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ABSTRACT
Adversarial training is one of the most effective approaches to
improve model robustness against adversarial examples. However,
previous works mainly focus on the overall robustness of the model,
and the in-depth analysis on the role of each class involved in adver-
sarial training is still missing. In this paper, we propose to analyze
the class-wise robustness in adversarial training. First, we provide a
detailed diagnosis of adversarial training on six benchmark datasets,
i.e., MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10 and ImageNet.
Surprisingly, we find that there are remarkable robustness discrep-
ancies among classes, leading to unbalance/unfair class-wise robust-
ness in the robust models. Furthermore, we keep investigating the
relations between classes and find that the unbalanced class-wise
robustness is pretty consistent among different attack and defense
methods. Moreover, we observe that the stronger attack methods
in adversarial learning achieve performance improvement mainly
from a more successful attack on the vulnerable classes (i.e., classes
with less robustness). Inspired by these interesting findings, we
design a simple but effective attack method based on the traditional
PGD attack, named Temperature-PGD attack, which proposes to
enlarge the robustness disparity among classes with a temperature
factor on the confidence distribution of each image. Experiments
demonstrate our method can achieve a higher attack rate than the
PGD attack. Furthermore, from the defense perspective, we also
make some modifications in the training and inference phase to
improve the robustness of the most vulnerable class, so as to miti-
gate the large difference in class-wise robustness. We believe our
work can contribute to a more comprehensive understanding of
adversarial training as well as rethinking the class-wise properties
in robust models.
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1 INTRODUCTION
Deep learning has achieved great success in many applications
(such as image classification [11], video processing [35], recom-
mender systems [36]). Unfortunately, the existence of adversarial
examples [24] reveals the vulnerability of deep neural networks,
which hinders the practical deployment of deep learning models.
Adversarial training (training on adversarial examples) [15] has
been demonstrated to be one of themost successful defensemethods
by Athalye et al. [1]. While it can only obtain moderate robustness
even for simple image datasets like CIFAR-10, a comprehensive un-
derstanding for adversarial training is critical for further robustness
improvement.

Previously, some works tried to analyze adversarial training
from robust optimization [27], robustness generalization [21, 32],
training strategy [4, 15, 19, 29, 34]. However, in these works, they
all focus on the averaged robustness over all classes while ignoring
the possible difference among different classes. In other fields, there
are some works revealing the class-bias learning phenomenon in
the standard training (training on natural examples) [25, 28], in
which they found that some classes (“easy” classes) are easy to learn
and converge faster than other classes (“hard” classes). Inspired by
this, a natural question is then raised here:

Does each class perform similarly in the adversarially
trained models? Or is each class equally vulnerable?
If not, how would the class-wise robustness affect the
performance of classical attack and defense methods in
adversarial learning?

In this paper, we investigate the above questions comprehen-
sively. Specifically, we conduct a series of experiments on several
benchmark datasets and find that the class-bias learning phenom-
enon still exists in adversarial training which is even severe than
standard training. For this finding, we have the following questions
to explore:
†Corresponding Authors.
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(a) MNIST (b) CIFAR-10 (c) CIFAR-100

(d) SVHN (e) STL-10 (f) ImageNet

Figure 1: Class-wise robustness at different epochs in the test set

1) What is the relation between the unbalanced robustness and
the properties of the dataset itself?

2) Can we use the class-wise properties to further enlarge the
differences among classes?

3) Are there any ways to improve the robustness of vulnerable
classes so as to obtain a more balance/fairer robust model?

We conduct extensive analysis on the obtained robust models and
summarize the following contributions:

• Analysis on class-wise robustness
1) We systematically investigate the relation between differ-

ent classes and find classes in each dataset can be divided
into several groups, and intra-group classes are easily af-
fected by each other.

2) The relative robustness between each class is pretty con-
sistent among different attack or defense methods, which
indicates that the dataset itself plays an important role in
the class-wise robustness.

• Applications for stronger attack
1) Wemake full use of the properties of the vulnerable classes

to propose an attack that can effectively reduce the ro-
bustness of these classes, thereby increasing the disparity
among classes.

• Applications for stronger defenses
1) Training phase: Since the above group-based relation is

commonly observed in the dataset, we propose a method
that can effectively use this relation to adjust the robust-
ness of the most vulnerable class.

2) Inference phase: We find that the background of the im-
ages may be a potential factor for different classes to be
easily flipped by each other. Our experiments show that
the robustness of the most vulnerable class can be im-
proved by simply changing the background.

2 RELATEDWORK
Class-wise analysis. Class-wise properties are widely stud-

ied in the deep learning community, such as long-tailed data [25]
and noisy label [28]. The datasets for these specific tasks are sig-
nificantly different in each class. i.e., in long-tailed data task, the
tail-class (with few training data) usually achieves lower accuracy
since it cannot be sufficiently trained. In the asymmetric noisy label
task, classes with more label noise usually have lower accuracy.
However, in the adversarial community, few people pay attention
to class-wise properties because all benchmark datasets seem to be
class-balanced. Recently, we notice two parallel and independent
works [5, 16] also point out the performance disparity in robust
models, but none of them explore the relation between class-wise
robustness and the properties of the dataset itself, and our work
takes the first step to investigate this problem.

Attack. Adversarial attacks are used to craft adversarial exam-
ples by adding small and human imperceptible adversarial perturba-
tions to natural examples, which mainly include white-box attacks
and black-box attacks. In white-box settings, the attackers know the
parameters of the defender model and generate adversarial noise
by maximizing the loss function (e.g., Fast Gradient Sign Method
(FGSM) [10] and Projected Gradient Descent (PGD) [15] attack max-
imize cross-entropy loss, while Carlini-Wagner (C&W) [6] attack
maximize hinge loss). In black-box settings, there are transfer-based
and query-based attacks. The former attacks a substitute model
and the generated noise can transfer to the target model [26, 31].
The latter crafts adversarial examples by querying the output of
the target model [3, 14]. In this paper, we analyze the class-wise
robustness performance of different attacks and propose an attack
to illustrate that the unbalanced robustness can be enlarged by
carefully using the information of vulnerable classes.
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(a) MNIST (b) CIFAR-10 (c) CIFAR-100

(d) SVHN (e) STL-10 (f) ImageNet

Figure 2: Confusion matrix of robustness in the test set

Defense. Adversarial training [15] is known as the most effec-
tive and standard way to against adversarial examples. A range of
methods have been proposed to improve adversarial training, in-
cludingmodifying regularization term [19, 29, 34], adding unlabeled
data [7] and data augmentation [23]. Since adversarial training is
more time-consuming than standard training, Wong et al. [30] pro-
pose some solutions to accelerate model training. On the other hand,
some researchers [2, 18, 20] try to improve model robustness by pre-
processing the image in the inference phase, and these methods are
usually complementary to adversarial training. However, none of
these methods consider the difference in class-wise robustness, and
we have proposed some methods that can improve the robustness
of the most vulnerable class so as to obtain a fairer output.

3 PRELIMINARY
In this section, we first introduce the formula and notations in
adversarial training, then give several definitions about robust/non-
robust example and robust/vulnerable/confound class used through
this paper.

Vanilla adversarial training. Madry et al. [15] formalize the
adversarial training as a min-max optimization problem. Given a
DNN classifier ℎ𝜽 with parameters 𝜽 , a correctly classified natural
example 𝒙 with class label 𝑦, cross-entropy loss ℓ (·) and an ad-
versarial example 𝒙 ′ can be generated by perturbing 𝒙 , then the
objective of adversarial training is:

min
𝜽

1
𝑛

∑𝑛
𝑖=1 max

∥𝒙′
𝑖
−𝒙𝑖 ∥𝑝 ≤𝜖

ℓ
(
ℎ𝜽

(
𝒙 ′
𝑖

)
, 𝑦𝑖

)
, (1)

where the inner maximization applies the Projected Gradient De-
scent (PGD) attack to craft adversarial examples, and the outer
minimization uses these examples as augmented data to train the
model. Since the adversarial perturbation should not be observed
by humans, these noises are bounded by 𝐿𝑝 -norm

𝒙 ′
𝑖
− 𝒙𝑖


𝑝
≤ 𝜖 .

TRADRS. Another popular adversarial trainingmethod (TRADRS
[34]) is to add a regularization term to the cross-entropy loss:

min
𝜽

1
𝑛

∑𝑛
𝑖=1 ℓ (ℎ𝜽 (𝒙𝑖 ) , 𝑦𝑖 ) + 𝛽 max

∥𝒙′
𝑖
−𝒙𝑖 ∥𝑝 ≤𝜖

K
(
ℎ𝜽 (𝒙𝑖 ) , ℎ𝜽

(
𝒙 ′
𝑖

) )
,

(2)

whereK(·) represents Kullback-Leibler divergence and 𝛽 can adjust
the relative performance between natural and robust accuracy.

In addition, we define some concepts for the convenience of the
following expressions.

Definition 3.1. (Robust Example) Given a natural example 𝒙
with ground truth class 𝑦 and a DNN classifier ℎ𝜽 with parameters
𝜽 , if this example does not exist adversarial counterpart in bounded
𝜖-ball ∥𝒙 ′ − 𝒙 ∥𝑝 ≤ 𝜖: ℎ𝜽 (𝒙 ′) ≡ 𝑦, the example 𝒙 is defined as a
robust example.

Definition 3.2. (Non-Robust Example and Confound Class)
Given a natural example 𝒙 with ground truth class 𝑦 and a DNN
classifier ℎ𝜽 with parameters 𝜽 , if the prediction of the model is 𝑦′
after adding a bounded 𝜖-ball ∥𝒙 ′ − 𝒙 ∥𝑝 ≤ 𝜖 : ℎ𝜽 (𝒙 ′) = 𝑦′ ≠ 𝑦, the
example 𝒙 is defined as a non-robust example and 𝑦′ is defined as
confound class of example 𝒙 .
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Table 1: Adversarial robustness (%) (under popular attacks) on CIFAR-10.

Defenses(Attacks) Tot. 0 1 2 3 4 5 6 7 8 9 CV MCD

Madry(FGSM) 65.5 73.7 81.21 51.9 41.52 54.2 49.4 73.9 72.5 78.5 78.5 191.9 39.7
TRADES(FGSM) 66.9 77.5 85.9 49.7 41.9 55.8 52.8 73.0 76.8 80.7 75.3 211.2 44.0
MART(FGSM) 67.4 73.7 84.9 54.5 45.7 50.1 51.6 76.9 75.2 83.9 77.7 206.1 39.2
HE(FGSM) 68.4 71.9 84.6 52.0 42.2 57.0 57.9 76.5 77.8 83.4 80.9 200.5 42.3

Madry(CW∞) 57.1 67.5 79.5 43.0 37.7 41.5 41.0 57.5 60.0 71.5 72.0 212.5 41.8
TRADES(CW∞) 59.4 69.5 85.5 39.0 38.5 43.0 46.5 57.0 67.0 77.5 70.5 258.5 47.0
MART(CW∞) 58.8 65.5 80.5 43.0 39.5 41.0 41.0 63.0 67.5 76.5 71.0 232.7 41.0
HE(CW∞) 63.6 71.2 87.5 47.1 44.4 49.8 50.1 61.4 71.2 81.5 72.7 210.8 43.1

Madry(PGD) 52.1 63.8 71.6 39.1 25.3 36.7 38.6 57.4 59.5 63.1 66.8 224.3 46.3
TRADES(PGD) 56.3 67.8 80.6 37.8 29.4 40.6 43.9 59.3 66.9 71.8 65.6 263.6 51.1
MART(PGD) 58.2 64.5 78.0 45.1 35.4 37.7 43.5 65.3 67.5 76.3 69.5 235.1 42.6
HE(PGD) 60.7 64.9 79.3 41.0 34.5 47.9 51.5 67.6 70.5 76.9 73.2 224.8 44.8

Madry(Transfer-based attack) 80.2 84.5 87.7 71.0 68.3 78.9 69.2 86.3 82.9 87.6 86.4 56.1 19.4
TRADES(Transfer-based attack) 82.0 87.7 92.3 70.9 68.0 78.2 70.0 87.8 87.6 90.8 86.8 78.1 24.2
MART(Transfer-based attack) 82.9 87.4 94.7 74.0 66.7 76.0 68.8 89.9 88.0 93.7 90.0 99.2 28.0
HE(Transfer-based attack) 84.5 90.1 95.9 75.6 60.8 77.4 76.7 91.1 92.1 93.4 92.2 115.3 35.1

Madry(N atacck) 56.1 67.5 77.7 43.7 31.4 42.7 49.0 53.7 60.1 64.4 71.1 190.5 46.3
TRADES(N atacck) 64.4 73.1 87.4 46.4 44.4 49.1 61.7 56.9 71.6 79.5 74.1 200.0 43.0
MART(N atacck) 67.5 72.3 83.4 55.3 49.0 54.1 61.2 67.1 72.9 82.3 77.6 133.6 34.4
HE(N atacck) 69.7 75.9 88.3 52.7 44.7 65.4 62.6 70.1 76.0 84.5 77.5 168.6 43.5

1 The underscore indicates the most robust class.
2 The bold indicates the most vulnerable class.

Table 2: Superclasses in CIFAR-10 and STL-10.

Dataset Transportation
CIFAR-10 Airplane(0) Automobile(1) Ship(8) Truck(9)
STL-10 Airplane(0) Car(2) Ship(8) Truck(9)
Dataset Animals
CIFAR-10 Bird(2) Cat(3) Deer(4) Dog(5) Frog(6) Horse(7)
STL-10 Bird(1) Cat(3) Deer(4) Dog(5) Horse(6) Monkey(7)
The number in brackets represents the numeric label of the class in the dataset.

Definition 3.3. (Robust Class and Vulnerable Class) A class
whose robustness is higher than the overall robustness is called a
robust class. In contrast, a class whose robustness is lower than the
overall robustness is called a vulnerable class.

4 CLASS-WISE ROBUSTNESS ANALYSIS
In this section, we focus on analyzing the class-wise robustness,
including class-biased learning and class-relation exploring on six
benchmark datasets. Moreover, we investigate the class-wise ro-
bustness with different attack and defense models.

We use six benchmark datasets in adversarial training to ob-
tain the corresponding robust model, i.e., MNIST [13], CIFAR-10 &
CIFAR-100 [12], SVHN [17], STL-10 [8] and ImageNet [9]. Table 2
highlights that the classes of CIFAR-10 and STL-10 can be grouped
into two superclasses: Transportation andAnimals. Similarly, CIFAR-
100 also contains 20 superclasses with each has 5 subclasses. For
the ImageNet dataset, the pipeline of adversarial training follows
Wong et al. [30], while the training methods of other datasets fol-
low Madry et al. [15]. See Appendix A.1 for detailed experimental
settings.

4.1 Class-biased Learning
Figure 1 plots the robustness of each class at different epochs in
the test set for six benchmark datasets with adversarial training,
where the shaded area in each sub-figure represents the robustness
gap between different classes across epochs. Considering the large

number of classes in CIFAR-100 and ImageNet, we randomly sample
12 classes for a better indication. From Figure 1, we surprisingly
find that there are recognizable robustness gaps between different
classes for all datasets. Specifically, for SVHN, CIFAR-10, STL-10
and CIFAR-100, the class-wise robustness gaps are obvious and the
largest gaps can reach 40%-50% (Figure 1(b)-1(e)). For ImageNet,
since the model uses the three-stage training method [30], its class-
wise robustness gap increases with the training epoch, and finally
up to 80% (Figure 1(f)). Even for the simplest dataset MNIST, on
which model has achieved more than 95% overall robustness, the
largest class-wise robustness gap still has 6% (Figure 1(a)).

Hence, we can conclude that the class-bias learning phenomenon
is also common in adversarial learning, and there are remarkable ro-
bustness discrepancies among classes, leading to unbalance/unfair
class-wise robustness in adversarial training. Inspired by the phe-
nomenon in Figure 1, we next conduct the analysis to the robust
relation between classes and the impact of different attacks and
defenses on class-wise robustness in the following subsections.

4.2 The relations among different classes
We first systematically investigate the relation of different classes
under robust models. Figure 2 shows the confusion matrices of
robustness between classes on all the six datasets. The X-axis and
Y-axis represent the predicted classes and the ground truth classes,
respectively. The grids on the main diagonal line represent the
robustness of each class, while the grids on the off-diagonal line
represent the non-robustness on one class (Y-axis) to be misclassi-
fied to another class (X-axis).

Observations and Analysis. From the results reported in Fig-
ure 2, we have the following observations and analysis: (i) The
confusion matrices on all six benchmark datasets roughly demon-
strate one kind of symmetry (i.e, the highlight colors of off-diagonal
elements are symmetrical about the main diagonal), which indi-
cates that some classes-pair could be easily misclassified between
each other. (ii) The symmetry classes-pair in Figure 2 are always
similar to some degree, such as similar in shape or belonging to
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(a) Class-wise variance of confidence
(CVC) of SOTA defense models

(b) MART’s output for image 127
(class 3) with iteration steps 1

(c) MART’s output for image 127
(class 3) with iteration steps 10

(d) MART’s output for image 127
(class 3) with iteration steps 20

Figure 3: Analysis of output confidence

Table 3: Adversarial robustness (%) under Temperature-PGD20 attack on CIFAR-10.

Defense 1/T Tot. 0 1 2 3 4 5 6 7 8 9 CV MCD

Madry 2 51.8(-0.3)1 63.4(-0.4) 72.0(+0.4)2 38.8(-0.3) 25.2(-0.1) 33.9(-2.8) 38.5(-0.1) 56.6(-0.8) 59.8(+0.3) 63.0(-0.1) 66.9(+0.1) 235.6(+11.3) 46.8(+0.5)
TRADES 5 54.6(-1.7) 66.8(-1.0) 80.0(-0.6) 36.7(-1.1) 26.2(-3.2) 35.6(-5.0) 43.0(-0.9) 56.0(-3.3) 66.0(-0.9) 70.8(-1.0) 64.9(-0.7) 291.6(+28.0) 53.8(+2.7)
MART 5 54.3(-3.9) 62.7(-1.8) 77.1(-0.9) 41.5(-3.6) 26.3(-9.1) 27.5(-10.2) 41.5(-2.0) 60.8(-4.5) 66.1(-1.4) 72.8(-3.5) 67.3(-2.2) 311.3(+76.2) 50.8(+8.2)
HE 5 57.3(-3.4) 62.4(-2.5) 74.8(-4.5) 38.4(-2.6) 29.4(-5.1) 43.1(-4.8) 47.8(-3.7) 62.9(-4.7) 69.1(-1.4) 74.5(-2.4) 70.8(-2.4) 240.8(+16.0) 45.4(+0.6)
HE 50 50.4(-10.3) 58.2(-6.7) 71.8(-7.5) 33.3(-7.7) 17.6(-16.9) 23.0(-24.9) 41.6(-9.9) 56.2(-11.4) 66.9(-3.6) 69.9(-7.0) 65.7(-7.5) 363.5(+138.7) 54.1(+9.3)

1 “-” represents the robustness reduction compared with the corresponding element of PGD attack in table 1.
2 “+” represents the robustness improvement compared with the corresponding element of PGD attack in table 1.

the same superclasses, hence, would be easy misclassified to each
other. Specifically, for SVHN, digits with similar shapes are more
likely to be flipped to each other, e.g., the number 6 and number 8
are similar in shape and the non-robustness between them (num-
ber 6 is misclassified to be number 8 or vice versa) is very high as
shown in Figure 2(d). For CIFAR-10 and STL-10, Figures 2(b) and
2(e) clearly show that the classes belonging to the same superclass
have high probabilities to be misclassified to each other, for exam-
ple, both class 3 (cat) and class 5 (dog) in CIFAR-10 belong to the
superclass Animals, the non-robustness between them is very high
in Figure 2(b). (iii) Few misclassifications would happen between
two classes with different superclasses. For example, in STL-10, the
class 5 (dog) belongs to superclass Animals, while class 9 (truck)
belongs to Transportation, and their non-robustness is almost 0 as
shown in figure 2(e).

For CIFAR-100 and ImageNet, we can also observe symmetry
properties of confusion matrix in Figure 2(c) and Figure 2(f), which
is consistent with the above analysis. Overall, Figure 2 demonstrates
that the classes with similar semantic would be easier misclassified
(with higher non-robustness) to each other than those with different
semantics (e.g., the classes belong to different superclasses).

4.3 The class-wise robustness under different
attacks and defenses

The above analysis mainly concentrates on the performance under
PGD attack. In this subsection, we investigate the class-wise ro-
bustness of state-of-the-art robust models against various popular
attacks in the CIFAR-10 dataset.

The defense methods we chose include Madry training [15],
TRADES [34], MART [29] and HE [19]. We train WideResNet-32-10

[33] following the original papers. White-box attacks include FGSM
[10], PGD [15] and CW∞ [6], and the implementation of CW∞
follows [7]. Black-box attacks include a transfer-based and a query-
based attack. The former uses a standard trainedWideResNet-32-10
as the substitute model to craft adversarial examples, and the latter
uses N attack [14]. All hyperparameters see Appendix A.2.

In order to quantitatively measure the robustness unbalance (or
discrepancy) among classes, we give the definition of two statis-
tical metrics: class-wise variance (CV) and maximum class-wise
discrepancy (MCD) as follows

Definition 4.1. (Class-wise Variance ,CV) Given one dataset
containing 𝐶 classes, the accuracy of each class 𝑐 is 𝑎𝑐 , the average
accuracy over all classes is 𝑎 =

∑𝐶
𝑐=1 𝑎𝑐/𝐶 , and then CV is defined

as:

𝐶𝑉 =
1
𝐶

𝐶∑
𝑐=1

(𝑎𝑐 − 𝑎)2 .

Definition 4.2. (MaximumClass-wiseDiscrepancy,MCD) Given
one dataset, let 𝑎𝑚𝑎𝑥 and 𝑎𝑚𝑖𝑛 represent the maximum and mini-
mum accuracy of class, then MCD is defined as:

𝑀𝐶𝐷 = 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 .

The insight of these two metrics is to measure the average dis-
crepancy and the most extreme discrepancy among classes. In-
tuitively, these metrics will be large if there are huge class-wise
differences.

Observations and Analysis. Based on the CIFAR-10 dataset,
we check the class-wise robustness of different attack and defense
models and report the results in Table 1. From the results, we can
have the following observations and analysis: (i) In all models and
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(a) Misclassified confusion matrix (b) Homing confusion matrix (c) Adjust class 3 robustness

Figure 4: Case study about adjusting class 3 robustness in the training phase

attacks, there are remarkable robustness gaps between different
classes, and class 1 and class 3 are always the most robust and vul-
nerable class in all settings, which suggests the relative robustness
of each class has a strong correlation with the dataset itself. (ii)
Stronger attacks in white-box settings are usually more effective for
vulnerable classes. For example, comparing FGSM and PGD of the
same defense method, the robustness reduction of the vulnerable
classes (e.g., class 3) is obviously larger than that of robust classes
(e.g., class 1), resulting in larger class-wise variance (CV) and maxi-
mum class-wise discrepancy (MCD). (iii) In black-box settings, the
main advantage of the query-based attack over the transfer-based
attack is also concentrated in vulnerable classes. One explanation
is that many examples of these classes are closer to the decision
boundary, making it easier to be attacked.

In addition, we have also checked that the CV and MCD of
the adversarial training are significantly larger than the standard
training in all datasets. For example, in terms of the most popular
dataset CIFAR-10, the CV of adversarial training is 28 times that of
standard training, and the MCD of adversarial training is 5 times
that of standard training. This shows that class-wise properties in
the robustness model are worthy of attention.

5 IMPROVING ADVERSARIAL ATTACK VIA
CLASS-WISE DISCREPANCIES

Although Section 4.3 have shown the class-wise robustness discrep-
ancies are commonly observed in adversarial settings, we believe
that this gap can be further enlarged if the attacker makes full
use of the properties of vulnerable classes. Specifically, since the
images near decision boundary usually have smooth confidence
distributions, popular attacks cannot find the effective direction in
the iterative process, and Figure 3(b)-3(d) clearly show an example
of the failed attack with PGD (i.e., the bar for ground truth class
3 is always the highest). To solve this problem, we propose to use
a temperature factor to change this distribution, so as to create
virtual power in the possible adversarial direction.

For a better formulation, we assume that the DNN is 𝑓 , the input
example is 𝑥 , the number of classes in the dataset is 𝐶 , then the
softmax probability of this sample 𝑥 corresponding to class𝑘 (𝑘 ∈ 𝐶)

is

S(𝑓 (𝑥))𝑘 =
𝑒 𝑓 (𝑥)𝑘/𝑇∑𝐶
𝑐=1 𝑒

𝑓 (𝑥)𝑐/𝑇
. (3)

Using this improved softmax function, the adversarial perturbation
crafted at 𝑡 th step is

𝛿𝑡+1 =
∏

𝜖 (𝛿𝑡 + 𝛼 · sign(∇ℓ (S(𝑓 (𝑥 + 𝛿𝑡 )), 𝑦))) . (4)

Where
∏

𝜖 is the projection operation, which ensures that 𝛿 is
in 𝜖-ball. ℓ (·) is the cross-entropy loss. 𝛼 is the step size. 𝑦 is the
ground truth class.

The bar corresponding to Temperature-PGD (1/T=5) in Figure
3(b)-3(d) is a good example of how our proposed method works. To
better understand the impact of our method on different defense
models, the class-wise variance of confidence (CVC) is proposed to
measure the smoothness of the confidence output of these models.

Definition 5.1. (Class-wise Variance of Confidence, CVC) As-
sume that there are 𝐶 classes in the test set, class 𝑘 has 𝑁 images,
the confidence output of one image 𝑖 is 𝒑 = (𝑝1, · · · , 𝑝𝑐 , · · · , 𝑝𝐶 )
and the average confidence of this image is 𝑝𝑖 =

∑𝐶
𝑐=1 𝑝

𝑖
𝑐/𝐶 , then

CVC of class 𝑘 is defined as

𝐶𝑉𝐶𝑘 =
1
𝑁𝐶

𝑁∑
𝑖=1

𝐶∑
𝑐=1

(𝑝𝑖𝑐 − 𝑝
𝑖 )2 .

Intuitively, this value will be small if the output confidence of
one class is smooth. From the results of Figure 3(a) and Table 2, we
can find that in all defense models, the CVC of superclass Animals
is smaller than that of superclass Transportation, and the CVC of
class 4 and class 3 is the smallest and second-smallest. Combined
with the information of Table 1, the class with low robustness is
closer to the classification boundary, so the confidence distribution
is smoother, which is consistent with our previous analysis. On
the other hand, the overall CVC of HE is much smaller than other
defense methods, which means that popular attacks (i.e., PGD) may
be very inefficient for this defense model.

Overall results. In practice, we perform a grid search on the hy-
perparameter 1/T ∈ [2, 5, 10, 50], and report the best performance.
The results of Table 3 verify the effectiveness of our proposed
method. Specifically, (i) The CV and MCD of all defense models
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(a) Numbers after adding background (b) Confusion matrix for natural images (c) Confusion matrix for adversarial images

Figure 5: Experiments about adding background on MNIST

Figure 6: Changing the background of class 3 images in the
CIFAR-10 test set

have become larger, which means that the disparity between the
classes is enlarged. (ii) Since the confidence output of the vulnera-
ble classes is smoother (Figure 3(a)), our method can significantly
reduce the robustness of these classes. (e.g., class 3 and class 4). (iii)
The Madry’s model has a steeper confidence distribution, so it is
not sensitive to Temperature-PGD attack. On the contrary, because
the confidence outcomes of the HE’s model is extremely smooth,
increasing the temperature factor to make the outcome steeper can
significantly improve the attack rate, i.e., total robustness reduces
10.3% (when 1/T=50), of which class 3 and class 4 reduce 16.9%
and 24.9% respectively. Overall, the success of Temperature-PGD is
effective evidence that stronger attackers can further increase the
class-wise robustness difference.

6 IMPROVING THE ROBUSTNESS OF THE
VULNERABLE CLASS

In this section, we propose two methods to mitigate the difference
in class-wise robustness. Specifically, our goal is to improve the
robustness of the most vulnerable subgroup in CIFAR-10 (i.e., class
3), because it has the lowest robustness as described in the previous
analysis.

6.1 Adjust robustness at the training phase
Figure 2 analyzes the relation of class-wise robustness in detail. Here
we further explore the more fine-grained relation between these
classes by removing the confound class (Definition 3.2). Specifically,
for the example 𝒙 from class 𝑦 is attacked to the confound class
𝑦′, we are curious if we remove confound class 𝑦′ (i.e., remove all
examples of ground truth class 𝑦′ in the training set) and re-train
the model, will example 𝒙 become a robust example WITHOUT
being maliciously flipped to a new confound class1?

Definition 6.1. (Homing Property) Given an adversarial exam-
ple 𝑥 ′ from class 𝑦 which is misclassified as the confound class 𝑦′
by a model, this example satisfies homing property if it becomes a
robust example after we re-train the model via removing confound
class 𝑦′.

To explore the above question, we conduct extensive experiments
and the results are reported in Figure 4. Figure 4(a) and Figure
2(b) are similar, and the difference is that the values in Figure
4(a) represent the number of examples instead of percentage, and
the main diagonal elements (the number of examples correctly
classified) are hidden for better visualization and comparison. Thus
this figure is called the Misclassified confusion matrix. To check the
homing property, we alternatively remove each confound class to re-
train themodel and plot the results in Figure 4(b), where the element
in the 𝑖th row and 𝑗 th column (indexed by the classes starting from
0) indicates how many adversarial examples with ground truth
class 𝑖 and confound class 𝑗 that satisfy homing property (i.e., these
examples will become robust examples after removing the confound
class 𝑗 ), so this figure is defined as the Homing confusion matrix.

Figure 4 clearly shows homing property is widely observed in
many misclassified examples. For example, we can focus on the
3rd row and the 5th column of Figure 4(a) and 4(b). 200 in Figure
4(a) means that 200 examples of class 3 are misclassified as class
5, and 119 in Figure 4(b) means that if we remove class 5 and re-
train the model, 119 of 200 examples will home to the correct class
3 (i.e., become robust examples). This suggests that changing the
robustness of class 3 only needs to carefully handle the relation with
1We usually think that there are many decision boundaries in bounded 𝜖-ball, so a
new confound class is likely to appear even if one decision boundary is removed.
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Table 4: Robust model prediction results for images of class 3 in the test set (1000 images) under Temperature-PGD20 attack.

Line number Test set Class 0 Class 1 Class 2 Class 3(correct) Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

1 Original image (Natural) 181 4 43 710 38 88 64 15 6 14
2 + white background (Natural) 39(+21)2 10(+6) 48(+5) 742(+32) 13(-25) 59(-29) 63(-1) 5(-10) 3(-3) 18(+4)
3 + training adjustment method (Natural) 35(+17) 15(+11) 56(+13) 758(+48) 23(-15) 24(-64) 61(-3) 6(-9) 8(+2) 14(+0)

4 Original image (Adversarial) 34 16 82 262 113 254 139 53 14 33
5 + white background (Adversarial) 76(+42) 22(+6) 72(-10) 403(+141) 80(-33) 136(-118) 116(-23) 38(-15) 7(-7) 50(+17)
6 + training adjustment method (Adversarial) 93(+59) 31(+15) 80(-2) 435(+173) 72(-41) 84(-170) 111(-28) 35(-18) 3(-11) 56(+23)

1 The number represents how many images in the corresponding test set are predicted to be the corresponding class.
2 “+” represents the increase in the number of images compared with the corresponding element of the original image test set, and “-” is vice versa.

class 5. Interestingly, these group-based relations are commonly
observed in CIFAR-10, e.g., class 1 (automobile)-class 9 (truck) and
class 0 (airplane)-class 8 (ship).

The proposed method. Based on the above discovery, we try
to use this group-based relation to adjust the class-wise robustness.
Our method is based on TRADES [34] as shown in the Equation (5).
Specifically, Zhang et al. [34] set 𝛽 as a constant to adjust natural
accuracy and robust accuracy, while we modify 𝛽 to a vector 𝜷 =

(𝛽1, ..., 𝛽𝑐 , ..., 𝛽𝐶 ) to adjust class-wise robustness, where 𝑐 ∈ 𝐶 is
the class id, thus the loss function of class 𝑐 is

min
𝜽

1
𝑛

∑𝑛
𝑖=1 ℓ

(
ℎ𝜽

(
𝒙𝑖𝑐

)
, 𝑦𝑖𝑐

)
+ 𝛽𝑐 max𝒙′,𝑖

𝑐 −𝒙𝑖𝑐

𝑝
≤𝜖

K
(
ℎ𝜽

(
𝒙𝑖𝑐

)
, ℎ𝜽

(
𝒙 ′,𝑖𝑐

))
.

(5)

Since class 3 and class 5 have an obvious one-to-one relation in
Figure 4(b). We only change the 𝛽𝑐 of class 5 to adjust the robustness
of class 3, while fixes the 𝛽𝑐 of other classes. The result is shown in
Figure 4(c). Each line represents the class-wise robustness under
the Temperature-PGD attack. The title in the figures represents
the 𝛽𝑐 value of each class 𝑐 , that is, ’66666X6666’ stands for 𝛽𝑐 = 6
(∀𝑐 ∈ 𝐶 and 𝑐 ≠ 5), and the number 6 is chosen to be comparable
to the experiment of Zhang et al. [34] (∀𝑐 ∈ 𝐶, 𝛽𝑐 = 6).

Overall results. Figure 4(c) demonstrates that the robustness
of class 3 can be improved or reduced by adjusting the value of 𝛽5.
Specifically, when 𝛽5 = 6 → 𝛽5 = 0.5, the robustness of class 3
changes from 26.2% to 33.6% and the robustness of class 5 changes
from 43.0% to 34.1%, which shows that our method can effectively
adjust the robustness of the most vulnerable class 3, thereby reduc-
ing the class-wise disparity. Intuitively, Other group-based relations
can also be used to further balance the overall robustness.

6.2 Adjust robustness at the inference phase
MNIST and CIFAR-10 are the most commonly used datasets for
adversarial training. However, the overall performance of robust
models in MNIST usually exceeds 95%, while this is only 50%-60%
in CIFAR-10. We speculate that the unified background of MNIST
is one of the potential reasons why its performance is better.

To verify our assumption, we add different backgrounds to each
class of images in MNIST to explore the role of the background.
Specifically, we first modify the original images into three-channel
images and then add two sets of background colors to the training
set and test set of each class, as shown in Figure 5(a). In the training
and inference phase, 𝜖 is set to 0.5 to highlight the robust relation
between classes, and other settings are consistent with Section 4.
In addition, we have also verified that this background-changing

dataset has almost no effect on the accuracy of standard training.
Therefore, we only report the confusion matrices of adversarial
training as shown in Figure 5(b) and Figure 5(c).

The confusion pattern in Figure 5(c) is completely consistent
with the background relation of each class in Figure 5(a), which
is the evidence that the class-wise robust relation can be changed
through the background. One possible explanation is that the model
mistakenly learned the spurious correlation [22] between the fore-
ground and the background during the training process, e.g., the
model may think that the number 2 and the number 3 are more
similar since they have the same background, while the number 2
and the number 5 are vice versa. However, from the perspective
of causality [22], the intrinsic feature to judge whether numbers
are similar should be the shape rather than the background. In fact,
Shen et al. [22] has proved that this phenomenon has a negative
impact on model prediction, but comparing the results of Figure
5(b) and Figure 5(c), it is clearly demonstrated that the influence
of the background on the adversarial examples is much greater
than that on the natural examples, which makes this factor very
important in adversarial settings. To the best of our knowledge,
this is the first step to explore the connection between background
and model robustness.

The proposed method. Inspired by the above phenomenon,
we believe that the complex background in the CIFAR-10 dataset
may affect the robustness of each class and we can use this property
to adjust class-wise robustness. To check this, we first select the
images with the ground truth class 3 in the test set and then record
the confidence of adversarial prediction corresponding to the class
3 of each image (i.e., S(ℎ𝜽 (𝒙 ′𝑖 ))𝑦=3, where S is the softmax function)
and visualize images according to the confidence from high to low.
Surprisingly, we find that the backgrounds of the highly robust
images in class 3 are pure white color. Figure 6 shows the most
robust image (ID: 2261) in class 3 has this white background.

Therefore, we manually extract the mask that can locate the
background from one non-robust image (ID: 3634) of class 3 in the
test set, and then replace the original background with a white
background to investigate the change of prediction. As shown in
Figure 6, the boxes represent the natural and robust prediction of
the corresponding image. ‘Rank 1’ and ‘Rank 2’ represent the classes
with the highest and the second-highest confidence, and the value
in brackets represents the specific confidence. The result indicates
this non-robust image can become a robust one by replacing the
background, while it slightly affects the natural prediction.

We apply the above image processing method to all images of
class 3 (1000 images) in the test set to verify whether the above
phenomenon can be generalized. As shown in Table 4. The number
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in each row represents how many images in the corresponding test
set are predicted to be the corresponding class. Since the ground
truth of all test images is class 3, the column corresponding to class
3 is the number of images that are correctly predicted.

Overall results. As illustrated in Line 4 and Line 5 of Table
4, many non-robust examples become robust after adding a white
background (i.e., the robustness changed from 26.2% to 40.3%), while
Line 1 and Line 2 indicate natural predictions are not sensitive to
the background, which proves that the background mainly has a
great influence on the model’s adversarial prediction. Furthermore,
we combine the modified training method mentioned in Section 6.1,
and the robustness of class 3 becomes 43.5% (Line 6), which means
that the robustness of the most vulnerable class in CIFAR-10 has
been greatly improved.

7 CONCLUSION
In this paper, we have a closer look at the class-wise properties of
the robust model based on the observation that robustness between
each class has a recognizable gap. We conduct systematic analysis
and find: 1) In each dataset, classes can be divided into several
subgroups, and intra-group classes are easily flipped by each other.
2) The emergence of the unbalanced robustness is closely related to
the intrinsic properties of the datasets. Furthermore, we make full
use of the properties of the vulnerable classes to propose an attack
that can effectively reduce the robustness of these classes, thereby
increasing the disparity among classes. Finally, in order to alleviate
the robustness difference between classes, we propose two methods
to improve the robustness of the most vulnerable class in CIFAR-10
(i.e., class 3): 1) At the training phase: Modify loss function according
to group-based relation between classes. 2) At the inference phase:
Change the background of the original images. We believe our
work can contribute to a more comprehensive understanding of
adversarial training and let researchers realize that the class-wise
properties are crucial to robust models.
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A APPENDIX: HYPERPARAMETERS FOR
REPRODUCIBILITY

A.1 Hyperparameters for defenses in Section 4
MNIST setup. Following Zhang et al. [34], we use a four-layers

CNN as the backbone. In the training phase, we adopt the SGD
optimizer with momentum 0.9, weight decay 2× 10−4 and an initial
learning rate of 0.01, which is divided by 10 at the 55th, 75th and 90th
epoch (100 epochs in total). Both the training and testing attacker
are 40-step PGD (PGD40) with random start, maximum perturbation
𝜖 = 0.3 and step size 𝛼 = 0.01.

CIFAR-10 & CIFAR-100 setup. Like Wang et al. [29] and
Zhang et al. [34], we use ResNet-18 [11] as the backbone. In the
training phase, we use the SGD optimizer with momentum 0.9,
weight decay 2 × 10−4 and an initial learning rate of 0.1, which is
divided by 10 at the 75th and 90th epoch (100 epochs in total). The
training and testing attackers are PGD10/PGD20 with random start,
maximum perturbation 𝜖 = 0.031 and step size 𝛼 = 0.007.

SVHN & STL-10 setup. All settings are the same to CIFAR-10
& CIFAR-100, except that the initial learning rate is 0.01.

ImageNet setup. Following Wong et al. [30], we use ResNet-50
[11] as the backbone. Specifically, in the training phase, we use the
SGD optimizer with momentum 0.9 and weight decay 2 × 10−4. A
three-stage learning rate schedule is used as the same with Wong

et al. [30]. The training attacker is FGSM [10] with random start,
maximum perturbation 𝜖 = 0.007, and the testing attacker is PGD50

with random start, maximum perturbation 𝜖 = 0.007 and step size
𝛼 = 0.003.

A.2 Hyperparameters for attacks in Section 4.3
FGSM setup. Random start, maximum perturbation 𝜖 = 0.031.
PGD setup. Random start, maximum perturbation 𝜖 = 0.031.

For RST model, step size 𝜖 = 0.01 and steps 𝛼 = 40, following
Carmon et al. [7]. For other models, step size 𝜖 = 0.003 and steps
𝛼 = 20.

CW∞ setup. Binary search steps 𝑏 = 5, maximum perturbation
times 𝑛 = 1000, learning rate 𝑙𝑟 = 0.005, initial constant 𝑐0 = 0.01,
𝜏 decrease factor 𝛾 = 0.9. Similar to Carmon et al. [7], we randomly
sample 2000 images to evaluate model robustness, and 200 images
per class.

Transfer-based attack setup. All settings are the same to PGD
for the substitute standard model.

N attack setup. Random start, maximum perturbation 𝜖 =

0.031, population size 𝑛𝑝𝑜𝑝 = 300, noise standard deviation 𝜎 = 0.1
and learning rate 𝑙𝑟 = 0.02. Similar to Li et al. [14], we randomly
sample 2000 images to evaluate model robustness, and 200 images
per class.
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