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ABSTRACT
Centralized Training with Decentralized Execution (CTDE) has
been a popular paradigm in cooperative Multi-Agent Reinforce-
ment Learning (MARL) settings and is widely used in many real
applications. One of the major challenges in the training process
is credit assignment, which aims to deduce the contributions of
each agent according to the global rewards. Existing credit assign-
ment methods focus on either decomposing the joint value function
into individual value functions or measuring the impact of local
observations and actions on the global value function. These ap-
proaches lack a thorough consideration of the complicated interac-
tions among multiple agents, leading to an unsuitable assignment
of credit and subsequently mediocre results on MARL. We propose
Shapley Counterfactual Credit Assignment, a novel method for ex-
plicit credit assignment which accounts for the coalition of agents.
Specifically, Shapley Value and its desired properties are leveraged
in deep MARL to credit any combinations of agents, which grants
us the capability to estimate the individual credit for each agent.
Despite this capability, the main technical difficulty lies in the com-
putational complexity of Shapley Value who grows factorially as
the number of agents. We instead utilize an approximation method
via Monte Carlo sampling, which reduces the sample complexity
while maintaining its effectiveness. We evaluate our method on
StarCraft II benchmarks across different scenarios. Our method
outperforms existing cooperative MARL algorithms significantly
and achieves the state-of-the-art, with especially large margins on
tasks with more severe difficulties.
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1 INTRODUCTION
Multi-Agent Systems (MAS) have attracted substantial attention
in many sequential decision problems in recent years, such as au-
tonomous vehicle teams [6, 18], robotics [21, 28], scene graph gen-
eration [8], and network routing [44], etc. Among the approaches,
Multi-Agent Reinforcement Learning (MARL) has grown its popu-
larity with its ability to learn without knowing the world model. A
classical way in MARL to solve cooperative games is regarding the
entire MAS as a single agent and optimize a joint policy according
to the joint observations and trajectories [36]. With the joint action
space of agents growing exponentially as the number of agents and
the constraints of partial observability, the classical method faces
insurmountable obstacles. This promotes the Centralized Training
with Decentralized Execution (CTDE) [19, 26] paradigm, where a
central critic is set up to estimate the joint value function, and the
agents are trained with global information but executed only based
on its local observes and histories.

The main challenge that restricts the effective CTDE in MARL
is credit assignment, which attributes the global reward signals
according to the contributions of each agent. Recent studies that
attempt to solve this challenge can be roughly divided into two
branches. 1) Implicit methods [29, 33, 35, 42]: it treats the central
critic and the local agents as an entirety during the training proce-
dure. A decomposition function (usually a neural network) is first
set up to map the joint value function to local value functions. The
central critic is then learned simultaneously with the decomposition
function and the policy. Implicit methods suffer from inadequate
decomposition limited by the design of the decomposition function.
They also lack the interpretability for the distributed credits [16]. 2)
Explicit methods [10, 38, 41]: it trains the central critic and the local
actors separately. In each iteration, the critic is first updated, after
which some strategies are leveraged to compute the reward or the
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value function of each agent explicitly. Such reward signals or value
functions are used to guide the training of local agents. Despite that
the explicit methods overcome many shortcomings of the implicit
counterpart, one has to algorithmically characterize the individual
agent’s contribution from the overall success, which can be very
hard in the context of subtle coalitions under common goals. We
address this challenge by using a counterfactual method with Shap-
ley Value. Shapley Value [31] originates from cooperative game
theory and is a golden standard to distribute benefits reasonably
and fairly by accounting for the contribution of participating play-
ers. By treating the agents in MARL as the players in cooperative
games, ideal credit assignment can be obtained up to computing the
marginal contribution of Shapley Value. Inspired from this, Wang et
al. [38] proposed SQDDPG, which utilized Shapley Value in de-
terministic policy gradient [22, 32] to guide the learning of local
agents. However, the performance of SQDDPG relies highly on
the designed framework for estimating the marginal contribution,
and this framework is limited by an assumption that the actions
of agents are taken sequentially, which is often unrealistic. These
restrictions make SQDDPG perform unsatisfactory in many tasks.
To this end, we extend the explicit methods and propose a novel
method that leverages Shapley Value to allocate the credits for
agents. We achieve it by leveraging a counterfactual method to
estimate what would have happened without the participation of
a set of agents. The quantification of the contribution of a set of
agents is then computed as the change of the central critic value
by setting their actions to a baseline. Then the changes of the con-
tributions caused by an agent in different set unions are treated as
marginal contributions, and Shapley Value can thus be obtained.
Finally, these unified values play the role of credits in local policies
and guide its training procedure.

Nevertheless, the computational complexity of the original Shap-
ley Value grows factorially as the number of players increases. In
many contexts of interest, such as network games, distributed con-
trol, and computing economics, this number can be quite large,
which makes Shapley Value intractable. To alleviate the computa-
tional burden, we approximate Shapley Value through Monte Carlo
sampling, which maintains the majority of the desired properties
of Shapley Value. In our approach, the Shapley Value is computed
by subsets of collaborators for each agent and is re-sampled at each
time step. Our approach manages to reduce the computational com-
plexity to polynomial in the number of players without much loss
of effectiveness of Shapley Value.

Our main contributions can be summarized as follows:

(1) We leverage a counterfactual method with Shapley Value to
address the problem of credit assignment in Multi-Agent Re-
inforcement Learning. The proposed Shapley Counterfactual
Credits reasonably and fairly characterize the contributions
of each local agent by fully considering their interactions.

(2) We adopt a Monte Carlo sampling-based method to approxi-
mate Shapley Value and decrease its computational complex-
ity growth from factorial to polynomial, which makes our
algorithm viable for large-scale, complicated tasks.

(3) Extensive experiments show that our proposed method out-
performs existing cooperativeMARL algorithms significantly
and achieves state-of-the-art performance on StarCraft II

benchmarks. The margin is especially large for more diffi-
cult tasks.

The rest of this paper is organized as follows. In Section 2, we first
briefly reviews all related works. And we introduce the preliminar-
ies, including Dec-POMDPs, Shapley Value, and explicit framework
for MARL in Section 3. The details of our proposed algorithm for
credit assignment are introduced in Section 4. Experimental results
and analyses are reported in Section 5. Finally, we conclude our
paper and discuss on future directions in Section 6 .

2 RELATEDWORK
2.1 Implicit Credit Assignment
Most of the implicit methods follow the condition of Individual-
Global-Max (IGM), which means the optimal joint actions among
the agents are equivalent to the optimal actions of each local agent.
VDN [35] makes a hypothesis of the additivity to decompose the
joint Q-function into the sum of individual Q-functions. QMIX [29]
gets rid of this assumption but adds a restriction of the monotonic-
ity. LICA [45] promotes QMIX to actor-critic as well as proposes
an adaptive entropy regularization. Weighted QMIX adapts a twins
network and encourages the underestimated actions to alleviate
the risk of suboptimal results. QTRAN [33] avoids the limitations
of VDN and QMIX by introducing two regularization terms but has
been proved to behave poorly in many situations. Qatten [42] em-
ploys a multi-head attention mechanism to compute the weights for
the local action value functions and mix them to approximate the
global Q-value. All of these methods aim to learn a value decomposi-
tion from the total reward signals to the individual value functions,
which suffer from several problems: (i) The performance of the
model highly relies on the decomposition function. (ii) The lacking
of interpretability for the distributed credits. (iii) The high risk of
the joint policy tends to fall into sub-optimal results [1, 24, 39].

2.2 Explicit Credit Assignment
Explicit methods attribute the contributions for each agent that are
at least provably locally optimal. The most representative method is
COMA [10], which utilizes a counterfactual advantage baseline to
guide the learning of local policies. However, it treats each agent as
an independent unit and overlooks the complex correlations among
agents. Thus, it becomes inefficient when encounters complex situ-
ations. SQDDPG [38] proposes a network to estimate the marginal
contribution, which is further used to approximate Shapley Value.
Then, Shapley Value is used to guide the learning of local agents.
However, such estimation for marginal contribution doesn’t make
sense in many situations because the network over-relies on the
assumption that the agents take actions sequentially. QPD [41] de-
signs a multi-channel mixer critic and leverage integrated gradients
to distribute credits along paths, which achieves state-of-the-art
results in many tasks. Intuitively, mining the relations between the
agents is essential for the policy gradient in cooperative games. But
the correlations are too complicated and are often underestimated
by the models. To this end, we propose a Shapley Counterfactual
Critic for credit assignment in MARL. Thanks to Shapley Value,
the relations between the agents are considered sufficiently with-
out prior knowledge, which further promotes the learning of local
agents. Different from SQDDPG [38], we compute the marginal
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contributions according to a counterfactual method rather than
building a network, which is more stable and efficient in compli-
cated situations.

2.3 Shapley Value and Approximate SV
Shapley Value [4, 23, 31, 34] originates from cooperative game
theory in the 1950s, which assigns a unique distribution of total
benefits generated by the coalition of all players. Shapley Value
satisfies the properties of efficiency, symmetry, nullity, linearity and
coherency. It is a unique and fairly way to quantify the importance
of each player in the overall cooperation and widely used in eco-
nomics. However, the computational complexity of Shapley Value
grows factorially with respect to the number of participating play-
ers [20]. Thus, in order to decrease the computation, several recent
studies start to approximate the exact Shaply Value [7, 9, 12, 37] by
sacrificing some properties. For example, Frye et al. [11] and Tom et
al. [15] utilize casual knowledge to simplify its calculation, which
breaks the axiom of symmetry. L-Shapley and C-Shapley only con-
sider the interactions among the local and connected player, which
slightly break the properties of efficiency. DASP [2] and Neuron
Shapley [13] adapt sample methods to approximate Shapley Value,
which also slightly breaks the properties ofefficiency and symmetry.

3 PRELIMINARIES
3.1 Dec-POMDPs
A fully cooperative multi-agent sequential decision-making task
with 𝑛 agents 𝐴 = {1, 2, ..., 𝑛} can be modeled as a decentralised
partially observable Markov decision process (Dec-POMDP) [3, 5,
14, 25, 27]. Dec-POMDP is canonically formulated by the tuple:

𝐺 = (𝑆,𝑈 , 𝑃, 𝑟, 𝑍,𝑂, 𝑛,𝛾) .

In the process, 𝑠 ∈ 𝑆 represents the true state of the environment.
At each time step, each agent 𝑎 ∈ 𝐴 chooses an action 𝑢𝑎 ∈ 𝑈

simultaneously to formulate a joint action 𝑢 ∈ 𝑈𝑛 . The action
produces a state transition on the environment which is described
by the Markov transition probability function 𝑃 (𝑠 ′ |𝑠,𝑢): 𝑆 ×𝑈𝑛 →
𝑆 . All of the agents share a same global reward function 𝑟 (𝑠,𝑢):
𝑆 ×𝑈𝑛 → R.

In the setting of partial observability, the observations of each
agent 𝑧 ∈ 𝑍 are generated by a observation function𝑂 (𝑠, 𝑎): 𝑆×𝐴 →
𝑍 . Each agent owns an action-observation history 𝜏𝑎 ∈ 𝑇 , where
𝑇 = (𝑍 ×𝑈 )∗ denotes the set of sequences of state-action pairs with
arbitrary length. On this history, each agent conditions a stochastic
policy 𝜋𝑎 (𝑢𝑎 |𝜏𝑎): 𝑇 ×𝑈 → [0, 1]. The common goal of all agents
is to maximize the expected discounted return 𝑅𝑡 =

∑∞
𝑖=0𝛾

𝑖𝑟𝑡+𝑖 .

3.2 Shapley Value
Assume a coalition consists of 𝑁 players and they cooperate with
each other to achieve a common goal. For a particular player 𝑖 , let
𝑆 be a random set that contains player 𝑖 and 𝑆\{𝑖} represents the
set with the absence of 𝑖 , then the marginal contribution of 𝑖 in 𝑆 is
defined as:

Δ𝑣 (𝑖, 𝑆) = 𝑣 (𝑆) − 𝑣 (𝑆\{𝑖}), (1)
where 𝑣 (·) refers to the value function for estimating the cooperated
contribution of a set of players.

Then the Shapley Value of player 𝑖 is computed as the weighted
average of the marginal contributions in all of the subsets of 𝑁 :

𝜙𝑣 (𝑖) =
1
𝑁

∑𝑁
𝑘=1

1
(𝑁−1
𝑘−1 )

∑
𝑆 ∈𝑆𝑘 (𝑖)Δ𝑣 (𝑖, 𝑆), (2)

where 𝑆𝑘 (𝑖) denotes a set with size 𝑘 that contain the player 𝑖 .
Shapley Value satisfy the following properties:
• Efficiency.The credits generated by the big coalition 𝑣 ({1, ..., 𝑁 })−
𝑣 (𝜙) is equal to the sum of the Shapley Values of all of the par-
ticipating players

∑𝑁
𝑖=1𝜙𝑣 (𝑖).

• Symmetry. If Δ𝑣 (𝑖, 𝑆) = Δ𝑣 ( 𝑗, 𝑆) for all subsets 𝑆 then 𝜙𝑣 (𝑖) =
𝜙𝑣 ( 𝑗).

• Nullity. If Δ𝑣 (𝑖, 𝑆) = 0 for all subsets 𝑆 then 𝜙𝑣 (𝑖) = 0.
• Linearity. Let 𝑢 and𝑤 represent the associated gain functions,
then 𝜙𝑣+𝑤 (𝑖) = 𝜙𝑣 (𝑖) + 𝜙𝑤 (𝑖) for every 𝑖 ∈ 𝑁 .

• Coherency. When another value function Δ𝑣 ′(𝑖) is utilized to
measure the marginal contribution of 𝑖 , if Δ𝑣 (𝑖, 𝑆) ≥ Δ𝑣 ′(𝑖, 𝑆) for
all subsets 𝑆 , then 𝜙𝑣 (𝑖) ≥ 𝜙 ′

𝑣 (𝑖).

3.3 Explicit Framework for MARL
Explicit methods are interpretable for the allocated credits, which
can reduce the suspicion of users to the rationality of the learned
local agents. For this reason, we extend the explicit methods [10, 38,
41], which first train the central critic according to the joint states
and actions and then distribute the global reward signals according
to the contributions of local agents to the critic.

Following QPD [41], we model our critic network with three
components as shown in Figure 1, that is, the feature extraction
module, the feature fusion module, and the Q-function estimation
module. The first module consists of 2 dense layers with ReLU
non-linearity, which is used to extract the features of a particular
agent’s observations and actions. Then the features of all agents are
concatenated thus merged into a global feature. Finally, the joint
Q-value is computed according to the global feature. As Yang et
al. [41] illustrated, different agents may own the same attributions,
so can be categorized into different groups. For this reason, the
agents within the same group are modeled using the same sub-
network. Meanwhile, in order to simplify the network architecture
and accelerate the learning procedure, the agents of the same group
share the same parameters. We represent the central critic as:

𝑄𝑡𝑜𝑡 = 𝑓 (𝑜1, 𝑢1, ..., 𝑜𝑛, 𝑢𝑛), (3)

where 𝑜𝑖 and 𝑢𝑖 denote the observation and the action of the 𝑖-th
agent, respectively.

In our implementation, each local agent is realized with a Recur-
rent Deep Q-Network, which is composed of an Long Short-Term
Memory (LSTM) layer and a Multi-Layer Perceptron (MLP). We
represent the local agent as:

𝑄𝑖 = 𝑔(𝑜𝑖 ;ℎ), (4)

where ℎ is the hidden state of LSTM. For the exploration policy,
𝜖-greedy is adopted and the exploration rate of episode 𝑒𝑝𝑠 is:

𝜖 (𝑒𝑝𝑠) = max(𝜖𝑠𝑡𝑎𝑟𝑡 − 𝑒𝑝𝑠 · 𝜎, 0), (5)

where 𝜖𝑠𝑡𝑎𝑟𝑡 is the initial exploration rate and 𝜎 represents the
decreasing count of 𝜖 each episode.
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Figure 1: The framework of ourmethod.We adopt a two-stageway that trains the central critic and the local policies separately.
First, the central critic is updated with TD-loss. Then the credits of each agent are calculated by our proposed counterfactual
method with approximate Shapley Value. Finally, the local policies are updated using the Shapley Counterfactual Credits.

4 SHAPLEY COUNTERFACTUAL CREDITS
FOR MARL

The framework of our approach is illustrated in Figure 1. First, the
central critic takes the actions and observations of each agent as
input and approximates the total Q value. Then the contributions of
the individual agents are distributed by the counterfactual method
with Shapley Value. Finally, the local agents update their parameters
according to the credits they earned.

In this section, we systematically describe our “Shapley Coun-
terfactual Credits” for Multi-Agent Reinforcement Learning. First,
we will introduce a counterfactual method with Shapley Value to
address the problem of “credit assignment”, which can fully mine
the correlations among the local agents in Section 4.1. To downgrade
the computational complexity. we replace the truly Shapley Value
with its approximation, and this will be discussed in Section 4.2.
The details of the proposed algorithm and the loss function will be
introduced in Section 4.3.

4.1 Counterfactual Method with Shapley Value
for Credit Assignment

The main challenge we need to address is how to measure the con-
tributions of the agent. In other words, we need to quantify how the
agents’ actions influence the output of the central critic. COMA [10]
proposed a special critic and utilize a counterfactual baseline, which
estimated the advantages of action value over expected value as this
influence but shows poor performance on many tasks. Wolpert et
al. [40] computed the influence by using difference rewards which

compares the global reward to the reward received when the action
of an agent is replaced with a default action. Inspired by these ideas,
we also proposed a counterfactual method in our central critic to
measure the effect of the actions taken by the agents.

We consider the contribution of an action taken by an agent is
equal to “how the output will change when this action is absent?"
We formulate the contributions of the action performed by the 𝑖-th
agent to the central critic as:

𝑣𝑖 = 𝑓 (𝑜1, 𝑢1, ..., 𝑜𝑖 , 𝑢𝑖 , ..., 𝑜𝑛, 𝑢𝑛) − 𝑓 (𝑜1, 𝑢1, ..., 𝑜𝑖 , �̃�, ..., 𝑜𝑛, 𝑢𝑛), (6)

where �̃� denotes a baseline that means the action is replaced by a
default one.

However, such estimation for the contributions is insufficient
since the agents are cooperating with each other and cannot be
treated as independent units. We then desire to quantify the credits
made by an agent precisely from the intricate relationship among
agents, but the environment is complex, and there is no prior knowl-
edge to indicate how they cooperated with each other. To this end,
we propose to utilize Shapley Value for credit assignment, and this
will be introduced in the next subsection.

As we mentioned before, Shapley Value distributes the credits
fairly by considering the contributions of the participating players
and satisfies many good properties such as efficiency, additivity, and
coherency. Thus, we utilize this tool to extend the counterfactual
method.
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For convenience, we shorthand Equation (6) and change agent 𝑖
to a set 𝑆 of agents:

𝑣𝑆 𝑖𝑛 𝐴 = 𝑓 (𝐻𝐴) − 𝑓 (𝐻𝐴\𝑆 ), (7)

where 𝐴 denotes all of the agents, 𝐻𝐴 represents the actions and
observations of 𝐴, and 𝐻𝐴\𝑆 denotes that the actions of all agents
in 𝑆 are replaced with default actions.

To compute the Shapley Value of the 𝑖-th agent in the big coali-
tion, we need to compute its marginal contributions when this
agent play roles in all of the subset of the big coalition𝐴. We define
the marginal contribution of the 𝑖-th agent in the subset 𝑆 of 𝐴 as:

Δ𝑣 (𝑖, 𝑆) = 𝑣𝑆 𝑖𝑛 𝐴 − 𝑣𝑆\𝑖 𝑖𝑛 𝐴, (8)

where 𝑆\𝑖 denotes 𝑆 with the removal of the 𝑖-th agent.
After getting the marginal contribution, we compute the Shapley

Counterfactual Credits 𝑄𝜑

𝑖
as:

𝑄
𝜑

𝑖
=

1
𝑁

∑𝑁
𝑗=1

1
(𝑁−1
𝑗−1 )

∑
𝑆 ∈𝑆 𝑗 (𝑖)Δ𝑣 (𝑖, 𝑆), (9)

where 𝑆 𝑗 (𝑖) denotes the set of agents with size 𝑗 that contains the
𝑖-th agent.

4.2 Approximation of Shapley Value
However, the main drawback of Shapley Value is that the compu-
tational complexity grows factorially as the number of the agents
increases [20]. So recent studies usually use an approximation of
Shapley Value as a substitution [7, 12, 37]. Since the number of the
agents may bring an unacceptable computational cost, for alleviat-
ing the computational burden, the approximation of Shapley Value
is necessary. Thus, we adopt the Monte Carlo sampling method to
get the approximated Shapley Value:

�̂�
𝜑

𝑖
=

1
𝑀

∑𝑀
𝑗=1Δ𝑣 (𝑖, 𝑆𝑀𝐶 𝑗

(𝑖)), (10)

where 𝑀 represents the times of Monte Carlo sampling, 𝑆𝑀𝐶 𝑗
(𝑖)

represents a subset of 𝐴 sampled in 𝑗-th time that contains the 𝑖-th
agent.

According to this approximation, we downgrade the computa-
tional complexity of the truly Shapley Value of an agent from𝑂 (𝑁 !)
to 𝑂 (𝑀), where 𝑁 is the number of agents that may be very large
in some situations, and𝑀 is a hyperparameter which represents the
times of Monte Carlo sampling and can be a small positive integer.
To be noticed that, such an approximation of Shapley Value might
slightly break some of its properties such as efficiency and Symme-
try. Recent literature sacrificed its properties in varying degrees
but got an acceptable computational costs [7, 12, 37]. We deem that
such an approximation is necessary and will not bring too much
impact to the model’s performance.

4.3 Loss Function and Training Algorithm
We show the details of our algorithm in Algorithm 1. Our whole
framework is updated in two stages. First, the local agents interact
with the environment and take actions according to their observa-
tions and history. Then, these actions and observations act as the
input of the central critic to estimate the joint Q-function. After-
ward, in the first stage, we update the central critic by minimizing

the TD-loss L(𝜃𝑐 ):
L(𝜃𝑐 ) = (𝑄𝑡𝑜𝑡 − 𝑦)2,

𝑦 = 𝑟 + 𝛾 (�̃�𝑡𝑜𝑡 ),
(11)

where 𝜃𝑐 is the parameters of the central critic,𝑄𝑡𝑜𝑡 is the output of
the central critic, and �̃�𝑡𝑜𝑡 represents the output of target network
of the central critic.

In the second stage, we first get the Shapley Counterfactual
Credits 𝑄𝜑

𝑖
of each agent according to Equation (10). Then each

agent is trained by minimizing the loss:

L(𝜃𝑖 ) = (𝑄𝑖 − �̂�
𝜑

𝑖
)2, (12)

where 𝜃𝑖 denotes the parameters of the 𝑖-th local agent, and 𝑄𝑖 is
the output of the 𝑖-th agent.

Algorithm 1 Shapley Counterfactual Credits Algorithm for MARL
Initialize: Central critic network 𝜃𝑐 , target central critic network

𝜃𝑐 , local agents’ networks 𝜃𝜋 = (𝜃1, ..., 𝜃𝑛)
1: for each training episode 𝑒𝑝𝑠 do
2: 𝑠0 = initial state, 𝑡 = 0, ℎ𝑖0 = 0 for each agent 𝑖
3: while 𝑠 ≠ terminal and 𝑡 < 𝑇 do
4: 𝑡 = 𝑡 + 1
5: for each agent 𝑖 do
6: 𝑄𝑖 (𝑜𝑖𝑡 , ), ℎ𝑖𝑡 = 𝐴𝑔𝑒𝑛𝑡𝑖 (𝑜𝑖𝑡 ;ℎ𝑖𝑡−1)
7: Sample 𝑢𝑖𝑡 from 𝜋 (𝑄𝑖 (𝑜𝑖𝑡 , ), 𝜖 (𝑒𝑝𝑠))
8: Execute the joint action (𝑢1𝑡 , 𝑢2𝑡 , ..., 𝑢𝑛𝑡 )
9: Get reward 𝑟𝑡+1 and next state 𝑠𝑡+1
10: Add episode to replay buffer
11: Collate episodes in buffer into a single batch
12: for 𝑏 in batch do
13: for 𝑡 = 1 to 𝑇 do
14: Compute the targets𝑦𝑡 using central target network
15: Update central critic network 𝜃𝑐 with (11)
16: Every 𝐶 episodes reset 𝜃𝑐 = 𝜃𝑐

17: for 𝑏 in batch do
18: for 𝑡 = 1 to 𝑇 do
19: Compute credits for each agent via (10)
20: Update the local agents 𝜃𝜋 with (12)

5 EXPERIMENTS
We focus on addressing the problem of credit assignment in MARL
with cooperative settings explicitly. We compare our proposed
method with several baselines, including VDN [35], QMIX [29],
COMA [10], QTRAN [33], QPD [41], and SQDDPG [38]. The train-
ing configurations, experiment results, as well as the analysis will
be described in detail in this section.

5.1 Experiment Settings
Environment. We perform extensive experiments on the Star-

Craft II (a real-time strategy game) micromanagement challenge,
in which each army is controlled by an agent and act based on its
local observations and the opponent’s army are controlled by the
hand-coded built-in StarCraft II AI. Each unit in StarCraft contains
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(f) 3s5z_vs_3s6z

Figure 2: Themean win rates of our method compared with others in different map scenarios of StarCraft II. The shaded areas
represent the standard deviation.

Table 1: Median andmeanwin rate of ourmethod compared with othermethods. �̃� represents themedian of the test win rates
and 𝑎𝑣𝑔 represents mean test win rates.

Map
Methods

VDN QMIX QTRAN COMA QPD SQDDPG OURS
�̃� 𝑎𝑣𝑔 �̃� 𝑎𝑣𝑔 �̃� 𝑎𝑣𝑔 �̃� 𝑎𝑣𝑔 �̃� 𝑎𝑣𝑔 �̃� 𝑎𝑣𝑔 �̃� 𝑎𝑣𝑔

3m 100 100 100 100 100 100 95 96 99 99 64 65 99 99
8m 100 100 100 100 100 100 100 100 95 95 92 90 98 97
2s3z 100 100 100 100 92 91 45 45 99 98 60 55 100 100
1c3s5z 88 85 95 90 40 41 15 15 77 72 2 2 61 60
3s5z 80 69 80 67 12 13 5 3 79 80 1 1 92 90
3s5z_vs_3s6z 0 0 0 0 0 0 0 0 3 5 0 0 20 20

a rich set of complex micro-actions, which allow the learning of
complex interactions between the agents that cooperate with each
other. The overall goal is to maximize the accumulated rewards
for each battle scenario. The environment produces rewards based
on the hit-point damage dealt and enemy units killed. Besides, an-
other bonus is given when the battle wins. At each time step, each
agent can only receive the local observations within its field of view.
Meanwhile, an agent can only observe the other agents alive and
located in its sight range. Besides, all agents can only attack the
enemies within their shooting range, which is set to 6. The global
state consists of the joint observations without the restriction of
the sight range, which will be used in the central critic during the
training procedure. All features are normalized by their maximum

values before sent to the neural network. StarCraft Multi-Agent
Challenge (SMAC) environment [30] is used as testbed, and we set
the difficulty of the game AI as “very difficult” level.

Configurations. The central critic of our method is the same as
QPD [41], which consists of the feature extraction layers, the fea-
ture fusion operation, and the Q-function estimation layers. First,
the agents are grouped according to their attributions, and 2 dense
layers are used to extract the features of their observations and ac-
tions. Each dense layer consists of 64 neurons for each channel. For
accelerating the learning procedure, we adopt parameter sharing
technique [17, 43] where the agents within the same group share
the parameters of the feature extraction layers. Then, we concate-
nated the features of all agents to fuse them into a global feature.
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Figure 3: Ablation study of Counterfactual Shapley Credits.

Finally, for the final Q-function estimation, we adapt another dense
layer with one output neuron. In the procedure of computing Shap-
ley Value, we adapt the Monte Carlo sampling method to sample 5
subsets for each agent at each time step. We set the counterfactual
baseline �̃� in the central critic as zero vector for convenience. We
model the local agents with an LSTM layer and 2 fully connected
layers. The dimensional of hidden state in LSTM is set as 64, the
units of the two fully connected layers are set as 64 and |𝑈 | sep-
arately, where |𝑈 | is the size of action space. We set the discount
rate 𝛾 for TD-loss as 0.99. The replay buffer stores the most recent
1000 trajectories. During training, we update the central critic with
RMSprop and local agent networks with Adam. We copy the param-
eters of the central critic to its target network every 200 training
episodes. The full hyperparameters of our Shapley Counterfactual
Credits are shown in Table 2. The map 3s5z_vs_3s6z is much harder
than the other maps, and the allied forces have one unit less than
the enemy. During training, the win rates remain 0 even when the
returns are relatively high. For this reason, we set the number of the
training episodes of map 3s5z_vs_3s6z to 50000, while the others
are set to 20000.

5.2 Results and Analysis
To demonstrate the efficiency of our proposed method, we perform
experiments on 6 maps of StarCraft II (3m, 8m, 2s3z, 1c3s5z, 3s5z,
3s5z_vs_3s6z), including both homogeneous and heterogeneous
scenarios. Figure 2 depicts the curve of mean win rates of our
method compared to the baselines. The final results of our method
are depicted in Table 1, where �̃� represents the median of the test
win rates and 𝑎𝑣𝑔 represents mean test win rates.

All of the methods show high performance on three simple
scenarios (3m, 8m, 2s3z), and our Shapley Counterfactual Credits
algorithm is competitive with the state-of-the-art algorithm, and
achieves nearly 100% mean win rates. Both sides have 3 Marines in
map 3m, and 8 Marines in map 8m. As the arms of both sides are
single and the numbers are equal, each agent only needs to focus
on beating enemies and avoid taking redundant actions. Concretely,
from the replay, in map 3m and 8m, units learned to stand in a line
or semicircle in order to set fire to the incoming enemies. Such
a pattern is easy for models to learn, and agents hardly need to

Table 2: Hyperparameters of Shapley Counterfactual Credit
Algorithm

Settings Value
Batch size 32
Replay buffer size 1000
Training episodes 1000
Exploration episodes 1000
Start exploration rate 1
End exploration rate 0
TD-loss discount 1000
Target central critic update interval 200 episodes
Evaluation interval 100 episodes
Evaluation battel number 100
Agent optimizer RMSProp
Central Critic optimizer Adam
Agent learning rate 0.005
Central critic learning rate 0.01
Dense units 64
LSTM hidden units 64
Baseline for Shapley Value 0 vector
Times for Monte Carlo Sampling 5

consider how to cooperate with its friendly forces. In map 2s3z,
both sizes have 2 Stalkers and 3 Zealots. Since that Zealots counter
Stalkers, the Stalkers need to hide behind the own side Zealots. Such
a small number of units does not bring too much challenge for the
learning of the model.

Our algorithm falls behind the other methods in map 1c3s5z,
where both sizes have 3 Stalkers, 5 Zealots and an Colossus. Since
the Colossus is more threatening, and becomes the priority target,
which reduces the difficulty of the game. Here, we divide the learned
ability of an agent into the personal ability and the cooperative
ability. For example, “kite the enemy” as well as “attack high-threat
targets” belongs to the former, and “move to protect the allies”
belongs to the latter. In this map, all of the agents need to learn
the pattern to attack the enemy’s Colossus first, which makes other
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actions less important. Since Shapley Value focuses more on mining
the correlation between agents, our method does not perform very
well in this scenario.

Our algorithm shows obvious advantages in two maps 3s5z and
3s5z_vs_3s6z which are much more difficult than others. In map
3s5z, both sizes have 3 Stalkers and 5 Zealots, and we got the mean
win rates of 90%. In this scenario, not only the agents of Stalkers
need to stand behind the allied Zealots, but learn to attack the en-
emy Stalkers with high priority. Meanwhile, the allied Zealots need
to protect allied Stalkers as well as attack the nearest enemy Stalk-
ers. In this complex situation, cooperation among agents is more
important than before. Our counterfactual method with Shapley
Value fully considers the correlation and interactions between units
and distributes a moderate credit for the actions taken by each
agent, thus outperforms the baselines significantly. For instance, a
“movement” of a Zealots may affect other friendly forces in vary-
ing degrees; we measure its contribution by considering how the
results will change when different kinds of correlations are absent.
Especially, in map 3s5z_vs_3s6z, where ally has 3 Stalkers and 5
Zealots while the enemy has 6 Zealots, all of the current method
except QPD got the mean win rates of zero. The reason for the
poor performance of these methods is that cooperative behavior
such as “block” rather than “kite” play more important roles in such
settings. The Zealots need to attract firepower in order to protect
the allied Stalkers, which is the only way to get the final victory.
In this scenario, Shapley value fully demonstrates its superiority.
Our method achieves the mean win rates of 20%, and reach the
state-of-the-art.

In conclusion, our proposed Shapley Counterfactual Credits al-
gorithm shows its strength and beats all of the other methods in
complicated scenarios where cooperation among agents plays an
essential role. Our proposed algorithm also exhibits the competitive
results with the state-of-the-art algorithm in the scenarios that
need to pay more attention to personal ability.

5.3 Ablation Study
To demonstrate the advantage of Shapley Value [31] to the counter-
factual method, we perform ablation study on three maps (3m, 8m,
2s3z). The difficulty of these three maps increases sequentially. The
results are shown in Figure 3. The blue curves represent that the
credits are allocated by the counterfactual method without Shapley
Value. The red curves represent that the credits are distributed by
Shapley Counterfactual Credits. For the balance between the perfor-
mance and computational costs, we set the times of the Monte Carlo
sampling for approximating Shapley Value as 5, and the analysis is
shown in the next subsection.

In map 3m and 8m, the units need to learn the strategies that
stand in a suitable position to fire the same enemy unit together.
Thus, the ability to cooperate is relatively important, and the use of
Shapley Value brings an improvement of the performance. While
in 2s3z, the Stalkers need to “kite the Zealots” and the number of
the units is small, which means personal ability is more important.
So our method loses advantage in this scenario. It is worth men-
tioning that the use of Shapley Value makes learning more stable
and reduces the standard deviation (the shaded part in the figure)
of the win rates significantly. That because Shapley Value considers
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Figure 4: The mean win rates of the approximated Shapley
Counterfactual Credits with different sample size in map
2s3z.

a variety of combinations among agents and measure the contri-
bution of an agent via the weighted average of the counterfactual
results of these combinations.

5.4 The Choice of Sample Times for Shapley
Approximation

We approximated the truly Shapley Value via Monte Carlo sampling.
Concretely, at each time step, we sample 𝑀 subsets randomly for
each agent 𝑎, and average the marginal contributions of 𝑎 in these
subsets to represent its approximated Shapley Value. However, a
large 𝑀 will still bring pressure to the computation costs, and
small𝑀 will lead to an inaccurate approximation. We performed
extensive experiments to find a moderate hyperparameter, and the
results are depicted in Figure 4. We conclude that 4 times sampling
are sufficient to reach an ideal result. But to make the performance
more stable, we set𝑀 to 5 for in our experiments.

6 CONCLUSION AND FUTUREWORK
In this paper, we investigate the problem of credit assignment in
Multi-Agent Reinforcement Learning. We extend the methods of
explicit credit assignment and leverage a counterfactual method
to measure the contributions of local agents to the central critic.
To fully describe the relationships among the cooperative agents,
Shapley Value is utilized with a sample-basedmethod, with aMonte-
Carlo sampling variant to decrease its computational complexity
from factorial to polynomial. Experiments on the StarCraft II mi-
cromanagement tasks show the superiority of our method as we
reach the state-of-the-art on various scenarios.

For future work, it could be interesting to investigate the causal
knowledge among the cooperative agents. With this inferred knowl-
edge, Shapley Value can be approximated in a more accurate way
and the credit assignment can be more precise. Our method can
also be extended to the scenarios with competitive settings, where
variants of Shapley Value are proved to be effective.
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