 ⌊︀(ℐ(T=1)−ℐ(T=0)

𝜋T(V) )
2

⋃︀ V}︀.

(b) First, V′ = V ∪ I′ and I′ á Y ⋃︀ V,T imply that 𝑚
T
V(Y) =

𝑚
T
V′(Y) holds. Then we derive the following decomposition of

Var(𝐷eff

𝑑 (V′)):

Var(𝔼 [︀𝐷eff

𝑑 (V′) ⋃︀ T,V,Y⌉︀) +𝔼 [︀Var (𝐷eff

𝑑 (V′) ⋃︀ T,V,Y)⌉︀ , (19)

where the term 𝔼 [︀𝐷eff

𝑑 (V′) ⋃︀ T,V,Y⌉︀ is simplified as follows:

𝔼 [︀𝐷eff

𝑑 (V′) ⋃︀ T,V,Y⌉︀

= 𝔼 ⌊︀ℐ(T = 1) − ℐ(T = 0)
𝜋T(V′)

(Y −𝑚T
V′(Y)) ⋃︀ T,V,Y}︀

= 𝔼 ⌊︀ℐ(T = 1) − ℐ(T = 0)
𝜋T(V′)

(Y −𝑚T
V(Y)) ⋃︀ T,V,Y}︀

= ∑
t∈{0,1}

(2t − 1)ℐ(T = t)(Y −𝑚t
V(Y))𝔼 ⌊︀

1

𝜋T(V′)
⋃︀ T,V}︀

= 𝐷eff

𝑑 (V).
Then, we apply the results in (19) and simplify the expression of

Var(𝐷eff

𝑑 (V′)) as follows:
Var(𝐷eff

𝑑 (V′))

= Var(𝐷eff

𝑑 (V)) + 𝔼 [︀Var (𝐷eff

𝑑 (V′) ⋃︀ T,V,Y)⌉︀

= Var(𝐷eff

𝑑 (𝒱)) + 𝔼 ⌊︀Var(ℐ(T = 1) − ℐ(T = 0)
𝜋T(V′)

(Y −𝑚T
V′(Y)) ⋃︀ T,V,Y)}︀

= Var(𝐷eff

𝑑 (V)) + 𝔼
⎨⎝⎝⎝⎝⎪
∑

t∈{0,1}
ℐ(T = t) (Y −𝑚T

V′(Y))
2

Var( 1

𝜋T(V′)
⋃︀ T,V,Y)

⎬⎠⎠⎠⎠⎮
.

[(c)] Once the variable set Z contains all the parents of Y, we can
write the structural equation of Y as Y = 𝑓Y(T,X,Z). Then the

proposed OAF metric of V0, i.e., can be derived as follows:

𝔼 ⌊︀( ℐ(T = 1)
𝜋T=1(V0)

(Y −𝑚T=1
V
0

(Y)))
2

}︀

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
𝐾1

+𝔼 ⌊︀( ℐ(T = 0)
𝜋T=0(V0)

(Y −𝑚T=0
V
0

(Y)))
2

}︀

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
𝐾2

,

where we further expand 𝐾1 as follows:

𝐾1 = 𝔼V0 ⌊︀𝔼 ⌊︀(
ℐ(T = 1)
𝜋T=1(V0)

)
2

⋃︀ V0}︀𝔼 ]︀(Y(t = 1) −𝑚T
V
0

(Y))2 ⋃︀ V0{︀}︀

= 𝔼V0 ⌊︀𝔼 ⌊︀(
ℐ(T = 1)
𝜋T=1(V0)

)
2

⋃︀ V0}︀𝔼 [︀(Y(t = 1) − 𝑓Y(T,X,Z))2 ⋃︀ V0⌉︀}︀

= 0,

where the second equality holds due to the fact that Z contains all

the parents of Y. Similar to above derivation, we obtain that 𝐾2 = 0.
Furthermore, we conclude that Var(𝐷eff

𝑑 (V0)) = 0, which indicates

that Var(𝐷eff

𝑑 (V0)) ≤ Var(𝐷eff

𝑑 (V′)).
□

B DETAILS ON IMPLEMENTATION
Details on estimating 𝜋T(V) and𝑚T

V(Y) For the linear implemen-

tation OAFP_L, we build 𝜋T(V) and𝑚T
V(Y) using the linear regres-

sion and logistic regression without any regularization tricks. Mean-

while, our implementation on the downstream estimator, namely

the AIPW estimator, follows the Zepid package [17]. For the non-

linear implementation OAFP_N, we build 𝜋T(V) and𝑚T
V(Y) with

two deep networks. The regression network for 𝜋T(V) consists
of four MLP layers with the activation function as 𝐸𝐿𝑈 , and the

score network consists of three MLP layers with 𝐸𝐿𝑈 as the ac-

tivation function for the first two layers and 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 for the last

layer. The optimizer we choose for 𝜋T(V) and𝑚T
V(Y) is the Adam

optimizer [], where the learning rate is 0.001 and 0.0005, respec-

tively. Notably, we split an extra validation set from the training

data such that 𝜋T(V) and𝑚T
V(Y) are evaluated on the validation

part. Besides, we implement OAFP_L on a single Tesla V100 gpu.

For OAFP_N, we compute
⧹︂ℛ on a 8-gpu Tesla V100 cluster, where

each batch array 𝐵𝑖 is trained in a single process in parallel.

Details on our OAFP framework Our implementation follows

prior work on neural combinatorial search [4, 37]. The encoder is a

Transformer and the decoder is a multi-layer MLP. The Transformer

takes the covariates𝑈 as input (total size:ℛ𝐾×𝑑×𝑛𝑏 ). The encoder’s
output has the same shape. We combine T and Y with the learned

representation of U and feed them to the MLP decoder. The decoder

uses sigmoid functions to sample the binary feature mask. We use

𝑛𝑏 = 512 and 𝐾 = 64 throughout our experiments. The Transformer

encoder has two blocks and the MLP decoder has two linear layers

with ReLU activation. We apply the reinforce approach [30] to

reduce actor variance, using an exponential average of past rewards

with a scaling factor of 0.99. The entropy term’s hyper-parameter

is set to 1.

Details on the downstream estimators AIPW and Drag-
onNetWe implemented two downstream estimators, AIPW and

DragonNet, using the zepid package for AIPW and the original

open-source implementation for DragonNet. AIPW employs lin-

ear regression for outcome regression and logistic regression for

propensity score estimation. These estimators are combined using

semi-parametric approaches [12]. DragonNet, as a deep version of

AIPW, integrates score prediction and outcome prediction into an

end-to-end network with target regularization to satisfy the esti-

mation equation [22]. DragonNet’s architecture consists of 4-layer

MLD layers activated by the 𝐸𝐿𝑈 function. It has three heads: a

single-layer MLP with 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 as the score head and two three-

layer MLPs with 𝐸𝐿𝑈 as the outcome heads. The Adam optimizer

with an initial learning rate of 0.001 is used for DragonNet.
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