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ABSTRACT
Collaborative multi-agent reinforcement learning (MARL) has been
widely used inmany practical applications, where each agent makes
a decision based on its own observation. Most mainstream methods
treat each local observation as an entirety when modeling the de-
centralized local utility functions. However, they ignore the fact that
local observation information can be further divided into several
entities, and only part of the entities is helpful to model inference.
Moreover, the importance of different entities may change over
time. To improve the performance of decentralized policies, the
attention mechanism is used to capture features of local informa-
tion. Nevertheless, existing attention models rely on dense fully
connected graphs and cannot better perceive important states. To
this end, we propose a sparse state based MARL (S2RL) framework,
which utilizes a sparse attention mechanism to discard irrelevant
information in local observations. The local utility functions are
estimated through the self-attention and sparse attention mech-
anisms separately, then are combined into a standard joint value
function and auxiliary joint value function in the central critic. We
design the S2RL framework as a plug-and-play module, making it
general enough to be applied to various methods. Extensive experi-
ments on StarCraft II show that S2RL can significantly improve the
performance of many state-of-the-art methods.
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1 INTRODUCTION
Multi-agent reinforcement learning (MARL) provides a framework
for multiple agents to solve complex sequential decision-making
problems, with broad applications including robotics control [12,
14], video gaming [15, 33], traffic light control [37] and autonomous
driving [1, 11]. In the paradigm of centralized training with decen-
tralized execution (CTDE) [18, 26], each local agent models a policy
that treats the local observation as input. However, the role of
entities is underestimated by most mainstream methods. Entities
are defined as fine-grained tokens of observations, e.g., obstacles,
landmarks, enemies, which determine the inference process of the
model. Specifically, they treat all entities observed as a whole and
contribute indiscriminately to the estimation of the value func-
tion. But in some cases, the importance of each entity changes
dynamically over time steps.

To better leverage the observation information, the attention
mechanism has been adopted [31] for its ability to learn the inter-
action relationship among entities and dynamically focus on the
crucial parts. Most existing attention mechanisms compute impor-
tance weights based on dense fully-connected graphs, where all
participants are assigned scores according to their contribution to
model decisions. In practice, however, not all entities are helpful for
model inference, and discarding redundant entities can sometimes
improve overall performance. Therefore, it is crucial for agents to
learn to select valuable observations and exclude others. To better
illustrate this phenomenon, a visualization of the StarCraft II scene
and the corresponding attention distribution is shown in Figure 1.
The green agent H3 is very close to the red enemies Z0 and Z5.
Hence agent H3 focusing only on enemies Z0 and Z5 is more effec-
tive. However, from the traditional dense attention distribution of
H3, we can see that H3 assigns much attention to irrelevant entities.
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(a) Six friendly Hydralisks face 8 enemy Zealots.
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(b) Dense attention distribution
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(c) Sparse attention distribution

Figure 1: A visualization example of agent performance on the StarCraft II super-hard scenario 6ℎ_𝑣𝑠_8𝑧. As shown in (a), the
closest to the green agent H3 are the red enemies Z0 and Z5. Thus the corresponding policy is that H3 only needs to focus on Z0
and Z5, which are more likely to be annihilated. (b) shows the softmax attention distribution of the H3 observations, finding
that some weights are still assigned to irrelevant entities. In contrast, the sparse attention in (c) only focuses on Z0 and Z5.

Note that the large state space brings great difficulties to policy
learning for a more complex MARL environment.

An ideal way to solve this issue is to replace the traditional atten-
tion mechanism with sparse attention. From Figure 1(c), we can see
that adopting sparse attention can well guide H3 only to perceive
Z0 and Z5, reducing the observation space that the agent needs to
perceive. However, simply applying sparse attention to local agents
will corrupt the training. The main reason is that the network can-
not distinguish which entity is more important at the beginning
of training. If the agents only focus on critical entities initially, it
may lead to an inadequate exploration of the environment and thus
converge to a suboptimal policy. More specifically, temporarily dis-
carding some entities can be seen as a policy exploration behavior.
Meanwhile, local policies need to execute their exploration strate-
gies. When these two strategies are executed simultaneously, it is
difficult for the model to converge.

In this paper, we propose a Sparse State based MARL (S2RL)
framework, where the sparse attention mechanism is utilized as
the auxiliary for guiding the local agent training. In particular, we
model the local utility function using a traditional self-attention
mechanism. Then, we construct a corresponding auxiliary utility
function for each agent, which is implemented by a sparse attention
mechanism. The local utility and auxiliary utility functions respec-
tively form the joint value and auxiliary value functions, which are
further used to train the entire network. Since the sparse attention
mechanism is considered auxiliary and thus does not corrupt the
training process, the auxiliary value function is also used to update
the entire framework. To this end, local agents can learn patterns
to focus on essential entities while ignoring redundancy.

Our main contributions are summarized as follows:

• To the best of our knowledge, this paper is the first attempt
that uses enhanced awareness of crucial states as the auxil-
iary in MARL to improve convergence rate and performance.

• We propose the S2RL framework for local agents to per-
ceive crucial states while preserving all states. The proposed

framework thus addresses the inability to converge using
only a small number of partial observations.

• We design the S2RL framework as a plug-and-play module,
making it general enough to be applied to various methods
in the CTDE paradigm.

• The extensive experiments on StarCraft II show that S2RL
brings remarkable improvements to existing methods, espe-
cially in complicated scenarios.

The remainder of the paper is organized as follows. In Section 2,
we introduce the background of MARL and the CTDE framework.
In Section 3, we propose our S2RL framework. Experimental results
are presented in Section 4. Related works are presented in Section
5. Section 6 concludes the paper.

2 PRELIMINARIES
2.1 Dec-POMDP
A fully cooperative multi-agent sequential task can be described
as a decentralized partially observable Markov decision process
(Dec-POMDP) [23], which is canonically formulated by the tuple:

𝑀 =< I,S,U, 𝑃, 𝑅,Ω,𝐺,𝛾 > . (1)

In the process, I ≡ {1, 2, . . . , 𝑁 } is the finite set of agents and 𝑠 ∈ S
represents the global state of the environment. At each time step,
each agent 𝑖 ∈ I receives an individual partial observation 𝑜𝑖 ∈ Ω
according to the observation function 𝐺 (𝑠, 𝑖) and selects an action
𝑢𝑖 ∈ U, forming a joint action 𝒖. This results in a transition to the
next state 𝑠 ′ according to the state transition function 𝑃 (𝑠 ′ |𝑠, 𝒖) :
S × U × S → [0, 1]. All agents share the same global reward 𝑟
based on the reward function 𝑅(𝑠, 𝒖) : S×U → R, and 𝛾 ∈ [0, 1) is
the discount factor. Due to partially observable setting, each agent
has an action-observation history 𝜏𝑖 ∈ T ≡ (Ω ×U)∗ and learns
its individual policy 𝜋𝑖

(
𝑢𝑖 |𝜏𝑖

)
to jointly maximize the discounted

return. The joint policy 𝝅 induces a joint action-value function:
𝑄𝑡𝑜𝑡𝝅 (𝑠, 𝒖) = E𝑠0:∞,𝒖0:∞

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 | 𝑠0 = 𝑠, 𝒖0 = 𝒖, 𝝅
]
.
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Figure 2: Illustration of the proposed S2RL method. We use the value-based MARL framework under the CTDE paradigm and
apply the S2RL method to an agent utility network. The core of S2RL is composed of the dense attention module and sparse
attention module, where sparse attention serves as an auxiliary for guiding the dense attention training.

2.2 CTDE Framework
The centralized training and decentralized execution (CTDE) is a
popular paradigm used in deep multi-agent reinforcement learn-
ing [4, 5, 20, 26, 38], which enables agents to learn their individual
policies in a centralized way. During the centralized training pro-
cess, the learning model can access the state and provide global
information to assist the agents in exploring and training. How-
ever, each agent only makes decisions based on its local action-
observation history during decentralized execution. The Individual-
Global-Max principle [29] guarantees the consistency between joint
and local greedy action selections. Agents can obtain the optimal
global reward by maximizing the individual utility function of each
agent. Thus a more robust individual value function can benefit the
whole team in cooperative multi-agent tasks.

The global Q-function 𝑄𝑡𝑜𝑡𝝅 is calculated by all individual value
functions: 𝑄𝑡𝑜𝑡𝝅 (𝝉 , u) = 𝐹 ( [𝑄𝑖𝜋 (𝜏𝑖 , 𝑢𝑖 )]𝑁𝑖=1, 𝑠;𝜃 ) , where 𝝉 ≡ T𝑛
is a joint action-observation history and 𝒖 is a joint action, 𝐹 is
the credit assignment function parameterized by 𝜃 to learn value
function factorization. Each agent learns its own utility function
by maximizing the global value function 𝑄𝑡𝑜𝑡 , which is trained
end-to-end to minimise the following TD loss:

L(𝜃 ) = ED
[ (
𝑦𝑡𝑜𝑡 −𝑄𝑡𝑜𝑡 (𝝉 , 𝒖, 𝑠;𝜃 )

)2
]
, (2)

where D is the replay buffer, 𝑦𝑡𝑜𝑡 = 𝑟 + 𝛾 max𝒖′ 𝑄𝑡𝑜𝑡 (𝝉 ′, 𝒖 ′, 𝑠 ′;𝜃−)
and 𝜃− is the parameter of the target network [22].

3 SPARSE STATE BASED MARL
In this section, we propose a novel sparse state based MARL frame-
work that is general enough to be plugged into any existing value-
based multi-agent algorithm. As shown in Figure 2, our framework
adopts the CTDE paradigm, where each agent learns its individual
utility network by optimizing the TD loss of the mixing network.
During the execution, the mixing network is removed, and each
agent acts according to its local policy derived from its value func-
tion. Distinguish from other value-based methods, our agents’ value
functions or policies carry out the process of selection and discrim-
ination according to the importance of different entities of state.
To enable efficient and effective learning among agents between
different entities of state, our method be described by three steps:
1) selection; 2) discrimination; 3) learning.

3.1 Selection and Discrimination
It is a dynamic process to assign attentions based on the contri-
bution of the observed entities to the value estimation. In our
framework, we adopt the self-attention module [31] to capture
the relational weights between the observed entities of the agents.
In particular, an agent 𝑖 observes 𝑀 other entities at time step
𝑡 , then the corresponding input of utility network 𝑂𝑖𝑡 is defined
as 𝑂𝑖𝑡 = [𝒐𝑖,1𝑡 , . . . , 𝒐

𝑖,𝑀
𝑡 ]𝑇 ∈ R𝑀×𝑑𝐸 with 𝑑𝐸 being the entity di-

mension and 𝑜𝑖,𝑚𝑡 ∈ R𝑑𝐸 being the state information of the𝑚-th
(𝑚 ∈ {1, ..., 𝑀}) entity. All observed entities are embedded to 𝑑𝑋
dimension via an embedding function 𝑓 (·) : R𝑑𝐸 → R𝑑𝑋 as follows:

𝑋 𝑖𝑡 =

{
𝑓 (𝒐𝑖,1𝑡 ), . . . , 𝑓 (𝒐𝑖,𝑀𝑡 )

}
, 𝑖 ∈ I . (3)
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Then, the embedding feature of each agent𝑋 ∈ R𝑀×𝑑𝑋 is projected
to query 𝑄 = 𝑋𝑊𝑄 , key 𝐾 = 𝑋𝑊𝐾 and value 𝑉 = 𝑋𝑊𝑉 repre-
sentation, where {𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 } ∈ R𝑑𝑋×𝑑𝑋 are trainable weight
matrices. Then, 𝑄 , 𝐾 , 𝑉 are input into the self-attention layer to
calculate the entities importance for the model decision, which is
given by

Attn(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√︁
𝑑𝑋

)
𝑉 . (4)

One of the limitations of the softmax activation function is that
the resulting probability weights for any element never appear to be
zero, which further leads to dense output probabilities. Nevertheless,
for the sake of simplifying the exploration space and selecting
valuable observations, it is crucial for agents to reduce the number
of entities to focus on. Hence, a sparse probability distribution
is desired to distinguish between critical and irrelevant entities,
which can accelerate convergence and improve performance. To
start with, inspired by sparsemax [21, 24], we consider introducing
sparse states to enhance the perception of valuable entities of agent
observation and neglect the others.

We denote the products of the query with all keys 𝑄𝐾𝑇 as 𝑍 ∈
R𝑀×𝑀 , which consists of𝑀 rows {𝒛1, . . . , 𝒛𝑀 }with 𝒛𝑚 ∈ R𝑀 being
the logits of the𝑚-th row. Afterwards, we define a matrix sorting
operator SortMat(·) as follows:

𝑍 = SortMat(𝑍 ) = [SortVec(𝒛1)𝑇 , . . . , SortVec(𝒛𝑀 )𝑇 ]𝑇 , (5)

where SortVec(·) sorts the elements of vector in descending order.
Then we calculate

𝒏(𝑍 ) = [𝑛1, . . . , 𝑛𝑀 ]𝑇 , (6)

where 𝑛𝑚 := max {𝑛 ∈ [𝑀] | 1 + 𝑛𝑍𝑚,𝑛 >
∑
𝑘≤𝑛 𝑍𝑚,𝑘 } is the maxi-

mal number of crucial elements in 𝒛𝑚 that we intend to preserve,
while other elements is set to zero in the subsequent operations.
We define

𝒄 = [𝑐1, · · · , 𝑐𝑀 ]𝑇 (7)

with 𝑐𝑚 =
∑
𝑘≤𝑛𝑚 𝑍𝑚,𝑘 − 1 and the scaling vector as

𝝁 = [ 1
𝑛1
, · · · , 1

𝑛𝑀
]𝑇 . (8)

Then, the threshold matrix is calculated as

Δ = 1𝑀×1 (𝒄 ⊙ 𝝁)𝑇 , (9)

where 1𝑀×1 ∈ R𝑀 is an all-one vector and ⊙ is the pointwise
product. The sparse attention weights matrix 𝑃 is obtained by

𝑃 = [𝑍 − Δ]+, (10)

where [·]+ := max{0, ·}. Thus, the sparse attention is given by

sAttn(𝑄,𝐾,𝑉 ) = 𝑃𝑉 , (11)

which can retain most of the essential properties of softmax while
assigning zero probability to low-scoring choices. Therefore, the
model will pay more attention to critical entities when making
decisions, reducing the attention to other redundant entities.

Algorithm 1 Sparse State based MARL Algorithm

Initialize: Critic network 𝜃𝜌 , target critic 𝜃𝜌 = 𝜃𝜌 , agents’ Q-value
networks 𝜃𝜋 = (𝜃1, . . . , 𝜃𝑁 ) and Replay buffer D

1: for each training episode 𝑒 do
2: 𝑡 = 0, 𝑠0 = initial state, 𝑜𝑖0 = 𝐺 (𝑠0, 𝑖) and ℎ𝑖0 = 0 for 𝑖 ∈ N
3: while 𝑠 ≠ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 and 𝑡 < 𝑇 do
4: 𝑡 = 𝑡 + 1
5: for each agent 𝑖 do
6: Calculate dense attention 𝑌𝑑𝑒𝑛𝑠𝑒 by (12)
7: Calculate sparse attention 𝑌𝑠𝑝𝑎𝑟𝑠𝑒 by (13)
8: Calculate trajectory encode ℎ𝑖𝑡 by (14)
9: Obtain 𝑄𝑖

𝑑𝑒𝑛𝑠𝑒
(𝜏𝑖 , ·) by (15)

10: Obtain 𝑄𝑖𝑠𝑝𝑎𝑟𝑠𝑒 (𝜏𝑖 , ·) by (16)
11: Sample 𝑢𝑖 from 𝜋𝑖 (𝑄𝑖

𝑑𝑒𝑛𝑠𝑒
, 𝜖)

12: end for
13: Execute actions 𝒖𝑡 = (𝑢1, . . . , 𝑢𝑁 )
14: Receive reward 𝑟𝑡+1 and next state 𝑠𝑡+1
15: end while
16: Store episodes in replay buffer D
17: Sample a random minibatch of episodes from D
18: Dense Attention Loss:
19: Compute L𝑡𝑑 (𝜃𝜋 , 𝜃𝜌 ) by (17)
20: Auxiliary Sparse Attention Loss:
21: Compute L𝑎𝑢𝑥 (𝜃𝜋 , 𝜃𝜌 ) by (18)
22: Update 𝜃𝜋 and 𝜃𝜌 by (19)
23: Every 𝐶 episodes reset 𝜃𝜌 = 𝜃𝜌
24: end for

3.2 Learning with Sparse Loss
Obviously, the sparse attention mechanism can be realized by di-
rectly replacing the traditional self-attention activation function
with a sparse distribution function. However, the model cannot
distinguish which entity is vital from the beginning. Thus directly
adopting the sparse attention mechanism will have performance
regression. To address this issue, we design the structure shown on
the right side of Figure 2 to guide the training of local agents, where
we utilize two routes to exploit dense and sparse attention, respec-
tively. Dense attention guarantees that the algorithm can converge,
while sparse attention is a powerful auxiliary to enhance the agent
perception of critical entities, thereby improving performance.

To do this, the sparse attention module and dense attention mod-
ule share the weight matrices {𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 } and the GRU module.
Denote the parameters of these two networks by 𝜃𝜋 . The projected
matrix 𝑄 and 𝐾 are fed into both dense and sparse attention. Then,
we calculate the weighted sum of 𝑉 to obtain the output

𝑌𝑑𝑒𝑛𝑠𝑒 = Attn(𝑄,𝐾,𝑉 ) ∈ R𝑀×𝑑𝑋 , (12)

𝑌𝑠𝑝𝑎𝑟𝑠𝑒 = sAttn(𝑄,𝐾,𝑉 ) ∈ R𝑀×𝑑𝑋 . (13)

In our implementation, the GRU [2] module is utilized to encode
an agent’s history of observations and actions via

ℎ𝑖𝑡 = 𝐺𝑅𝑈 (𝑋 𝑖𝑡 , ℎ𝑖𝑡−1). (14)
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Then, 𝑌𝑑𝑒𝑛𝑠𝑒 and 𝑌𝑠𝑝𝑎𝑟𝑠𝑒 are concatenated with the output of GRU
separately to estimate the individual value function as follows:

𝑄𝑖
𝑑𝑒𝑛𝑠𝑒

(𝜏𝑖 , ·) = Agent𝑖 (𝑌𝑑𝑒𝑛𝑠𝑒 , ℎ𝑖𝑡 ), (15)

𝑄𝑖𝑠𝑝𝑎𝑟𝑠𝑒 (𝜏𝑖 , ·) = Agent𝑖 (𝑌𝑠𝑝𝑎𝑟𝑠𝑒 , ℎ𝑖𝑡 ) . (16)
Each agent selects the action that maximizes 𝑄𝑖

𝑑𝑒𝑛𝑠𝑒
and 𝑄𝑖𝑠𝑝𝑎𝑟𝑠𝑒

for subsequent computations in centralized training. In addition,
the action selected by 𝑄𝑖

𝑑𝑒𝑛𝑠𝑒
is executed in the environment. For

the exploration strategy, 𝜖-greedy is adopted, and the exploration
rate of 𝜖 decreases over time.

To better learn the role of entities in credit assignment, we use a
mixing network to estimate the global Q-values𝑄𝑡𝑜𝑡

𝑑𝑒𝑛𝑠𝑒
and𝑄𝑡𝑜𝑡𝑠𝑝𝑎𝑟𝑠𝑒 ,

using per-agent utility 𝑄𝑖
𝑑𝑒𝑛𝑠𝑒

and 𝑄𝑖𝑠𝑝𝑎𝑟𝑠𝑒 . Since the auxiliary esti-
mation is calculated in the individual utility function, our proposed
S2RL is seamlessly integrated with various valued-based algorithms.
For example, we can use the mixing network, a feed-forward neu-
ral network introduced by QMIX [26]. The mixing network mixes
the agent network outputs monotonically. The parameters of the
mixing network parameterized by 𝜃𝜌 are conditioned on the global
states and are generated by a hyper-network. Then, we minimize
the following TD loss to update the dense attention module:

L𝑡𝑑
(
𝜃𝜋 , 𝜃𝜌

)
= ED

[(
𝑟 + 𝛾 max

𝒖′
𝑄𝑡𝑜𝑡
𝑑𝑒𝑛𝑠𝑒

(
𝑠 ′, 𝒖 ′

)
−𝑄𝑡𝑜𝑡

𝑑𝑒𝑛𝑠𝑒
(𝑠, 𝒖)

)2
]
,

(17)
where 𝑄𝑡𝑜𝑡

𝑑𝑒𝑛𝑠𝑒
is the target network, and the expectation is esti-

mated with uniform samples from the same replay buffer D. In the
meanwhile, the AUX Loss is given by

L𝑎𝑢𝑥
(
𝜃𝜋 , 𝜃𝜌

)
= ED

[(
𝑟 + 𝛾 max

𝒖′
𝑄𝑡𝑜𝑡𝑠𝑝𝑎𝑟𝑠𝑒

(
𝑠 ′, 𝒖 ′

)
−𝑄𝑡𝑜𝑡𝑠𝑝𝑎𝑟𝑠𝑒 (𝑠, 𝒖)

)2
]
,

(18)
where 𝑄𝑎𝑢𝑥𝑡𝑜𝑡 is the auxiliary target network.

In our framework, S2RL services as a plug-in module in the agent
utility networks. The outputs of S2RL modules are directly used for
subsequent network computations. Then, each agent is trained by
minimizing the total loss

L
(
𝜃𝜋 , 𝜃𝜌

)
= L𝑡𝑑 (𝜃𝜋 , 𝜃𝜌 ) + 𝜆L𝑎𝑢𝑥 (𝜃𝜋 , 𝜃𝜌 ), (19)

where 𝜆 is a regularization parameter that controls the level of at-
tention to critical states. Obviously, a larger 𝜆 allows our algorithm
to pay more attention to some critical states, while a smaller 𝜆
allows for a more even distribution of attention. The overall frame-
work is trained in an end-to-end centralized manner. The complete
algorithm is summarized in Algorithm 1.

4 EXPERIMENTS
We conduct experiments on the StarCraft Multi-Agent Challenge
(SMAC)1 [28] to demonstrate the effectiveness of the proposed
sparse state based MARL (S2RL) method. SMAC has become a
standard benchmark for evaluating state-of-the-art MARL meth-
ods, which focuses on micromanagement challenges. The setup of
SMAC is that each ally entity is controlled by an individual learning
agent, while the enemy entities are controlled by a built-in AI. At
each time step, agents can move in four cardinal directions, stop,
1We use the SC2.4.10 version instead of the older SC2.4.6.2.69232. Performance is not
comparable between different versions.

take no-operation, or choose an enemy to attack. Thus, if there
are 𝑛𝑒 enemies in the scenario, the action space for each ally unit
consists of 𝑛𝑒 + 6 discrete actions. Agents aim to inflict maximum
damage on enemy entities to win the game. Therefore, proper tac-
tics such as focusing fire and covering attack are required during
battles. Learning these diverse interaction behaviors under partial
observation is a crucial yet challenging task. In what follows, we de-
tail the compared methods and parameter settings and then present
the qualitative and quantitative performance of different methods.

4.1 Comparison Methods and Training Details
Our method is compared with several baseline methods, including
IQL, VDN [30], QMIX [26], QTRAN [29], QPLEX [34], CWQMIX
and OWQMIX [25]. Our S2RL implementation uses VDN, QMIX
and QPLEX as an integrated architecture to verify its performance,
called S2RL (VDN), S2RL (QMIX) and S2RL (QPLEX). These three
SOTA methods are chosen for their robust performance in different
multi-agent scenarios, while S2RL can also be easily applied to
other frameworks.

We adopt the Python MARL framework (PyMARL) [28] to run
all experiments. The hyperparameters of the baseline methods are
the same as those in PyMARL to ensure comparability. The regu-
larization parameter in (19) is set to 𝜆 = 1. For all experiments, the
optimization is conducted using RMSprop with a learning rate of
5 × 10−4, a total timestep of 2M, a smoothing constant of 0.99, and
no momentum or weight decay. For exploration, we use 𝜖−greedy
with 𝜖 annealed linearly from 1.0 to 0.05 over 50𝐾 time steps and
kept constant for the rest of the training. For four super hard explo-
ration maps (6h_vs_8z, 3s5z_vs_3s6z, corridor, 5s10z), we extend
the epsilon annealing time to 500𝐾 and the total timestep to 5𝑀 ,
and three of them (6h_vs_8z, corridor, 5s10z) optimized with Adam
for both series of S2RL and all the baselines and ablations. Batches
of 32 episodes are sampled from the replay buffer, and all tested
methods are trained end-to-end on fully unrolled episodes. All ex-
periments on the SMAC benchmark use the default reward and
observation settings of the SMAC benchmark [28]. All experiments
in this section were carried out with 5 different random seeds on
NVIDIA GTX V100 GPU.

4.2 Overall Results
To demonstrate the efficiency of our proposed method, we conduct
experiments on 6 challenging SMAC scenarios, which are classi-
fied into Easy (3s5z), Hard (3s_vs_5z) and Super-Hard (6h_vs_8z,
3s5z_vs_3s6z, corridor, 5s10z). All of these scenarios are heteroge-
neous, where each army is composed of more than one entity type.
It is worth mentioning that MARL algorithms are harder to con-
verge on hard and super-hard maps and therefore need to focus
more on important entities to speed up convergence. In this way,
we are more interested in the performance of our method on these
maps.

Figure 3 shows the overall performance of the tested algorithms
in different scenarios. The results include the median performance
and 25−75% percentiles are shaded to avoid the effect of any outliers
as recommended in [28]. For the sake of demonstration, here we
select the best plug-in method, referred to as S2RL in the following,
to compare with other baseline algorithms. First of all, we can
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Figure 3: Learning curves of our S2RL and baselines on one easy map (3s5z), one hard map (3s_vs_5z), and 4 super-hard
maps (corridor, 5s10z, 6h_vs_8z, 3s5z_vs_3s6z). All experimental results are illustrated with the median (25 − 75% percentiles)
performance and across 5 runs for a fair comparison.

see that S2RL performs best on up to all six tasks, which means
our proposed method can efficiently enhance the performance of
agents in different scenarios. In the easy map, some algorithms have
achieved good performance, and our S2RL is not significantly ahead.
In contrast, our S2RL significantly improves the learning efficiency
and final performance compared to the baselines in some hard and
super-hard scenarios. Specifically, in 6h_vs_8z and 3s5z_vs_3s6z,
our S2RL consistently outperforms baselines by a large margin
during training. This is because the number of entities in easy maps
is small, all entities are critical, and the selection gain brought by
the sparse attention mechanism is not apparent. However, when the
situation becomes more complex, and the agent needs to consider
which entities are more critical to the decision, the benefits of the
sparse attention mechanism are more pronounced.

In addition, to test the generalization of our method incorpo-
rated into various valued-based algorithms, we incorporate S2RL
to VDN, QMIX and QPLEX respectively, and compare the final
performance with vanilla agent utility networks in Figure 4. In gen-
eral, most of the learning curves of S2RL (VDN), S2RL (QMIX) and
S2RL (QPLEX) achieve gratifying results superior to VDN, QMIX
and QPLEX. Besides, it is worth mentioning that our method pulls
huge margins on tasks with more severe difficulties, demonstrating
the effectiveness of S2RL. The experimental results show that in the
super-hard map 6h_vs_8z, our proposed S2RL (QPLEX) improves
the win rate by almost 55% compared to the naive QPLEX. Even

more encouraging is that S2RL (QMIX) can reach a win rate of 80%
while QMIX basically does not learn any strategy.

Furthermore, the promotion of incorporating S2RL into QMIX
and QPLEX is higher than VDN, which reveals the importance
of the mixing network. We hypothesize that the sparse attention
mechanism enables the model to select critical entities and further
clarify their contributions, which may promote the power of credit
assignment. Unlike QMIX and QPLEX, VDN represents the joint
action-value as a summation of individual Q-functions, resulting
in this poor representation of the mixing network challenging to
leverage the strengths of our approach.

4.3 Ablation Study
To evaluate the advantage of sparse auxiliary loss on the agent
training process, we conduct ablation studies on three super hard
maps (5s10z, 6h_vs_8z, 3s5z_vs_3s6z) to test its contribution. Our
S2RLmainly consists of two parts: (A) dense attention, denotedAttn;
(B) sparse attention as an auxiliary, noted as S2RL. We apply these
two components to VDN, QMIX and QPLEX utility networks and
compare their performance in Figure 5. The solid curves indicate
that the agents use the dense attention module to calculate the
importance of different entities. The dashed curves indicate that
the agents learn to use the sparse attention module as an auxiliary
to teach the dense attention module.
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Figure 4: The performance comparison between the vanilla methods and their S2RL variants. We integrate the proposed S2RL
framework with VDN, QMIX and QPLEX.
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Figure 5: Ablation studies regarding component of dense attention and auxiliary sparse attention.

Generally speaking, the advantages of using S2RL gradually
emerge in the middle and late stages of training. We assume that
agents cannot distinguish which entity is more important at the
beginning of training. As training progresses, agents explore more
unknown states and are gradually able to distinguish which entities
are more critical. Finally, the overall performance of agents is im-
proved when they discard irrelevant entities. Furthermore, we find
that using sparse attention achieves more significant improvements
on 6h_vs_8z and corridor. On the 6h_vs_8z scenario, 6 Hydralisks
face 24 enemy Zealots, while on the corridor scenario, 6 Zealots
face 24 enemy Zerglings. The controllable agents in these scenarios

are homogeneous, making it easier for them to explore coopera-
tive strategies. Moreover, using the sparse attention module helps
simplify the exploration space, making S2RL more advantageous
in these scenarios.

4.4 Action Representations
Figure 6 visualizes the final trained model S2RL (QMIX) on the
SMAC corridor scenario to better explain why our method performs
well. In this super-hard scenario, 6 friendly Zealots face 24 enemy
Zerglings. The disparity in quantity means that our agents need to
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(a) Strategy: Zealots 0 leave the team separately to
attract the attention of most enemies.
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Z4

(b) Strategy: Zealots 1, 2, 5 focus fire cooperatively
and Zealots 4 attack the distant enemy to rescue his
teammates.
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Z1

Z2

Z3

Z4

(c) Strategy: Zealots 0 keep moving to avoid being
attacked and others eliminate the scattered enemies.

Figure 6: A visualization example of the sophisticated strategies adopted by S2RL (QMIX) in the SMAC corridor scenario. In this
super-hard map, ally units are 6 Zealots labeled by green circle, while enemy units are 24 Zerglings. Green and red shadows
mark enemies attracted by ally units. Green arrows and red arrows indicate the direction in which ally units and enemy units
will move, respectively. Yellow lines indicate enemies that ally units are attacking.

learn cooperative strategies such as moving, pulling and focusing
fire. Otherwise, agents are doomed to lose if they gather together.

As shown in Figure 6(a), the game starts with the Zealots 0
highlighted in green as a warrior, leaving the team separately to
grab the attention of most of the enemies in the green oval. Thus
other zealots can eliminate a small number of enemies in the red
oval with a high probability of winning. In Figure 6(b), we can see
that Zealots 1, Zealots 2 and Zealots 5 are focusing fire on the enemy,
thus speeding up the eradication of the enemy. In the meanwhile,
Zealots 4 stands out to attack enemies surrounding their teammates
from a distance. These sophisticated strategies reflect that Zealots
4 has a better sense of the situation and knows what it should do
to protect its teammates. In the next time step, we recognize that
Zealots 0 is constantly moving to avoid being attacked, and the
enemy marked by the red oval is successfully drawn and walking
towards our team (see Figure 6(c)). Although doomed to sacrifice,
Zealots 0 gives teammates plenty of time to annihilate scattered
enemies and rescue Zealots 0. All in all, S2RL can effectively allow
agents to immediately focus on critical entities and make decisions,
especially in more intricate scenarios.

5 RELATEDWORKS
5.1 Value-based Methods in MARL
Recently, value-based methods have been applied to multi-agent
scenarios to solve complex Markov games and have achieved sig-
nificant algorithmic progress. VDN [30] represents the joint action-
value as a summation of individual value functions. Due to its poor
expression factorization, QMIX [26] improves VDN [30] by using a
mixing network for nonlinear aggregation while maintaining the
monotonic relationship between centralized and individual value
functions. Moreover, weighted QMIX [25] adapts a twin network
and encourages underestimated actions to alleviate the risk of sub-
optimal outcomes. The monotonic constraints of QMIX and similar
methods lead to provably poor exploratory and suboptimal proper-
ties. To address the structural limitations, QTRAN [29] constructs
regularizations with linear constraints and relaxes them with a

ℓ2-norm penalty to improve tractability, but its constraints are com-
putationally intractable. MAVEN [19] relaxes QTRAN [29] by two
penalties and introduces a hierarchical model to coordinate diverse
explorations among agents. In [34], a duplex dueling network ar-
chitecture is introduced for factoring joint value functions, which
achieves state-of-the-art on a range of cooperative tasks. Addition-
ally, some more advanced methods [35, 36] introduce role-oriented
frameworks to decompose complex MARL tasks. In general, these
methods mainly focus on aggregating local agent utility networks
into a central critic network, while our method improves the struc-
ture of individual agent networks for more robust performance.

5.2 Attention Mechanism in MARL
Recently, attention models are increasingly adopted in MARL algo-
rithms [6, 31, 32], since the attention mechanism is effective in ex-
tracting communication channels, representing relations, and incor-
porating information in large contexts. ATOC [10] and MAAC [9]
process messages from other agents differently through the atten-
tion layer according to their state-dependent importance. Sparse-
MAAC [13] extends MAAC [9] with sparsity by directly replacing
the softmax activation function in the attention mechanism with
𝛾-sparsemax. In addition, TarMAC [3] utilizes a sender-receiver soft
attention mechanism and multiple rounds of cooperative reasoning
to allow targeted continuous communication between agents. Then
CollaQ[40] considers the use of attention mechanisms to handle a
variable number of agents to solve the problem of dynamic reward
distribution. Qatten [39] employs an attention mechanism to com-
pute the weights of local action-value functions and mix them to
approximate the global Q-value. EPC [17] utilizes an attentionmech-
anism to combine embeddings from different observation-action
encoders. REFIL [8] uses attention in QMIX to generate a random
mask group of agents. UPDET [7] decouple the policy distribution
from intertwined input observations with the help of a transformer
mechanism. Moreover, G2ANet [16] and HAMA [27] construct the
relationship between agents as a graph and utilize attention mech-
anisms to learn the relationship between agents. However, most
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of these existing attention mechanisms compute the importance
weights of all entities. In this case, all participants are assigned
scores according to a dense fully connected graph, which forces
agents to perceive all entities. SparseMAAC takes sparsity into
account, but it ignores that directly applying the sparse attention
mechanism will disrupt sufficient exploration and push the algo-
rithm towards suboptimal policies. In this paper, agents learn to
perceive more critical entities of observation in the decision-making
process while all observation information is preserved.

6 CONCLUSION
In this work, we investigate how cooperating MARL agents benefit
from extracting significant entities from observations. We design
a novel sparse state based MARL algorithm that utilizes a sparse
attention mechanism as an auxiliary way to select critical entities
and ignore extraneous information. Moreover, S2RL can be eas-
ily integrated into various value-based architectures such as VDN,
QMIX, QPLEX, etc. Experimental results on the StarCraft II mi-
cromanagement benchmark and different value-based backbones
demonstrate that our method significantly outperforms existing
collaborative MARL algorithms and achieves state-of-the-art. It is
worth mentioning that our method pulls huge margins on com-
plex tasks, demonstrating the effectiveness of S2RL. It could be
interesting to investigate the grouping between cooperating agents
through sparseness for future work.

ACKNOWLEDGMENTS
This work was supported by the National Key Research and De-
velopment Project of China (2021ZD0110400 & 2018AAA0101900),
National Natural Science Foundation of China (U19B2042), The
University Synergy Innovation Program of Anhui Province (GXXT-
2021-004), Zhejiang Lab (2021KE0AC02), Academy Of Social Gov-
ernance Zhejiang University, Fundamental Research Funds for the
Central Universities (226-2022-00064 & 226-2022-00142), Artificial
Intelligence Research Foundation of Baidu Inc., Program of ZJU and
Tongdun Joint Research Lab, Shanghai AI Laboratory (P22KS00111).

REFERENCES
[1] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. 2013. An Overview

of Recent Progress in the Study of Distributed Multi-Agent Coordination. IEEE
Trans. Ind. Informat. 9, 1 (2013), 427–438.

[2] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259 (2014).

[3] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike
Rabbat, and Joelle Pineau. 2019. Tarmac: Targeted multi-agent communication.
In ICML.

[4] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson.
2016. Learning to Communicate with Deep Multi-Agent Reinforcement Learning.
In NeurIPS.

[5] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2018. Counterfactual Multi-Agent Policy Gradients. In AAAI.

[6] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks. In CVPR.
[7] Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. 2021. UPDeT: Universal

Multi-agent RL via Policy Decoupling with Transformers. In ICLR.
[8] Shariq Iqbal, Christian A. Schröder deWitt, Bei Peng, Wendelin Boehmer, Shimon

Whiteson, and Fei Sha. 2021. Randomized Entity-wise Factorization for Multi-
Agent Reinforcement Learning. In ICML.

[9] Shariq Iqbal and Fei Sha. 2019. Actor-Attention-Critic for Multi-Agent Reinforce-
ment Learning. In ICML.

[10] Jiechuan Jiang and Zongqing Lu. 2018. Learning Attentional Communication for
Multi-Agent Cooperation. In NeurIPS.

[11] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab,
Senthil Yogamani, and Patrick Pérez. 2022. Deep Reinforcement Learning for
Autonomous Driving: A Survey. IEEE Trans. Intell. Transp. Syst. 23, 6 (2022),
4909–4926.

[12] Jiahui Li, Kun Kuang, BaoxiangWang, Furui Liu, Long Chen, FeiWu, and Jun Xiao.
2021. Shapley Counterfactual Credits for Multi-Agent Reinforcement Learning.
In SIGKDD.

[13] Wenhao Li, Bo Jin, and Xiangfeng Wang. 2019. SparseMAAC: Sparse attention
for multi-agent reinforcement learning. In DASFAA.

[14] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. In ICLR.

[15] Siqi Liu, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess, and
Thore Graepel. 2019. Emergent Coordination Through Competition. In ICLR.

[16] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and Yang Gao.
2020. Multi-agent game abstraction via graph attention neural network. In AAAI.

[17] Qian Long, Zihan Zhou, Abhinav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang.
2020. Evolutionary Population Curriculum for Scaling Multi-Agent Reinforce-
ment Learning. In ICLR.

[18] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
NeurIPS.

[19] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. 2019.
MAVEN: Multi-Agent Variational Exploration. In NeurIPS.

[20] Hangyu Mao, Wulong Liu, Jianye Hao, Jun Luo, Dong Li, Zhengchao Zhang, Jun
Wang, and Zhen Xiao. 2020. Neighborhood Cognition Consistent Multi-Agent
Reinforcement Learning. In AAAI.

[21] André F. T. Martins and Ramón Fernandez Astudillo. 2016. From Softmax to
Sparsemax: A Sparse Model of Attention and Multi-Label Classification. In ICML.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
et al. 2015. Human-level control through deep reinforcement learning. Nature
518, 7540 (2015), 529–533.

[23] Frans A. Oliehoek and Christopher Amato. 2016. A Concise Introduction to
Decentralized POMDPs. Springer.

[24] Ben Peters, Vlad Niculae, and André F. T. Martins. 2019. Sparse Sequence-to-
Sequence Models. In ACL.

[25] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. 2020.
Weighted QMIX: Expanding Monotonic Value Function Factorisation for Deep
Multi-Agent Reinforcement Learning. In NeurIPS.

[26] Tabish Rashid, Mikayel Samvelyan, Christian Schröder deWitt, Gregory Farquhar,
Jakob N. Foerster, and ShimonWhiteson. 2018. QMIX: Monotonic Value Function
Factorisation for Deep Multi-Agent Reinforcement Learning. In ICML.

[27] Heechang Ryu, Hayong Shin, and Jinkyoo Park. 2020. Multi-agent actor-critic
with hierarchical graph attention network. In AAAI.

[28] Mikayel Samvelyan, Tabish Rashid, Christian Schröder deWitt, Gregory Farquhar,
Nantas Nardelli, et al. 2019. The StarCraft Multi-Agent Challenge. In AAMAS.

[29] Kyunghwan Son, Daewoo Kim,Wan Ju Kang, David Hostallero, and Yung Yi. 2019.
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent
Reinforcement Learning. In ICML.

[30] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, et al.
2018. Value-Decomposition Networks For Cooperative Multi-Agent Learning
Based On Team Reward. In AAMAS.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

[32] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[33] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, An-
drew Dudzik, et al. 2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575, 7782 (2019), 350–354.

[34] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2021.
QPLEX: Duplex Dueling Multi-Agent Q-Learning. In ICLR.

[35] Tonghan Wang, Heng Dong, Victor R. Lesser, and Chongjie Zhang. 2020. ROMA:
Multi-Agent Reinforcement Learning with Emergent Roles. In ICML.

[36] Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and
Chongjie Zhang. 2021. RODE: Learning Roles to Decompose Multi-Agent Tasks.
In ICLR.

[37] Cathy Wu, Aboudy Kreidieh, Eugene Vinitsky, and Alexandre M. Bayen. 2017.
Emergent Behaviors in Mixed-Autonomy Traffic. In CoRL.

[38] Yaodong Yang, Jianye Hao, Guangyong Chen, Hongyao Tang, Yingfeng Chen,
Yujing Hu, Changjie Fan, and Zhongyu Wei. 2020. Q-value Path Decomposition
for Deep Multiagent Reinforcement Learning. In ICML.

[39] Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong
Liu, and Hongyao Tang. 2020. Qatten: A general framework for cooperative
multiagent reinforcement learning. arXiv preprint arXiv:2002.03939 (2020).

[40] Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gon-
zalez, and Yuandong Tian. 2020. Multi-agent collaboration via reward attribution
decomposition. arXiv preprint arXiv:2010.08531 (2020).

 

1191


	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Dec-POMDP
	2.2 CTDE Framework

	3 Sparse state based MARL
	3.1 Selection and Discrimination
	3.2 Learning with Sparse Loss

	4 EXPERIMENTS
	4.1 Comparison Methods and Training Details
	4.2 Overall Results
	4.3 Ablation Study
	4.4 Action Representations

	5 Related works
	5.1 Value-based Methods in MARL
	5.2 Attention Mechanism in MARL

	6 CONCLUSION
	Acknowledgments
	References



