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ABSTRACT
In many important machine learning applications, the training

distribution used to learn a probabilistic classifier differs from the

distribution on which the classifier will be used to make predictions.

Traditional methods correct the distribution shift by reweighting

training data with the ratio of the density between test and training

data. However, in many applications training takes place without

prior knowledge of the testing distribution. Recently, methods have

been proposed to address the shift by learning the underlying causal

structure, but those methods rely on diversity arising from multiple

training data sets, and they further have complexity limitations in

high dimensions. In this paper, we propose a novel Deep Global

Balancing Regression (DGBR) algorithm to jointly optimize a deep

auto-encoder model for feature selection and a global balancing

model for stable prediction across unknown environments. The

global balancing model constructs balancing weights that facilitate

estimation of partial effects of features (holding fixed all other

features), a problem that is challenging in high dimensions, and thus

helps to identify stable, causal relationships between features and

outcomes. The deep auto-encoder model is designed to reduce the

dimensionality of the feature space, thus making global balancing

easier. We show, both theoretically and with empirical experiments,

that our algorithm can make stable predictions across unknown

environments. Our experiments on both synthetic and real datasets

demonstrate that our algorithm outperforms the state-of-the-art

methods for stable prediction across unknown environments.
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1 INTRODUCTION
Predicting unknown outcome values based on their observed fea-

tures using a model estimated on a training data set is a common

statistical problem. Many machine learning and data mining meth-

ods have been proposed and shown to be successful when the test

data and training data come from the same distribution. However,

the best-performing models for a given distribution of training

data typically exploit subtle statistical relationships among features,

making them potentially more prone to prediction error when ap-

plied to test data sets where, for example, the joint distribution of

features differs from that in the training data. Therefore, it can be

useful to develop predictive algorithms that are robust to shifts in

the environment, particularly in application areas where models

can not be retrained as quickly as the environment changes.

Recently, many methods [4, 6, 8, 15, 22] have been proposed to

address this problem. The main idea of these methods is to reweight

training data with a density ratio, so that its distribution can become

more closely aligned with the distribution of test data. The methods

have achieved good performance for correcting for shifts in the

distribution of features, but they require prior knowledge of the

test distribution when estimating the density ratio.

For the case of unknown test data, some researchers have pro-

posed learning methods where training takes place across multi-

ple training datasets. By exploring the invariance across multiple

datasets, Peters et al. [19] proposed an algorithm to identify causal

features, and Rojas-Carulla et al. [20] proposed a causal transform

framework to learn invariant structure. Similarly, domain general-

ization methods [18] try to learn an invariant representation of data.

The performance of these methods relies on the diversity of their

multiple training data, and they cannot address distribution shifts

which do not appear in their training data. Moreover, most of these

methods are highly complex, with training complexity growing

exponentially with the dimension of the feature space in the worst

case, which is not acceptable in high dimensional settings.

In this paper, we focus on an environment where the expected

value of the outcome conditional on all covariates is stable across

enrivonments. Further, covariates fall into one of two categories: for

the first category, the conditional expectation has a non-zero depen-

dence on the covariates; we call these “causal” variables, although

in some applications they might better be described as variables

that have a structural relationship with the outcome. For example,

ears, noses, and whiskers are structural features of cats that are

https://doi.org/10.1145/3219819.3220082
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stable across different environments where images of animals may

be taken. A second category of variable are termed “noisy variables,”

which are variables that are correlated with either the causal vari-

ables, the outcome, or both, but do not themselves have a causal

effect on the outcome; conditional on the full set of causal variables,

they do not affect expected outcomes. Further, we consider a setting

where the analyst may not know a prior which variables fall into

each category. Finally, we assume that there are no unobserved

confounders, so that it is possible to estimate the causal effect of

each causal variable with a very large dataset when all covariates

are adequately controlled for. We focus on settings when there are

many features and perhaps limited data.

One way to improve the stability of prediction algorithms in

such a setting is to isolate the impact of each individual feature.

If the expectation of the outcome conditional on covariates is sta-

ble across environments, and variability in the joint distribution

of features is the source of instability, then the stable prediction

problem can be solved by estimating the conditional expectation

function accurately. With a small number of discrete features and a

large enough dataset, simple estimation methods such as ordinary

least squares can accomplish this goal. If there is a larger number

of features but only a few matter for the conditional expectation

(that is, the true outcome model is sparse), regularized regression

can be applied to consistently estimate the conditional expectation

function. However, with a larger set of causal features relative to

the number of observations, regularized regression will no longer

consistently estimate partial effects. For example, LASSO will omit

many variables from the regression, while the coefficients on in-

cluded variables depend on the covariance of the outcome with the

omitted variables as well as on the covariance between the omitted

and included variables. This results in instability: if the covariance

among features differs across environments, then prediction based

on such a model will be unstable across environments. In such

high-dimensional cases, alternative approaches are required.

Here, we use an approach motivated by the literature on causal

inference, where variable balancing strategies are used for esti-

mating the average effect of changing a single binary covariate

(the treatment). Causal inference methods optimize a different ob-

jective than prediction-based methods; they prioritize consistent

estimation of treatment effects over prediction in a given train-

ing data set. The methods are designed for a scenario where the

analyst has domain knowledge about which variable has a causal

effect, so that the focus of the analysis is on estimating the ef-

fect of the treatment in the presence of other features which are

known to be confounders (variables that affect both treatment as-

signment and potential outcomes). Indeed, only after controlling

for confounders can the difference in the expectation of the out-

come between treatment and control groups be interpreted as a

treatment effect. One approach to estimating treatment effects in

the presence of confounders is to use variable balancing methods,

which attempt to construct weights that balance the distribution of

covariates between a treatment and a control group. They either

employ propensity scores [2, 11, 13, 16, 21], or optimize balancing

weights directly [1, 7, 10, 25]. These methods provide an efficient

approach to estimate causal effects with a small number of treat-

ment variables in observational studies, but most of them can not

handle well settings where there may be many causal variables and

the analyst does not know which ones are causal; as such, exist-

ing covariate balancing methods do not immediately extend to the

general stable prediction problem.

Inspired by balancing methods from the causal inference liter-

ature, we propose a Deep Global Balancing Regression (DGBR)

algorithm for stable prediction. The framework is illustrated in Fig-

ure 2, which consists of three (jointly optimized) sub-models: (i) a

deep auto-encoder to reduce the dimensionality of the features, (ii)

construction of balancing weights that enable the effect of each co-

variate to be isolated, and (iii) estimation of a predictive model using

the encoded features and balancing weights. As this algorithm ex-

plicitly prioritizes covariate balancing (at the expense of a singular

focus on predictive accuracy in a given training dataset), it is able

to achieve greater stability than a purely predictive model. Using

both empirical experiments and theoretical analysis, we establish

that our algorithm achieves stability in prediction across unknown

environments. The experimental results on both synthetic and real

world datasets demonstrate that our algorithm outperforms all the

baselines for the stable prediction problem.

In summary, the contributions of this paper are listed as follows:

• We investigate the problem of stable prediction across un-

known environments, where the distribution of agnostic test

data might be very different with the training data.

• We propose a novel DGBR algorithm to jointly optimize deep

auto-encoder for dimension reduction and global balancing

for estimation of causal effects, and simultaneously address

the stable prediction problem.

• We give theoretical analysis on our proposed algorithm and

prove that our algorithm can make a stable prediction across

unknown environments by global balancing.

• The advantages of our DGBR algorithm are demonstrated

on both synthetic and real world datasets.

2 RELATEDWORK
In this section, we investigate the previous related work, including

covariate shift, variable balancing, and invariant learning.

The covariate shift literature [22] focuses on settings where the

data distribution for training is different from the data distribution

for testing. To correct the differences, [22] introduced the idea of

reweighting samples in training data by the ratio of the density

in the testing data to the density in the training data. Then, many

techniques were proposed to estimate the density ratio, including

discriminative estimation [4], kernel mean matching [8], maximum

entropy methods [6], minimax optimization [23], and robust bias-

aware approach [15]. These methods achieve good performance

with covariate shifts, but they require prior knowledge of testing

distribution to estimate the density ratio. In contrast, we focus on

the stable prediction across unknown environments in this paper.

Adjusting for confounders is a key challenge for estimating

causal effects in observational studies, and many covariate bal-

ancing methods have been proposed [1, 7, 10–12, 14, 21, 25]. In

a seminal paper, Rosenbaum and Rubin [21] proposed to achieve

variable balancing by reweighting observations by the inverse of

propensity score. Kuang et al. [11] proposed a data-driven variable

decomposition method for variable balancing. Li et al. [14] bal-

anced the variables by matching on their nonlinear representation.



Hainmueller [7] introduced entropy balancing method for variable

balancing. Athey et al. [1] proposed approximate residual balancing

algorithm, which combines outcome modeling using the LASSO

with balancing weights constructed to approximately balance co-

variates between treatment and control groups. Kuang et al. [10]

proposed a differentiated variable balancing algorithm by jointly

optimizing sample weights and variable weights. These methods

provide an effective way to estimate causal effects in observational

studies, but they are limited to estimate causal effect of one vari-

able, and are not designed for the case with many causal variables;

further, the methods assume that the analyst has prior knowledge

of which covariates have a causal effect and which do not.

Recently, some methods have been proposed to make predic-

tion on agnostic test data using the method of invariant learning.

Peters et al. [19] proposed an algorithm to identify causal predic-

tors by exploring the invariance of the conditional distribution

of the outcome with multiple training datasets. Rojas-Carulla et

al. [20] proposed a causal transfer framework to identify invari-

ant predictors and then use them for prediction. Similarly, domain

generalization [18] methods estimate an invariant representation

of data by minimizing the dissimilarity across training domains.

Invariant learning methods can be used to estimate a model that

will in principle perform well for an unknown test dataset, but

the performance of these methods relies on the diversity of their

multiple training data, and they cannot address the distribution

shift which does not appear in their training data.

3 PROBLEM AND OUR ALGORITHM
In this section, we first give the problem formulation, and then

introduce the details of our deep global balancing regression al-

gorithm. Finally, we give theoretical analysis about our proposed

algorithm.

3.1 Problem Formulation
Let X denote the space of observed features and Y denote the

outcome space. For simplicity, we consider the case where the

features have finite support, which without loss of generality can

be represented as a set of binary features: X = {0, 1}p . We also

focus on the case where the outcome space is binary: Y = {0, 1}.

We define an environment to be a joint distribution PXY onX×Y ,

and let E denote the set of all environments. In each environment

e ∈ E, we have dataset De = (Xe ,Y e ), where Xe ∈ X are predictor

variables and Y e ∈ Y is a response variable. The joint distribution

of features and outcomes on (X,Y ) can vary across environments:

PeXY , Pe
′

XY for e, e ′ ∈ E, and e , e ′.
In this paper, our goal is to learn a predictive model, which can

make a stable prediction across unknown environments. Before

giving problem formulation, we first define Averaдe_Error and

Stability_Error across environments of a predictive model as:

Averaдe_Error = 1

|E |

∑
e ∈E Error (D

e ), (1)

Stability_Error =
√

1

|E |−1

∑
e ∈E (Error (De ) −Averaдe_Error )2, (2)

where |E | refers to the number of environments, and Error (De )
represents the predictive error on dataset De

from environment e .

In this paper, we define Stability [24] by Stability_Error . The
smaller Stability_Error , the better a model is ranked in terms of

Stability. Then, we define the stable prediction problem as follow:

Problem 1 (Stable Prediction). Given one training environ-
ment e ∈ E with dataset De = (Xe ,Y e ), the task is to learn a
predictive model to predict across unknown environment E with not
only small Averaдe_Error but also small Stability_Error .

Suppose X = {S,V}. We define S as stable features, and refer to

the other features V = X\S as noisy features, where the following
assumption gives their defining properties:

Assumption 1. There exists a probability mass function P (y |s )
such that for all environments e ∈ E, Pr (Y e = y |Se = s,Ve = v ) =
Pr (Y e = y |Se = s ) = P (y |s ).

With Assumption 1, we can address the stable prediction prob-

lem by building a model that learns the stable function P (y |s ). To
understand the content of Assumption 1, without loss of generality

we can write a generative model for the outcome unit i in environ-

ment e with stable features s , where h(·) is a known function to

account for discreteness of Y :

Y ei (s ) = h(д(s ) + ϵ
e
s,i ), and Y

e
i = Y

e
i (Si ) = h(д(Si ) + ϵ

e
Si ,i ).

Y ei (s ) is the outcome that would occur for unit i in environment

e if the input is equal to s . If we allow ϵes,i to be correlated with

the unit’s features Xi in arbitrary ways, Assumption 1 may fail,

for example if Vei is positively correlated with ϵes,i then units with

higher values ofVei would have higher than average values ofY
e
i , so

that Vei would be a useful predictor in a given environment, but that

relationship might vary across environments, leading to instability.

If we first impose the condition that for each s , ϵes,i is independent

of Vei conditional on Sei , then given the model specification, Vei is

no longer needed as a predictor for outcomes conditional on Sei . If
we second impose the condition that for each s , ϵes,i is independent

of Sei conditional on Vei , then instability in the distribution of ϵes,i
across environments will not affect Pr (Y e = y |Se = s,Ve = v ).
Maintaining the first condition, the second condition is sufficient

not only for Assumption 1 but also to enable consistent estimation

of д(·) using techniques from the causal inference literature in a

setting with sufficient sample size and when the analyst has prior

knowledge of the set of stable features; we propose a method that

will estimate д without prior knowledge of which features are

stable. We also observe that a stronger but simpler condition can

replace the second condition to guarantee Assumption 1, namely

that the distribution of ϵes,i does not vary with {e, s}. Fig. 1 illustrates

three relationships between predictor variables Xe = {Se ,Ve } and
response variable Y e consistent with the conditions, including S ⊥
V, S→ V, and V→ S.

3.2 The Model
3.2.1 Framework. We propose a Deep Global Balancing Regres-

sion (DGBR) algorithm to identify stable features and capture non-

linear structure for stable prediction. Its framework is shown in

Figure 2. To identify the stable features, we propose a global bal-

ancing model, where we learn global sample weights which can be

used to estimate the effect of each feature while controlling for the
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(a) S ⊥ V

S

Y V

(b) S→ V

S

Y V

(c) V→ S

Figure 1: Three diagrams for stable features S, noisy features
V, and response variable Y .

…

… …

…

Unsupervised Component
(Deep Auto-Encoder)

Unsupervised Component
(Global Balancing)

Supervised Component
(Stable Prediction)

Figure 2: The framework of our proposed DGBR model.

other features. To capture the non-linear structure between stable

features and response variable, we employ a deep auto-encoder

model, which is composed of multiple non-linear mapping func-

tions to map the input data to a non-linear and low dimensional

space. Balancing in a low dimensional space simplifies the problem

of global balancing, since for each covariate j, the weights balance
the constructed covariates from the dimension reduction ϕ (X·,−j )
across realizations of X·, j . Finally, weighting observations with the

global sample weights, we learn a predictive model for outcomes

as a function of the low-dimensional representation of covariates

using regularized regression.

3.2.2 Global Balancing Regression Algorithm. In this section,

we develop the construction of global balancing weights. To be

self-contained, we briefly revisit the key idea of variable balancing

technique. Variable balancing techniques are often used for causal

effect estimation in observational studies, where the distributions of

covariates are different between treated and control groups because

of non-random treatment assignment, but treatment assignment

is independent of potential outcomes conditional on covariates.

To consistently estimate causal effects in such a setting, one has

to balance the distribution of covariates between treatment and

control. Most balancing approaches exploit moments to characterize

distributions, and balance them between treated and control groups

by adjusting sample weightsW as following:

W = argmin

W



∑
i :Ti =1Wi ·Xi∑
i :Ti =1Wi

−

∑
i :Ti =0Wi ·Xi∑
i :Ti =0Wi


2

2

. (3)

Given a treatment variableT , the
∑
i :Ti =1Wi ·Xi∑
i :Ti =1Wi

and

∑
i :Ti =0Wi ·Xi∑
i :Ti =0Wi

rep-

resent the first-order moments of variablesX on treated (T = 1) and

control (T = 0) groups, respectively. By sample reweighting withW
learnt from Eq. (3), one can estimate the causal effect of treatment

variable on response variable by comparing the average difference

of Y between treated and control groups. In high-dimensional prob-

lems, approximate balancing can be used for consistent estimation

under some additional assumptions [1].

In low dimensions, the same approach could be employed to

estimate Pr (Y = y |X = x ) for different values of x . However,
when p is large, there may not be sufficient data to do so, and so

approximate balancing techniques generalized to the case where

X is a vector of indicator variables may perform well in practice,

and also help identify stable features from the larger vector X.
We propose a global balancing regularizer, where we successively

regard each variable as treatment variable and balance all of them

together via learning global sample weights by minimizing:

∑p
j=1


XT
·,−j ·(W ⊙X·, j )
W T ·X·, j

−
XT
·,−j ·(W ⊙(1−X·, j ))
W T ·(1−X·, j )



2

2

, (4)

whereW is global sample weights, X·, j is the jth variable in X, and
X·,−j = X\{X·, j }means all the remaining variables by removing the

jth variable in X.1 The summand represents the loss from covariate

imbalance when setting variable X·, j as the treatment variable, and

⊙ refers to Hadamard product. Note that only first-order moment

is considered in Eq. (4), but higher order moments can be easily

incorporated by including interaction features of X.
By sample reweighting withW learnt from Eq. (4), we can iden-

tify stable features S by checking if there is any correlation between

Y and X covariate by covariate, because, as we show below, only

stable features are correlated with Y after sample reweighting.

With the global balancing regularizer in Eq. (4), we propose a

Global Balancing Regression (GBR) algorithm to jointly optimize

global sample weightsW and regression coefficients β for stable

prediction based on traditional logistical regression as:

min

∑n
i=1Wi · log(1 + exp((1 − 2Yi ) · (Xiβ ))), (5)

s .t .
∑p
j=1


XT
·,−j ·(W ⊙X·, j )
W T ·X·, j

−
XT
·,−j ·(W ⊙(1−X·, j ))
W T ·(1−X·, j )



2

2

≤ λ1, W ⪰ 0,

∥W ∥2
2
≤ λ2, ∥β ∥

2

2
≤ λ3, ∥β ∥1 ≤ λ4, (

∑n
k=1Wk − 1)

2 ≤ λ5

whereXi is the i
th

row / sample inX, and
∑n
i=1Wi · log(1+exp((1−

2Yi ) · (Xiβ ))) is the weighted loss of logistic regression and the loss

is defined as the minus log likelihood. The termsW ⪰ 0 constrain

each of sample weights to be non-negative. With norm ∥W ∥2
2
≤

λ2, we can reduce the variance of the sample weights. Elastic net

constraints ∥β ∥2
2
≤ λ3 and ∥β ∥1 ≤ λ4 help to avoid overfitting. The

term (
∑n
k=1Wk − 1)

2 ≤ λ5 avoids all the sample weights to be zero.

3.2.3 Deep Global Balancing Regression Algorithm. The pro-

posed GBR algorithm in Eq. (5) can help to identify stable features

and make a stable prediction, but with many features relative to

observations, it may be difficult to estimate the effects of all the fea-

tures as well as their interactions, and it might also be challenging

for GBR to learn global sample weights.

To address these challenges, we propose a Deep Global Bal-

ancing Regression (DGBR) algorithm by jointly optimizing Deep

auto-encoder and Global Balancing Regression. Following standard

approaches [3], the deep auto-encoder consists of multiple non-

linear mapping functions tomap the input data to a low dimensional

space while capturing the underlying features interactions. Deep

1
We obtain X·,−j in experiment by setting the value of jth variable in X as zero.



auto-encoder is an unsupervised model which is composed of two

parts, the encoder and decoder. The encoder maps the input data to

low-dimensional representations, while the decoder reconstructs

the original input space from the representations. Given the input

Xi , the hidden representations for each layer are shown as follows:

ϕ (Xi )
(1) = σ (A(1)Xi + b

(1) )

ϕ (Xi )
(k ) = σ (A(k )ϕ (Xi )

(k−1) + b (k ) ),k = 2, · · · ,K

whereK is the number of layer.A(k )
and b (k ) are weight matrix and

bias on kth layer. σ (·) represents non-linear activation function.
2

After obtaining the representation ϕ (Xi )
(K )

, we can obtain the

reconstruction X̂i by reversing the calculation process of encoder

with parameters Â(k )
and

ˆb (k ) . The goal of deep auto-encoder is to

minimize the reconstruction error between the input Xi and the

reconstruction X̂i with the following loss function.

L =
∑n
i=1 ∥ (Xi − X̂i )∥

2

2
. (6)

By combining the loss functions of deep auto-encoder in Eq. (6)

and GBR algorithm in Eq. (5), we give the objective function of our

Deep Global Balancing Regression algorithm as:

min

∑n
i=1Wi · log(1 + exp((1 − 2Yi ) · (ϕ (Xi )β ))), (7)

s .t .
∑p
j=1


ϕ (X·,−j )T ·(W ⊙X·, j )

W T ·X·, j
−

ϕ (X·,−j )T ·(W ⊙(1−X·, j ))
W T ·(1−X·, j )


2

2

≤ λ1,

∥ (W · 1) ⊙ (X − X̂ )∥2F ≤ λ2, W ⪰ 0, ∥W ∥2
2
≤ λ3,

∥β ∥2
2
≤ λ4, ∥β ∥1 ≤ λ5, (

∑n
k=1Wk − 1)

2 ≤ λ6∑K
k=1 (∥A

(k ) ∥2F + ∥Â
(k ) ∥2F ) ≤ λ7,

whereϕ (·) = ϕ (·) (K )
for brevity. ∥ (W ·1)⊙ (X −X̂)∥2F represents the

reconstruction error between input X and reconstruction X̂ with

global sample weightsW . The term

∑K
k=1 (∥A

(k ) ∥2F + ∥Â
(k ) ∥2F ) ≤

λ7 regularizes the coefficients of the deep auto-encoder model.

3.3 Theoretical Analysis
In this section, we give theoretical analysis about our algorithm, and

prove it canmake a stable prediction across unknown environments

with sufficient data. A key requirement for themethod towork is the

overlap assumption, which is a common assumption in the literature

of treatment effect estimation [1]. We suppress the notation for the

enviornment e in the first part of this section.

Assumption 2 (Overlap). For any variable X·, j when setting it
as the treatment variable, it has ∀j, 0 < P (X·, j = 1|X·,−j ) < 1.

Then, we have following Lemma (proved in the online appendix)

and Theorem:

Lemma 3.1. If ∀j, 0 < P (X·, j = 1|X·,−j ) < 1, and X are binary,
then ∀i, 0 < P (Xi = x ) < 1, where Xi is ith row in X .

Theorem 3.2. Let X ∈ Rn×p . Under the conditions of Lemma 3.1,
if the number of covariates p is finite, then ∃W such that

lim

n→∞
∑p
j=1


XT
−j (W ⊙X·, j )
W TX·, j

−
XT
−j (W ⊙(1−X·, j ))
W T (1−X·, j )



2

2

= 0 (8)

with probability 1. In particular, aW that satisfies (8) isW ∗i =
1

P (Xi=x )
.

2
We use sigmoid function σ (x ) = 1

1+exp(−x ) as non-linear activation function.

Proof. Since ∥·∥ ≥ 0, Eq. (8) can be simplified to ∀j, ∀k , j

lim

n→∞

(∑
i :Xi,k =1,Xi, j =1

Wi∑
i :Xi, j =1Wi

−

∑
i :Xi,k =1,Xi, j =0

Wi∑
i :Xi, j =0Wi

)
= 0

with probability 1. ForW ∗, from Lemma 3.1, 0 < P (Xi = x ) < 1,

∀x , ∀i , t = 1 or 0,

lim

n→∞
1

n
∑
i :Xi, j=tW

∗
i = lim

n→∞
1

n
∑
x :x j=t

∑
i :Xi=xW

∗
i

= lim

n→∞
∑
x :x j=t

1

n
∑
i :Xi=x

1

P (Xi=x )

= lim

n→∞
∑
x :x j=t P (Xi = x ) · 1

P (Xi=x )
= 2

p−1

with probability 1 (Law of Large Number). Since features are binary,

lim

n→∞
1

n
∑
i :Xi,k=1,Xi, j=1W

∗
i = 2

p−2

lim

n→∞
1

n
∑
i :Xi, j=0W

∗
i = 2

p−1, lim

n→∞
1

n
∑
i :Xi,k=1,Xi, j=0W

∗
i = 2

p−2

and therefore, we have following equation with probability 1:

lim

n→∞

(
XT
·,k (W

∗⊙X·, j )
W ∗TX·, j

−
XT
·,k (W

∗⊙(1−X·, j ))
W ∗T (1−X·, j )

)
= 2

p−2

2
p−1 −

2
p−2

2
p−1 = 0.

□

The following result (proved in Appendix) shows that if there

is sufficient data such that all realizations of x appear in the data,

exact balancing weights can be derived. Subsequently, we show

that in this case, the components of X are mutually independent

in the reweighted data. In real-world datasets, exactly balancing

weights may be not available, but the results still highlight that

balancing weights will reduce the covariance among features.

Proposition 3.3. If 0 < P̂ (Xi = x ) < 1 for allx , where P̂ (Xi = x ) =
1

n
∑
i I(Xi = x ), there exists a solutionW ∗ satisfies equation (4) equals

0 and variables in X are independent after balancing byW ∗.

Proposition 3.4. If 0 < P̂ (Xe
i = x ) < 1 for all x in environ-

ment e , Y e
′

and Ve
′

are independent when the joint probability mass
function of (Xe ′ ,Y e

′

) is given by reweighting the distribution from
environment e using weightsW ∗, so thatpe

′

(x ,y) = pe (y |x ) · (1/|X|).

Proof. It is immediate that Pr (Y e
′

= y |Xe ′ = x ) = Pr (Y e =

y |Xe = x ). Putting this together with Assumption 1, Pr (Y e
′

=

y |Xe ′ = x ) = Pr (Y e
′

= y |Se
′

= s ). From Proposition 3.3, (Se
′

,Ve
′

)
are mutually independent. Thus, we have

Pr (Y e
′

= y |Ve
′

= v ) =ESe′ [Pr (Y
e ′ = y |Se

′

,Ve
′

= v ) |Ve
′

= v]

=ESe′ [Pr (Y
e ′ = y |Se

′

) |Ve
′

= v]

=Pr (Y e
′

= y).

Thus, Y e
′

and Ve
′

are independent. □

Propositions 3.3 and 3.4 suggest that the GBR algorithm can

make a stable prediction across environments that satisfy Assump-

tion 1, since after reweighting, only the stable features are correlated

with outcomes, and p (y |s ) is unchanged in the reweighted dataset.

The objective function of the GBR algorithm is to equivalent to

log-likelihood objective for logistic regression. Even though the reg-

ularization constraints will cause some bias to the estimated p (y |s ),
the bias decreases with the sample size n. Thus, with sufficient data,

the GBR algorithm should learn p (y |s ).
Now consider the properties of the DGBR algorithm:



Algorithm 1 Deep Global Balancing Regression algorithm

Input: Observed Feature Matrix X and Response Variable Y .
Output: Updated ParametersW , β , θ .

1: Initialize parametersW (0)
, β (0) and θ (0) ,

2: Calculate loss function with parameters (W (0) , β (0) ,θ (0) ),

3: Initialize the iteration variable t ← 0,

4: repeat
5: t ← t + 1,
6: UpdateW (t )

by gradient descent and fixing β and θ ,

7: Update β (t ) by gradient descent and fixingW and θ ,

8: Update θ (t ) by gradient descent and fixingW and β ,

9: Calculate loss function with parameters (W (t ) , β (t ) ,θ (t ) ),
10: until Loss function converges or max iteration is reached.

11: returnW , β , θ .

(1) Preserves the above properties of the GBR algorithm while mak-
ing the overlap property easier to satisfy and reducing the variance
of balancing weights. The Johnson-Lindenstrauss (JL) lemma [9]

implies that for any 0 < ϵ < 1/2 and x1, · · · ,xn ∈ R
p
, there ex-

ists a mapping f : Rp → Rk , with k = O (ϵ−2 logn), such that

∀i, j (1− ϵ )∥xi − x j ∥
2 ≤ ∥ f (xi ) − f (x j )∥

2 ≤ (1+ ϵ )∥xi − x j ∥
2
, we

can transform high-dimensional data into a lower suitable dimen-

sional space while approximately preserving the original distances

between points. Our DGBR algorithm reduces the feature dimen-

sion, so that the population overlap assumption is more likely to be

satisfied and we are less likely to see extreme values of balancing

weights, so that better balance can be attained while maintaining

low variance of the weights.

(2) Enables more accurate estimation of p(y|s), because with multiple

non-linear mapping functions in our DGBR algorithm, it can more

easily capture the underlying non-linear relationship between sta-

ble features and response variables even with many stable features.

4 OPTIMIZATION AND DISCUSSION
4.1 Optimization
To optimize our DGBR model in Eq. (7), we propose an iterative

method, described in Algorithm 1. Starting from some random ini-

tialization on parametersW , β and θ = {A(k ) , Â(k ) ,b (k ) , ˆb (k ) }Kk=1,
we update each of them alternatively with the other two parameters

as fixed at each iteration until convergence.

4.2 Complexity Analysis
During the procedure of optimization, the main time cost is to

calculate the loss function and update parametersW , β and θ . For
calculating the loss function, its complexity is O (npd ), where n is

the sample size, p is the dimension of observed variables and d is

the maximum dimension of the hidden layer in deep auto-encoder

model. For updating parameterW , its complexity is also O (npd ).
For updating parameter β , it is a standard LASSO problem and its

complexity is O (nd ). For updating θ , its complexity is O (npd ).
In total, the complexity of each iteration in Algorithm 1 isO (npd ).

4.3 Parameter Tuning
To tune the parameters for our algorithm and baselines, we need

multiple validation datasets whose distributions are diverse from

each other and different with the training data. In our experiments,

we generate such validation datasets E by non-random data re-

sampling on training data. We calculate the Averaдe_Error and

Stability_Error of all algorithms on validation datasets by choos-

ing RMSE as Error metrics in Eq. (1) and (2). In this paper, we tune

all the parameters for our algorithm and baselines by minimizing

Averaдe_Error + α · Stability_Error on validation datasets with

cross validation by grid searching. We set α = 5 in our experiments.

Construction of Validation Data. The key point in construction

of validation data is to construct datasets where the joint distribu-

tion of the covariates changes across environments, particularly

when this might create bias if we don’t control for all of the stable

features. However, we do not have prior knowledge about which

features are noisy features. However, our estimation approach iden-

tifies noisy features as those that do not have a large estimated effect

after balancing. Using the empirically identified noisy features, we

can generate validation datasets that change the distribution of

noisy features and use these for parameter tuning.

5 EXPERIMENTS
In this section, we evaluate our algorithm on both synthetic and

real world dataset, comparing with the state-of-the-art methods.

5.1 Baselines
We implement following baselines for comparition.

• Logistic Regression (LR) [17]
• Deep Logistic Regression (DLR) [5]: Combines a deep auto-encoder

and logistic regression.

• Global Balancing Regression (GBR): Combines a global balancing

regularizer and logistic regression as shown in Eq (5).

Since our proposed algorithm is based on logistic regression, so

we compare our algorithm with only logistic regression methods.

It would also be possible to consider other predictive methods,

propose corresponding global balancing algorithm based on them,

and compare them, but we leave that for future work.

5.2 Experiments on Synthetic Data
5.2.1 Dataset. We consider settings motivated by each of the

three cases illustrated in Fig. 1.

S ⊥ V: In this setting, S and V are independent. Recalling Fig. 1,

we generate predictor X = {S·,1, · · · , S·,ps ,V·,1, · · · ,V·,pv } with
independent Gaussian distributions as:

S̃·,1, · · · , S̃·,ps , Ṽ·,1, · · · , Ṽ·,pv
iid
∼ N (0, 1),

where ps + pv = p, and S·, j represents the jth variable in S. To
make X binary, we let X·, j = 1 if X̃·, j ≥ 0, otherwise X·, j = 0.

S→ V: In this setting, the stable features S are the causes of noisy
features V. We first generate the stable features S̃ with independent

Gaussian distributions, and let S·, j = 1 if S̃·, j ≥ 0, otherwise S·, j = 0.

Then, we generate noisy features Ṽ = {Ṽ·,1, · · · , Ṽ·,pv } based on S̃:

Ṽ·, j = S̃·, j + S̃·, j+1 +N (0, 2),
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Figure 3: Setting S ⊥ V: RMSE of outcome prediction on various test datasets by varying sample size n (vertical) and bias rate r
(horizontal) on training dataset. The r of the X-axis in each figure represents the bias rate on test data.

and let V·, j = 1 if Ṽ·, j > 1, otherwise V·, j = 0.

V→ S: In this setting, the noisy features V are the causes of stable

features S. We first generate the noisy features Ṽ with independent

Gaussian distribution, and let V·, j = 1 if Ṽ·, j ≥ 0, otherwise V·, j = 0.

Then, we generate stable features S = {S·,1, · · · , S·,ps } based on Ṽ:

S̃·, j = Ṽ·, j + Ṽ·, j+1 +N (0, 2),

and let S·, j = 1 if S̃·, j > 1, otherwise S·, j = 0.

Finally, we generate the response variable Y for all above three

settings with the same function д as following:

Y = 1/(1 + exp(−
∑
X·,i ∈Sl αi · X·,i −

∑
X·, j ∈Sn βj · X·, j · X·, j+1))

+N (0, 0.2),

where we separate the stable features S into two parts, linear part

Sl and non-linear part Sn . And αi = (−1)i · (i%3 + 1) · p/3 and

βj = p/2. To make Y binary, we set Y = 1 when Y ≥ 0.5, otherwise

Y = 0.

To test the stability of all algorithms, we need to generate a

set environments e , each with a distinct joint distribution. Under

Assumption 1, instability in prediction arises because the joint dis-

tribution of (S,V) differs across environments which in turn implies

that P (Y |V) varies across environments. To generate alternative

environments consistent with Assumption 1, we would vary the

joint distribution of (S,V) while maintaining conditional indepen-

dence of Y and V. To create a more challenging set of environments,

however, here we consider environments where the covariate dis-

tribution changes across environments in a way that also violates

Assumption 1. This highlights the power of our approach to im-

prove stable prediction even in settings where our assumptions are

too strong.

Specifically, we vary P (Y |V) via biased sample selection with

a bias rate r ∈ (0, 1). We select a sample with probability r if its
noisy features equal to response variable, that is V = Y ; otherwise
we select it with probability 1 − r , where r > .5 corresponds to

positive correlation betweenY and V. After biased sample selection,

V could be correlated with response variable Y conditional on S
due to selection bias. However, since S is an important factor in

determining Y and thus whether a unit is selected when its noisy

features are high, controlling for S when estimating the correlation

between Y and V reduces that correlation.

5.2.2 Results. We generate different synthetic data by varying

sample size n = {1000, 2000, 4000}, dimensions of variables p =
{20, 40, 80}, and bias rate r = {0.65, 0.75, 0.85}. We report the results

of setting S ⊥ V in Figure 3 & 4. To save space, we only report a

small part of results in Figure 5 for settings S→ V and V→ S. See
the Appendix for further results.

From the results, we have following observations and analysis:

• The methods LR and DLR can not address the stable prediction

problem in all settings. Since they can not remove the spurious
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(c) Trained on n = 4000, p = 80, r = 0.75

Figure 4: Setting S ⊥ V: RMSE of outcome prediction on various test datasets by varying variables’ dimension p.
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(a) Results on setting S→ V trained with
n = 2000, p = 20, r = 0.75
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(b) Results on setting V→ S trained with
n = 2000, p = 20, r = 0.75

Figure 5: A part of results under setting S→ V and V→ S.

correlation between noisy features and the response variable

during model training, they often predict large effects of the

noisy features, which leads to instability across environments.

• Comparing with baselines, our method achieves a more stable

prediction in different settings. The GBR method is more sta-

ble than LR, and DGBR is more stable than DLR. The global

balancing regularizer ensures accurate estimation of the effect

of the stable features, and reduces the estimates of the effect

of the noisy features.

• DGBR makes a more precise and stable prediction than GBR

model across environments. The deep embedding model in

DGBR algorithm makes global balancing weights less noisy

and simplifies estimates of the effect of stable features.

• By varying the sample size n, dimension of variables p and

training bias rate r , the RMSE of our DGBR algorithm is con-

sistently stable and small across environments. DGBR makes

greater improvements when n is small relative to p and r .

Figure 6 shows that the embedded features from DGBR have

little information from noisy features V. This demonstrates that

DGBR prioritizes stable features when reducing the dimensionality

of the covariate space, due to joint optimization in the algorithm.

5.3 Experiments on Real World Data
5.3.1 Online Advertising Dataset. The real online advertising

dataset we used is collected from Tencecnt WeChat App
3
during

September 2015. In WeChat, each user can share (receive) posts

to (from) his/her friends. Advertisers can push advertisements to

users by merging them into the list of the user’s wallposts. For each

advertisement, there are two types of feedback: “Like” and “Dislike”.

When the user clicks the “Like” button, his/her friends will receive

the advertisement.

3
http://www.wechat.com/en/

Figure 6: Embedding weights in DGBR algorithm, where
X·,1, · · · ,X·,9 are stable features S and others are noisy fea-
tures V. DGBR incorporates little information from V.
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Figure 7: Algorithmperformance in advertising application.
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Figure 8: RMSE of outcome prediction, varying bias rate r
between one predictor and outcome.

The online advertising campaign used in our paper is about

LONGCHAMP womens’ handbags.
4
This campaign contains 14,891

Likes and 93,108 Dislikes. For each user, we have features includ-

ing (1) demographic attributes, such as age, gender, (2) number of

friends, (3) device (iOS or Android), and (4) the user settings on

WeChat, for example, whether his/her album is public and whether

the user has installed the online payment service.

4
http://en.longchamp.com/en/womens-bags
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Figure 9: Effect of hyper-parameters λ1, λ2, and λ3.
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Figure 10: Prediction across environments separated by age.
Models are trained on dataset where uses’ Aдe ∈ [20, 30), but
tested on datasets varying user age.

Experimental Settings. In our experiments, we set Yi = 1

when user i likes the ad, otherwise Yi = 0. For non-binary user

features, we dichotomize them around their mean value. Consid-

ering the overlap assumption in assumption 2, we only preserve

users’ features which satisfied 0.2 ≤ #{x=1}
#{x=1}+#{x=0} ≤ 0.8. All the

predictors and response variable in our experiment are binary.

In order to test the performance of our proposed model, we

execute the experiments with two different settings. The first ex-

perimental setting is similar with the setting on synthetic dataset.

We generate different environments by biased sample selection via

bias rate r . In this setting, we choose those features which have

no associations with outcome as noisy features for biased sample

selection. In second experimental setting, we generate the various

environments by dataset separation with users’ feature. Specifically,

we separate the whole dataset into 4 parts by users’ age, including

Aдe ∈ [20, 30), Aдe ∈ [30, 40), Aдe ∈ [40, 50) and Aдe ∈ [50, 100).
Results on Setting 1. In Figure 7 and Figure 8, we plot the re-

sults for Setting 1 with bias rate r = .6 for four noisy features. Then
we test the performance of our proposed algorithm and baselines

on various test data with different bias rate on these four noisy fea-

tures, and report the RMSE in Fig. 7a. To explicitly demonstrate the

advantage of our proposed algorithm, we plot the Averaдe_Error
and Stability_Error as defined in Eq. (1) and (2) in Fig. 7b. We fur-

ther generate additional test data by varying bias rate r on other

features, with results in Fig. 8. Fig. 8a and 8b show that DGBRmakes

the most stable prediction across test data. Overall, the results and

their interpretation are very similar to the simulation experiments.

Results on Setting 2. In Figure 10, we plot the results where we
separate the dataset into four environments by users’ age, including

Aдe ∈ [20, 30), Aдe ∈ [30, 40), Aдe ∈ [40, 50) and Aдe ∈ [50, 100).
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Figure 11: Averaдe_Error and Stability_Error across environ-
ments holding P (Y ) fixed.

We trained all algorithms on dataset where users’ Aдe ∈ [20, 30),
then tested them on all four environments. DGBR achieves compa-

rable results to the baselines on test data with users’ Aдe ∈ [20, 30),
where the distributions of variables are similar with the one on

the training data. On the other three parts of test dataset, whose

distributions differ from the training dataset, DGBR obtains the

best prediction performance.

We can infer that the stability of DGBR algorithm is not as

good as baselines in Fig. 10; this occurs because the distribution

of outcome P (Y ) varied across these four environments. After we

fixed P (Y ) by data sampling on the outcome with P (Y = 1) =
14,891

14,891+93,108 on the global dataset, we report the Averaдe_Error

and Stability_Error of all algorithms across four environments in

Figure 11. When P (Y ) is stable, DGBR outperforms baselines.

5.4 Parameter Analysis
In our DGBR algorithm, we have some hyper-parameters, such as λ1
for constraining the error of global balancing, λ2 constraining the

loss of auto-encoder term, λ3 constraining the variance of the global
sample weights, and so on. In this section, we investigate how these

hyper-parameters affect the results. We tuned these parameters

in our experiments with cross validation by grid searching, based

on our constructed validation data. We report the Averaдe_Error ,
5 ∗ Stability_Error , and Averaдe_Error + 5 ∗ Stability_Error on a

synthetic dataset under setting S ⊥ V with n = 2000 and p = 20.

Tradeoffs between prediction and covariate balancing:We

first show how the hyper-parameter λ1 affects the performance in

Figure 9a. The parameter of λ1 restrain the error of global balanc-

ing. We can see that initially the value of both AveraдeError and
StabilityError decreases when the value of λ1 increases. This is in-
tuitive as the data could be more balanced with the increased value



of λ1, and balanced data could help to identify stable features and

remove some noise for more precise prediction. However, when the

value of λ1 increases further, the value of StabilityError decreases,
but the value of Averaдe_Error starts to increase slowly. Large

value of λ1 makes the algorithm concentrate on global balancing

component at the expense of the prediction component. Both pre-

diction and global balancing components are essential for stable

prediction.

Feature representation:Here, we showhow the hyper-parameter

λ2 affects the results in Figure 9b. The value of Averaдe_Error de-
creases with λ2, since a high value of λ2 leads to more accurate

prediction. Initially, Stability_Error decreases with λ2, but it starts
to increase when λ2 ≥ 5. It is important to choose an appropriate

value of λ2 for learning feature representation, but our method is

not very sensitive to this parameter.

The variance of global sample weights: Figure 9c shows how
the value of λ3 affect performance. Both the value ofAveraдe_Error
and Stability_Error decrease when the value of λ3 increases, since
appropriate constraints on the variance of global sample weights

could prevent some samples from becoming dominate in whole

data, and thus help to improve the precision and robustness of pre-

diction. However, when the value of λ3 grows too large, those errors
increase. Too large value of λ3 could lead the learned global sample

weight to fail to make appropriate tradeoffs between balancing and

prediction.

6 CONCLUSION
In this paper, we focus on how to make a stable prediction across un-

known environments, where the data distribution of unknown en-

vironments might be very different with the distribution of training

data. We argued that most previous methods for addressing stable

prediction are deficient because either they need the distribution of

test data as prior knowledge or rely on diversity of training datasets

from different environments. Therefore, we propose a Deep Global

Balancing Regression algorithm for stable prediction across un-

known environments by jointly optimizing the deep auto-encoder

model and global balancing model. The global balancing model can

identify the causal relationship between predictor variables and

response variable, while the deep auto-encoder model is designed

for capturing the non-linear structure among variables and making

global balancing easier and less noisy. We prove that our algorithm

can make a stable prediction from both theoretical analysis and

empirical experiments. The experimental results on both synthetic

and real world datasets show that our DGBR algorithm outperforms

the baselines for stable prediction across unknown environments.
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