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Abstract

Estimating heterogeneous treatment effects (HTE)
is crucial for identifying the variation of treatment
effects across individuals or subgroups. Most ex-
isting methods estimate HTE by removing the
confounding bias from imbalanced treatment as-
signments. However, these methods may pro-
duce unreliable estimates of treatment effects and
potentially allocate suboptimal treatment arms
for underrepresented populations. To improve
the estimation accuracy of HTE for underrep-
resented populations, we propose a novel Sta-
ble CounterFactual Regression (StableCFR) to
smooth the population distribution and upsam-
ple the underrepresented subpopulations, while
balancing confounders between treatment and
control groups. Specifically, StableCFR upsam-
ples the underrepresented data using uniform
sampling, where each disjoint subpopulation is
weighted proportional to the Lebesgue measure
of its support. Moreover, StableCFR balances
covariates by using an epsilon-greedy matching
approach. Empirical results on both synthetic and
real-world datasets demonstrate the superior per-
formance of our StableCFR on estimating HTE
for underrepresented populations.

1. Introduction
The estimation of heterogeneous treatment effects (HTE)
is a crucial problem in causal inference that has been gain-
ing increasing attention across various fields (Imbens et al.,
2015; LaLonde, 1986; Pearl, 2009b; Mooij et al., 2016;
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Shalit et al., 2017), including economics, marketing, bi-
ology, and medicine. Non-random treatment assignments
in heterogeneous individuals or subgroups can lead to im-
balanced confounders between treatment arms, which is
known as one of the primary sources of non-causal indirect
effects (Shalit et al., 2017; Yao et al., 2020). The bias caused
by imbalanced confounders is referred to as confounding
bias (Pearl, 2009b). Most of the existing causal methods
have been designed to reduce the confounding bias from
imbalanced treatment assignments. Although many causal
methods have been developed to address confounding bias
from imbalanced treatment assignments, they may still be
prone to estimation errors stemming from underrepresented
populations (Erba et al., 2019; Yang et al., 2021), which
include subgroups with notably fewer samples, also known
as few-shot samples, compared to other subgroups.

For instance, in the study of the effect of a particular treat-
ment on specific influenza across different age groups, physi-
cians will assign different treatment recommendations (e.g.,
taking the drug or not) according to the patient’s individ-
ual circumstances (e.g., age). As shown on the left side in
Fig. 1(a), doctors will advise younger people to take the
medication more often and advise older people not to take it,
and the imbalanced treatment assignments would introduce
confounding bias. Besides, the non-random health-seeking
behavior of individuals and different age distribution in var-
ious regions can lead to issues of sample representativeness
in certain sample spaces. As shown on the right side in
Fig. 1(a), many-shot samples (representing the majority of
the population) aged between 20 and 80 make up 90% of
the data, while few-shot samples (representing underrep-
resented subpopulations such as both younger and older
patient groups) are relatively rare, comprising only 10%
of the data. Due to limited availability of these few-shot
samples, they may be underrepresented in the dataset. This
can cause traditional causal models to underestimate the
importance of these rare subgroups (see Fig. 1(b)), leading
to higher estimation errors (see Fig. 1(c)). Consequently,
the estimation of HTE may become unreliable, potentially
resulting in suboptimal treatments for worst-case samples.

In this paper, we systematically investigate the primary
sources of errors in heterogeneous treatment effect esti-
mation for underrepresented populations. As illustrated
in Fig. 1(a), we separate the estimation error of HTE into
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Figure 1. (a) In the HTE estimation, the primary sources of estimation error are confounding bias and underrepresentation issues; (b)
Conventional methods for balancing confounders still suffer from underrepresentation issues; (c) Underrepresentation issues might result
in existing methods giving unreliable treatment effect estimation and allocating suboptimal treatments for underrepresented populations.

two parts: confounding bias from imbalanced confounders
between treatment arms and underrepresentation issues on
underrepresented few-shot samples. Although many pre-
vious causal models have been developed to remove the
confounding bias (Li et al., 2016; Yao et al., 2020; Shalit
et al., 2017; Yao et al., 2018; Wu et al., 2022), they still
suffer from underrepresentation issues. As illustrated in
Fig. 1(b), traditional methods adjust the covariates of dif-
ferent treatment groups into the same distribution; however,
there still exists underrepresented subpopulations, result-
ing in a higher error and unreliable estimates of HTE on
few-shot samples, compromising the model’s generalization.
Therefore, there is a high demand to develop an end-to-end
learning framework to simultaneously balance the confound-
ing bias and smooth the underrepresentation distribution for
the stable estimation of HTE.

Data imbalance is ubiquitous and prevalent in many real-life
applications (Yang et al., 2021). Especially, in biomedi-
cal applications, e-markets, and social media, observational
datasets are typically constructed by pooling from multi-
ple sources or from certain time periods. This raises con-
cerns about the sample representativeness in some sample
spaces. The problem is more pronounced when the heteroge-
neous treatment effects are of primary interest in precision
medicine or target marketing. To this end, we propose a
novel Stable CounterFactual Regression (StableCFR1) ar-
chitecture, which utilizes uniform sampling to upsample
underrepresented data, assigning weights to each subpopu-

1The code is available at: https://github.com/anpwu/StableCFR

lation proportional to the Lebesgue measure of its support,
and incorporates an epsilon-greedy matching module for
confounder balancing. Specifically, to jointly balance the
confounding bias and smooth the underrepresentation dis-
tribution, we design a uniformed nearest neighbor batch-
ing (UNNB) training that extends mini-batch training to
a multivariate uniform distribution, and an epsilon-greedy
matching (EPM) algorithm to match samples within control
and treatment groups based on their distance to the random
points, which preserves an ideal uniform distribution over
each feature and avoids frequent sampling in sparse outliers.
The main contributions in this paper are as follows:

• We systematically investigate the estimation error in
HTE estimation for underrepresented populations, and
firstly separate it into two parts: confounding bias and
underrepresentation issues. The conventional causal
methods effectively address confounder bias arising
from imbalanced confounders, but underrepresented
populations limit model’s generalizability.

• We propose a novel StableCFR architecture with near-
est neighbor batch techniques to balance confounders
across treatment groups and smooth the underrepresen-
tation distribution. Our work fills the gap in techniques
for HTE estimation with underrepresented populations.

• In synthetic and semi-synthetic data, empirical ex-
periments demonstrate the effectiveness of our algo-
rithm. In addition, with the HTE estimation, Sta-
bleCFR presents some intuitive explanations for the
cardiovascular mortality rate (CMR) study.
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2. Related Work
2.1. Confounder Balancing

In real-world applications, as shown in Fig. 1(a), imbalanced
treatment assignment is a common phenomenon because
agents may choose treatments for various reasons, which
can introduce confounding bias in observational studies.
This has motivated the development of many techniques
for addressing confounding bias, such as propensity score
methods (Rosenbaum & Rubin, 1983; Rosenbaum, 1987;
Li et al., 2016), re-weighting methods (Zubizarreta, 2015;
Athey et al., 2018), doubly robust methods (Funk et al.,
2011), and the backdoor criterion (Pearl, 2009a). Moreover,
representation learning has emerged as an advanced ap-
proach to address confounding bias in observational studies.
The Counterfactual Regression (CFR) method (Johansson
et al., 2016; Shalit et al., 2017) is a pioneering approach
that proposes a new form of regularization to learn repre-
sentations with reduced Integral Probability Metric (IPM)
distance between treated and control groups. Building upon
this thought, SITE (Yao et al., 2018) simultaneously main-
tains local similarity and balances the distributions of the
representation. CFR-ISW (Hassanpour & Greiner, 2019a)
utilizes importance sampling weights to improve the repre-
sentation. Additionally, DR-CFR (Hassanpour & Greiner,
2019b) and DeR-CFR (Wu et al., 2022) present a disen-
tanglement framework to identify confounders from pre-
treatment variables and then balances them.

As illustrated in Fig. 1(b), although these methods have
addressed confounding bias and adjust the covariates of dif-
ferent treatment groups to the same distribution, underrepre-
sented subpopulations with significantly fewer observations
limit model’s generalizability, i.e., underrepresentation is-
sues. To this end, we propose a StableCFR architecture
to upsample the underrepresented data using uniform sam-
pling to assign weights to each subpopulation proportional
to the Lebesgue measure of the support when balancing
confounders between treatment groups.

2.2. Imbalanced Regression

Although the class-wise imbalance is well eliminated (He
& Garcia, 2009; Shen et al., 2016; Cui et al., 2019; Hong
et al., 2021; Liu et al., 2020; He et al., 2021; Yi et al., 2022;
Xiang et al., 2020; Tang et al., 2022), the attribute-wise
imbalance still persists and hurts the generalization (Tang
et al., 2022) and regression on imbalanced data is relatively
under-explored. Building on conventional classification
method SMOTE (Chawla et al., 2002), SMOTER (Torgo
et al., 2013) interpolates both inputs and targets directly
to synthesize samples for rare target regions, and SMOGN
(Branco et al., 2017) uses Gaussian noise augmentation. Fur-
ther work (Branco et al., 2018) ensembles and extends these
data pre-processing techniques. Recently, DenseWeight

(Steininger et al., 2021) weights data points according to
the empirical training distribution through kernel density
estimation (KDE). DIR (Yang et al., 2021) re-defines Deep
Imbalanced Regression problem and proposes label distri-
bution smoothing (LDS) and feature distribution smoothing
(FDS) techniques. Ren et al. (2022) revisits MSE and pro-
poses a Balanced MSE to accommodate the imbalanced
training label distribution. Some above deep imbalanced
regression methods rely on pre-specified data distributions,
and heuristic algorithms require learning the density estima-
tion of the data, which involves tuning multiple parameters
and may be computationally intensive.

Sensitivity analysis is a valuable method for assessing the
model’s robustness (Saltelli, 2002; Imai et al., 2010; Van-
derWeele & Ding, 2017). However, selecting appropriate
sensitivity metrics and conducting multiple experiments
would be a challenging and time-consuming task. Addi-
tionally, the sensitivity strength is hard to define without
imposing priors on the model and population distribution.
Building on standard causal assumptions, our StableCFR
uses a simple but effective uniform re-sampling to smooth
the underrepresentation distribution and assign weights to
each subpopulation proportional to the Lebesgue measure
of the support.

3. Setup and Estimation
3.1. Problem Setup

In this paper, we aim to estimate the heterogeneous treat-
ment effects of underrepresented populations (Fig. 1(a))
under the unconfoundedness assumption. In the observa-
tional data D = {xi, ti, yi}ni=1 where n denotes the sample
size; for each unit i, we observe its covariates information
xi ∈ X (e.g., age), where X ⊂ Rd and d is the dimension
of the observed confounders xi. Besides, we also observe
the treatment assignment ti ∈ T , where T = {0, 1} denotes
a set of treatment options (e.g., {0:placebo, 1:drug}), and
observe the corresponding outcome yi ∈ Y , where Y ⊂ R.

Besides, we denote potential control outcome Yi(0) ∈ Y
as a result of choosing control arm t = 0, and potential
treated outcome Yi(1) ∈ Y as a result of choosing treated
arm t = 1. Then we define the Heterogeneous Treatment
Effect for each unit i and the Average Treatment Effect as:

Definition 3.1. Heterogeneous Treatment Effect (HTE):

HTE(x) = E[Y (1)− Y (0) | X = x], (1)

for simplify, we use HTEi to denote HTE(xi) of unit i.
The HTE is used to estimate the effect of treatment across
different subpopulations or groups.

Definition 3.2. Average Treatment Effect (ATE):

ATE = E[Y (1)− Y (0)] = EX [HTE(X)]. (2)
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Figure 2. Stable CounterFacutal Regression Architecture.

Our analysis in this paper relies on the following standard
assumptions (Imbens et al., 2015) for causal inference.
Assumption 3.3. Stable Unit Treatment Value. The dis-
tribution of the potential outcome of one unit is assumed to
be independent of the treatment assignment of another unit.
Assumption 3.4. Unconfoundedness. The choice of treat-
ment is independent of the potential outcomes given the
covariates. Formally, T ⊥

(
Y (0), Y (1)

)
| X .

Assumption 3.5. Overlap. Each unit has a nonzero proba-
bility of being or not being assigned to treatment. Formally,
0 < Pr(T = 1 | X) < 1.

Big datasets in biomedical applications, e-markets, and so-
cial media, etc, are typically constructed by pooling from
multiple sources or from certain time periods, as shown
in Fig. 1. This raises the concern about the sample repre-
sentativeness in some sample spaces. The underrepresenta-
tion issues are more pronounced when the local heteroge-
neous treatment effects are of primary interest in precision
medicine or target marketing. Next, we will introduce the
challenges and our solutions to the HTE estimation for un-
derrepresentation populations.

3.2. Stable HTE Estimator

Challenges. As shown in Fig. 1(a), the HTE estimation
faces two primary challenges for counterfactual regression.
One challenge is imbalanced treatment assignments, which
results in different skewed distributions between the con-
trol and treated groups, i.e., covariate shift. If we directly
perform counterfactual regression on the imbalanced data,
it can lead to biased HTE estimation, due to the systemic
differences between control and treated groups, i.e., con-
founding bias. Another challenge is the underrepresentation
issues (Fig. 1(c)). Inadequate observations of few-shot sam-
ples can cause greater uncertainty and variability in outcome
regressions, resulting in higher errors in HTE estimation.
Underrepresentation issues might result in existing meth-
ods unreliably estimating treatment effects and allocating
suboptimal treatments for underrepresented populations.

Although recent conventional causal methods have success-
fully balanced the distribution of confounders and adjusted

them to the same distribution for different treatment groups,
as shown in Fig. 1(b), they may suffer from underrepresen-
tation issues due to the limited availability of these under-
represented few-shot samples, leading to unreliable HTE
estimation. The underrepresented regression error is still
under-explored in causal literature.

Estimator. Regarding the estimation of heterogeneous
treatment effects (HTE) using underrepresented data, our
concern is that previous regression models prioritize im-
proving the average HTE performance by minimizing mean
square error (Eq. (3)). However, this approach may result
in unreliable predictions for few-shot samples in underrep-
resented subpopulations, as noted in Angrist & Pischke
(2009). To address this issue, we propose a robust HTE es-
timator (Eq. (4)) that re-samples the underrepresented data
using uniform sampling to assign weights proportional to
the Lebesgue measure of the support of each subpopulation.

min

∫
x∈X

(
ĤTE(x)−HTE(x)

)2

dFX(x), (3)

min

∫
x∈X

1

|X |

(
ĤTE(x)−HTE(x)

)2

dx, (4)

where dFX(x) is the density of X in the training data and
|X | denotes Lebesgue measure of the support in X , used to
measure the size of support set X in Euclidean space.

To be more specific, we evenly partition the entire support
of X into V disjoint subpopulations, i.e., X = X1 ∪ X2 ∪
· · · ∪ XV . Then, the objectives corresponding to Eqs. (3) &
(4) are as follows:

min

V∑
v=1

Nv

N

∑
x∈Xv

1

Nv

(
ĤTE(x)−HTE(x)

)2

, (5)

min

V∑
v=1

|Xv|
|X |

∑
x∈Xv

1

Nv

(
ĤTE(x)−HTE(x)

)2

, (6)

where Nv denotes the sample size of Xv, and N denotes
the sample size of total training data. Besides, |Xv| denotes
Lebesgue measure of the support in Xv. When there are
V = N subpopulations, each subpopulation contains only
one sample, i.e., Xv = xv, v = 1, 2, · · · , N . In this case,
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we propose a StableCFR algorithm to achieve Eq. (6) us-
ing uniform sampling to assign weights proportional to the
Lebesgue measure of the support of each subpopulation.

4. Algorithm
To stable estimate treatment effects for underrepresented
populations, as illustrated in Fig. 2, we propose a novel Sta-
bleCFR architecture to smooth the underrepresentation dis-
tribution in few-shot samples, while balancing confounders
between treatment and control groups. Specifically, the
overall architecture of our StableCFR consists of the fol-
lowing components: (1) Uniformed Nearest Neighbor
Batching (UNNB) improves mini-batch training by creating
batches that follow a multivariate uniform distribution, in-
stead of randomly sampling from the training examples. (2)
Epsilon-greedy Matching (EPM) can balance the treated
and control group and avoid frequent sampling of points in
sparse outliers. (3) One shared representation for two-
head prediction networks h0(ϕ(X)) and h1(ϕ(X)). The
shared representation ϕ(X) leverages the information from
different treatment groups to collaboratively update neural
network parameters and learn common patterns among po-
tential outcomes. Next, we will describe each component of
our StableCFR algorithm, and go on to further discussion.

4.1. Uniformed Nearest Neighbor Batching

With the advent of deep learning, recent literature (Johans-
son et al., 2016; Shalit et al., 2017) introduces representation
network and uses Integral Probability Metric regularization
to learn a balanced representation for counterfactual regres-
sion. While these methods have made progress in removing
confounding bias and controlling variance, they are prone
to focus on many-shot samples and perform poorly on un-
derrepresented few-shot samples, i.e., underrepresentation
issues. Furthermore, these methods may learn a overbal-
anced representation and discard important information re-
lated to the predicted treatment variable and confounder
information, which may also be predictive of the outcome.

To address the underrepresentation issues and representation
overbalancing problem, we upsamples the underrepresented
data using uniform sampling to assign weights to each sub-
population proportional to the Lebesgue measure of the sup-
port. Thus, under the standard causal assumptions without
any additional prior, we propose a nearest neighbor batch to
extend mini-batch training to an ideal uniform distribution.

Sample Points from an Ideal Uniform Distribution. As-
sumption 3.5 implies that the supports of the covariates in
the treated and control groups are the same. This motivates
us to adjust the imbalanced distributions of the treated and
control groups to the same multivariate uniform distribu-
tion. We create a multivariate uniform distribution using the

supports X and sample a mini-batch with a batch size of m:

Q = {q1, q2, · · · , qm} ∼ Unif(Qmin,Qmax), (7)
Qmin = min(X)− 0.01|X |, (8)
Qmax = max(X) + 0.01|X |, (9)

where min(X) and max(X) represent the minimum and
maximum values of the covariate X in the supports X , re-
spectively. |X | represents the support size of the covariates,
i.e., |X | = max(X)− min(X).

As shown in Fig. 2(a), we draw m random points Q =
{q1, q2, · · · , qm} from multivariate uniform distribution
Unif(Qmin,Qmax), ensuring that any value in the support
of covariates has an equal probability of being sampled.
This adjusts the original underrepresented population into
uniformly distributed data. However, the sampled points
Q = {q1, q2, · · · , qm} are not presented in the training
data D = {xi, ti, yi}ni=1, one straightforward strategy is to
search their nearest neighbor from training examples.

Match Pairs from Nearest Neighbors. Inspired by co-
variate matching (Rosenbaum & Rubin, 1983; Abadie &
Imbens, 2006; 2011), we search for the two nearest neigh-
bors of the sample point (qj , j = 1, 2, · · · ,m) in the control
and treated groups, respectively, and use them as a sample
pair (It=0

j , It=1
j ) in the training batch:

It=0
j = arg min

i:ti=0
∥xi − qj∥22, (10)

It=1
j = arg min

i:ti=1
∥xi − qj∥22, (11)

where, argmin(·) returns the indices of the minimum. It=0
j

denotes the nearest neighbor of point qj in the control group,
and It=1

j denotes the nearest neighbor in the treated group.

As shown in Fig. 2(a), similar to propensity score match-
ing, we match two nearest neighbors (It=0

j , It=1
j ) of the

same point qj as a sample pair to eliminate the con-
founding bias. The training batch at each iteration is
{(It=0

j , It=1
j )j=1,2,··· ,m}.

4.2. Epsilon-Greedy Matching

Although pure uniform sampling with nearest neighbor sam-
ples has balanced the treated and control groups, the greedy
strategy of searching for nearest neighbors for matching
may lead to frequent sampling of sparse samples in under-
represented populations, hurting the model’s performance.
Therefore, we select the top-K nearest neighbors and use a
hyperparameter ϵ to trade-off exploration (distance-based
sampling, with the receptive field controlled by hyperparam-
eter σ) and exploitation (top-K nearest neighbor sampling).

Firstly, we select top-K nearest neighbors of point qj ,
i.e., {Itj,1, Itj,2, · · · , Itj,K}, and perform an epsilon-greedy
matching with probabilistic sampling based on the distance,
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i.e., Dt
j,k = ∥xi − qj∥22, i = Itj,k. With probability ϵ, we

choose the nearest neighbors of the point qj ; with probabil-
ity 1− ϵ, we randomly sample one from the top-K nearest
neighbors, and the sampling probability of each neighbor
decreases with its distance to qj . As shown in Fig. 2(b), we
use the probability density function f(· | σ) of the normal
distribution N (µ = 0, σ) as the relative sampling proba-
bility in a non-greedy strategy. The closer the sample in
training is to the point qj , the higher the probability of the
sample being selected for sampling. The Epsilon-Greedy
Matching Algorithm, as shown in Alg. 4.2, can be easily
extended to multi-value treatment. In this paper, the opti-
mal parameters is {K = 10, ϵ = 0.6, σ = 0.25} for both
synthetic and semi-synthetic datasets. The discussion about
hyper-parameters is deferred to Appendix. B.2.

Algorithm 1 Epsilon-Greedy Matching with Distance-based
Sampling for Point qj .

1: tmp ∼ Unif(0, 1)
2: if tmp ≤ ϵ then
3: Return Itj,1.
4: else
5: Dt

j,k = ∥xi − qj∥22, i ∈ {Itj,1, Itj,2, · · · , Itj,K},
6: P t

j,k = f(Dt
j,k | σ), k ∈ {1, 2, · · · ,K},

7: Sample Itj from {1, 2, · · · ,K} with relative sam-
pling probability P t

j,k, k ∈ {1, 2, · · · ,K}.
8: Return Itj .
9: end if

The pure uniform sampling with nearest neighbor sample
(ϵ = 1) has already achieved stable counterfactual regres-
sion. Furthermore, the uniform sampling with epsilon-
greedy matching (K = 10, ϵ = 0.6, σ = 0.25) improves
HTE estimation and reduces variance by avoiding frequent
sampling of sparse samples. With uniform sampling and
epsilon-greedy matching, we obtain a balanced matched
dataset, as illustrated in Fig. 2(c).

4.3. Neural Network Regression

To stable estimate HTE, our algorithm uses uniform re-
sampling and epsilon-greedy matching to ensure that each
subpopulation is represented adequately. Additionally, we
assign weights proportional to the Lebesgue measure of
the support of each subpopulation, and plug the re-sampled
balanced data into a crafted two-head neural network. By
doing so, we can utilize the benefits of a complex model,
while preventing under-fitting in the underrepresented sub-
populations. This approach ensures that the performance of
the complex model does not decrease significantly, or even
only slightly, in the dominant subpopulations.

Shared Backbone. For the shared backbone, we use multi-
layer neural network ϕ(X) with ELU activation function to

learn representation and the network has three hidden layers
with 128 units, respectively. In the paper, we use the same
backbone configuration for all baseline models.

Two-Head Prediction Networks. Then, we adopt two
separate neural networks with ELU activation function to
predict potential control outcome h0(ϕ(X)) and potential
treated outcome h1(ϕ(X)), and the network has three hid-
den layers with 128 units, respectively. At each training
batch, we use stochastic gradient descent (SGD) to train the
network {h0, h1, ϕ} with a loss L for 10, 000 epochs with
a batch size of m = 100.

L =
1

2m

∑
i

∥[ti · h1(ϕ(xi)) + (1− ti) · h0(ϕ(xi))]− yi∥22,

i ∈ {It=0
1 , It=0

2 , · · · , It=0
m , It=1

1 , It=1
2 , · · · , It=1

m }.

The same configuration is adopted for all baseline models.

4.4. Discussion

In this paper, the proposed re-sampling strategy guided by
multivariate uniform sampling is the core module of the
StableCFR algorithm, which is used to address the under-
representation issue. Instead, the heuristic modification of
K-nearest neighbors matching is a sub-module for improv-
ing the efficiency of the re-sampling strategy and preventing
frequent repetition of sparse samples in underrepresented
populations. For heterogeneous treatment effect estimation,
we plug the re-sampled balance data into a two-head neural
network to automatically learn the counterfactual regression.

However, one limitation of the StableCFR algorithm is the
increased computational cost for larger datasets. To mitigate
this issue, the solution is to split the large dataset into smaller
sub-datasets and randomly select one at a time to create
the nearest neighbor batch. Additionally, StableCFR can
be used as a pre-processing method, but if the number of
batches is too small, the pre-processing may not be able
to effectively balance the data because there may not be
enough batches to represent all the different subgroups of
data. The computational cost is deferred to Appendix. B.3.

5. Experiments
5.1. Datasets

In this paper, we curate five benchmarks with underrepre-
sented populations, including three synthetic datasets, one
semi-synthetic and one real-world datasets, to evaluate the
effectiveness of our StableCFR in HTE estimation.

Syn-γ (γ = 0.5, 0.8, 1.0): Under the unconfoundedness as-
sumption, we sample 3, 000 units with an 80/20 proportion
of training/validation splits, and use skewed distributions
from underrepresentated populations to generate the covari-
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ates X = {X1, X2, X3}, where Xi denotes i-th variable:

X1 ∼ N (−2.0, 2.0 | 0, γ),
X2 ∼ N (−0.1, 2.0 | 0, γ),
X3 ∼ N (−2.0, 0.1 | 0, γ).

We generate three variables X = {X1, X2, X3} from the
normal distribution, where N (a, b | 0, γ) denotes that we
sample variable from the range [a, b] of normal distribution
N (0, γ) to create different skewed distributions. We expand
experiments to various underrepresentation scenarios and
adjust the difficulty level of the underrepresentation issues
by changing the parameter γ = 0.5, 0.8, 1.0. The treatment
variable T is generated as follows:

Pr(T | X) =
1

1 + exp (X1 +X2 +X3)/3
,

T ∼ Bernoulli(Pr(T | X)).

The outcome variable Y (T ) is generated as follows:

Y (T ) = TY (1) + (1− T )Y (0),

Y (0) = |X2
2 −X2

3 |+ 2 cos (X1 −X2 +X3)− s(X),

Y (1) = |X2
2 −X2

3 |+ 2 sin (X1 −X2 +X3) + s(X),

s(X) = X1X2X3 +X2
1 + (1−X2 +X3)

2.

Semi-PM-CMR: The PM-CMR (detailed in Appendix A,
(Wyatt et al., 2020)) study the impact of PM2.5 partical
level on the cardiovascular mortality rate (CMR) in 2, 132
counties in the US using the data provided by the National
Studies on Air Pollution and Health. As the counterfactual
outcomes are rarely available for real-world data, we transfer
the PM2.5 level in 2010 to generate the treatment variable:

Pr(T | PM2.5) = 0.2 + 0.6 · PM2.5−min(PM2.5)
max(PM2.5)−min(PM2.5)

,

T ∼ Bernoulli(Pr(T | PM2.5)),

and we use 7 variables of CMR in 2010 as covariates X =
{X1, X2, · · · , X7} to simulate the outcome variable Y (T ):

Y (T ) = TY (1) + (1− T )Y (0),

Y (0) =
1

3

(
7∑

i=5

X2
i +

4∑
i=3

XiXi+2

)
−

2∑
i=1

Xi + 2 cos (

7∑
i=1

Xi),

Y (1) =
1

3

(
7∑

i=5

X2
i +

4∑
i=3

XiXi+3

)
+

2∑
i=1

Xi + 2 sin (

7∑
i=1

Xi).

Real-PM-CMR: In this paper, according to the HTE, we
also give some intuitive explanations for the relationship
between PM2.5 partical level and the cardiovascular mor-
tality rate (CMR). In the real application, we use 7 variables
of CMR in 2010 as covariates X = {X1, X2, · · · , X7},
binarize the PM2.5 in 2010 as treatment variable T =
1(PM2.5 > 6), and study the CMR outcome Y in 2010.

5.2. Evaluation Process and Metrics

To assess the generalizability of our StableCFR on differ-
ent subgroups and ensure reliable results, we present two
types of data for testing our model: in-distribution (ID)
data, which is drawn from the training distribution, and out-
of-distribution (OOD) data, which is created by uniformly
sampling from entire support. For both synthetic and Semi-
PM-CMR datasets, we conduct 10 independent replications
to report the mean and standard deviation of the estimation
error over both ID and OOD datasets.

Over ID data and OOD data, we report the mean square
errors (MSE) of the potential control/treated outcome esti-
mation, the precision estimation of heterogeneous effect
(PEHE =

√
n−1

∑n
i=1 ((ŷi(1)− ŷi(0))− (yi(1)− yi(0)))

2),
and the estimation error of average treatment effect
(ϵATE = | ˆATE − ATE|). While common evaluation
metrics are useful, they may not be accurate for assessing
the model’s performance over subpopulations, particularly
when dealing with underrepresented groups. Therefore, to
demonstrate the stability of our algorithm, we report two ad-
ditional metrics: the maximum error (MAXE) of PEHE for
each individual, and the percentage (P↓0.3) of individuals
with errors that fall below the threshold of 0.3.

5.3. Baselines

We compare the proposed algorithm (StableCFR) with two
groups of methods. One group is imbalance regression meth-
ods: (1) Reweight (Ren et al., 2022) weights data points
using inverse re-weighting; (2) BMC (Ren et al., 2022)
adopts batch-based monte-carlo with the balanced MSE;
(3) GAI (Ren et al., 2022) adopts GMM-based analytical
integration with the balanced MSE; (4) DIRNet (Yang et al.,
2021) proposes FDS and LDS to smooth imbalance data; (5)
IPWNet weights data points using inverse propensity score
weighing. Another group is representation balance methods
(elaborated in Sec.2.1): (1) CFRNet (Shalit et al., 2017);
(2) SITE (Yao et al., 2018); (3) CFRISW (Hassanpour
& Greiner, 2019a) (4) DR-CFR (Hassanpour & Greiner,
2019b) (5) DeR-CFR (Wu et al., 2022). Besides, as an
ablation study, we use term VANILLA to denote the same
network architecture that does not include any technique for
dealing with imbalanced data.

5.4. Main Results

We report the main results on Syn-γ and Semi-PM-CMR,
and the analysis on Real-PM-CMR in this section. The
hyper-parameters experiments, the time complexity analysis,
and additional results are provided in Appendix B.

Main Results on Syn-γ. We report the performance of
different methods on the Syn-0.8 dataset in Tab. 1. From
the results, we have the following observations: (1) Without
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Table 1. The Generalization Experiments for Heterogeneous Treatment Effect on Syn-0.8 dataset.

ID data (training distribution) OOD data (uniform distribution)

Method MSE(T=0) MSE(T=1) PEHE ϵATE MSE(T=0) MSE(T=1) PEHE ϵATE MAXE P↓0.3

VANILLA 0.006(0.002) 0.005(0.004) 0.089(0.020) 0.003(0.019) 0.139(0.043) 0.069(0.036) 0.500(0.113) 0.047(0.056) 10.044(1.745) 84.8%

Reweight 0.026(0.007) 0.353(0.246) 0.609(0.170) 0.055(0.069) 0.197(0.071) 1.008(0.319) 1.205(0.140) 0.155(0.114) 14.508(1.455) 31.4%
BMC 1.263(0.174) 2.246(0.322) 1.782(0.102) 0.499(0.108) 1.565(0.252) 0.816(0.146) 1.574(0.109) 0.361(0.123) 10.128(1.225) 8.1%
GAI 0.315(0.028) 0.245(0.045) 0.919(0.045) 0.032(0.020) 1.140(0.203) 1.462(0.513) 2.136(0.208) 1.323(0.148) 6.329(0.917) 19.1%
DIRNet 0.025(0.003) 0.073(0.012) 0.294(0.023) 0.003(0.023) 0.188(0.051) 0.465(0.119) 0.860(0.105) 0.025(0.042) 12.698(1.322) 52.5%
IPWNet 0.007(0.002) 0.009(0.004) 0.105(0.018) 0.003(0.021) 0.140(0.053) 0.095(0.044) 0.546(0.093) 0.031(0.089) 10.220(1.561) 80.5%

CFRNet 2.517(1.653) 2.634(1.731) 2.370(1.482) 0.124(0.103) 10.955(7.129) 16.377(10.66) 5.990(3.702) 3.582(2.362) 28.930(16.81) 26.9%
SITE 3.491(1.769) 1.933(1.093) 2.741(0.999) 0.058(0.060) 19.208(8.076) 11.341(6.235) 7.008(2.078) 4.086(1.399) 36.735(5.464) 7.4%
CFRISW 0.953(1.337) 0.875(1.359) 1.070(1.142) 0.047(0.069) 3.950(5.892) 5.400(9.204) 2.560(2.996) 1.212(2.010) 16.136(12.82) 37.6%
DRCFR 0.077(0.024) 0.065(0.012) 0.249(0.027) 0.008(0.039) 0.446(0.121) 0.315(0.091) 0.683(0.146) 0.007(0.083) 8.306(2.345) 60.4%
DERCFR 0.021(0.013) 0.020(0.007) 0.192(0.037) 0.007(0.065) 0.200(0.076) 0.223(0.103) 0.634(0.114) 0.128(0.144) 7.628(1.908) 64.4%

StableCFR 0.008(0.003) 0.006(0.003) 0.099(0.017) 0.009(0.017) 0.046(0.020) 0.037(0.017) 0.299(0.054) 0.004(0.042) 5.889(1.577) 90.8%

Table 2. The Generalization Experiments for Heterogeneous Treatment Effect on Semi-PM-CMR dataset.

ID data (training distribution) OOD data (uniform distribution)

Method MSE(T=0) MSE(T=1) PEHE ϵATE MSE(T=0) MSE(T=1) PEHE ϵATE MAXE P↓0.5

VANILLA 0.013(0.008) 0.017(0.012) 0.131(0.036) 0.001(0.024) 0.304(0.099) 0.228(0.070) 0.555(0.116) 0.086(0.081) 6.206(1.224) 79.4%

Reweight 5.097(0.989) 1.726(0.628) 2.983(0.210) 1.268(0.330) 12.306(1.864) 5.935(1.388) 5.045(0.512) 1.897(0.407) 20.266(1.617) 9.5%
BMC 5.120(0.605) 2.461(0.811) 3.266(0.198) 0.253(0.368) 14.430(3.411) 8.762(1.410) 5.648(0.395) 0.892(0.486) 23.778(1.922) 8.3%
GAI 6.279(1.017) 2.126(0.394) 3.421(0.207) 0.217(0.311) 15.494(2.352) 8.393(0.988) 5.736(0.374) 0.789(0.585) 24.901(2.860) 8.7%
DIRNet 6.697(0.510) 3.162(0.159) 3.407(0.092) 2.147(0.110) 12.576(0.656) 4.089(0.339) 4.427(0.196) 2.400(0.251) 15.690(1.430) 8.5%
IPWNet 0.015(0.007) 0.014(0.007) 0.132(0.023) 0.002(0.014) 0.295(0.062) 0.199(0.045) 0.548(0.065) 0.077(0.042) 6.354(0.817) 80.7%

CFRNet 0.023(0.004) 0.028(0.009) 0.151(0.027) 0.001(0.031) 0.341(0.081) 0.246(0.057) 0.557(0.114) 0.063(0.077) 5.361(1.049) 79.6%
SITE 2.219(0.506) 2.032(0.198) 0.820(0.564) 0.006(0.060) 3.978(1.264) 3.615(0.579) 1.765(0.795) 0.264(0.177) 8.531(1.781) 31.4%
CFRISW 1.370(0.518) 1.470(0.391) 0.542(0.136) 0.027(0.082) 2.908(0.705) 3.194(0.289) 1.335(0.147) 0.225(0.123) 8.019(1.416) 34.8%
DRCFR 0.072(0.018) 0.090(0.013) 0.345(0.037) 0.013(0.032) 0.848(0.168) 0.677(0.092) 0.971(0.066) 0.110(0.074) 7.005(0.288) 52.0%
DERCFR 0.069(0.023) 0.083(0.023) 0.354(0.042) 0.001(0.106) 0.816(0.094) 1.072(0.189) 1.121(0.128) 0.118(0.125) 7.145(0.858) 45.9%

StableCFR 0.021(0.004) 0.028(0.005) 0.139(0.011) 0.011(0.009) 0.271(0.056) 0.196(0.033) 0.489(0.051) 0.052(0.086) 4.926(0.604) 81.3%

Table 3. The Heterogeneous Treatment Effect Estimation of
PM2.5 > 6 on CMR from StableCFR by Adjusting the Variable
Values of Real-PM-CMR (The Description is in Appendix A).

Adjust Unemploy Income Female Vacant Owner Edu Poverty

0.3 7.673 6.658 5.729 1.276 5.568 10.310 5.039
0.2 7.179 6.351 5.471 2.902 5.905 9.043 5.423
0.1 6.688 6.202 5.670 4.549 6.127 7.675 5.817
0.0 6.206 6.206 6.206 6.206 6.206 6.206 6.206
-0.1 5.675 6.223 7.037 7.931 6.168 4.644 6.686
-0.2 5.162 6.338 8.075 9.646 5.973 2.971 7.093
-0.3 4.663 6.511 9.288 11.316 5.603 1.195 7.407

any prior knowledge about distribution, the conventional
imbalance regression methods (Reweight, BMC, GAI, and
DIRNet) can not accurately estimate the HTE on ID data
or OOD data even if they balance the label distribution,
since they do not explicitly consider the underrepresentation
populations. (2) Without any regularity constraints, many
CFR-based methods (CFRNet, SITE, and CFR-ISW) will
overbalance and may map all input data to a constant vector
in the face of severe underrepresentation distributions (we
found this in our experiments). The disentanglement repre-
sentation methods (DR-CFR and DeR-CFR) can alleviate
the overbalance problem, but the decomposed representa-
tion still suffers from underrepresentation issues. (3) As
ablation studies, we remove all techniques and found that
VANILLA achieve the best HTE and ATE performance
on the in-distribution (ID) data. However, as VANILLA

did not take underrepresentation issues into account, its
performance on the out-of-distribution (OOD) data was sig-
nificantly worse than that of our StableCFR method. (4)
Leveraging complex models to fit re-sampled data effec-
tively, we improve the accuracy of HTE estimation on OOD
data. Compared with the SOTA model, our StableCFR re-
duces the PEHE, ϵATE , MAXE metrics by 40%, 43%, 7%,
and improves 7% in P↓0.3 metric. Our StableCFR aims
to strike a balance between fitting the available data and
generalizing well to out-of-distribution data. In the Syn-0.8
dataset, our StabkeCFR only slightly increases the PEHE
on ID data compared to the best method (VANILLA), from
0.089 to 0.099. However, on OOD data, the PEHE is de-
creased from 0.500 to 0.299. These results demonstrate the
effectiveness of our approach in improving performance in
underrepresented subpopulations while maintaining good
performance in the dominant subpopulation.

We extend our experiments to various underrepresentation
scenarios and adjust the underrepresentation level in the Syn-
γ datasets by varying the parameter γ =∈ {0.5, 0.8, 1.0}.
As shown in Figure 3, we observe that as the underrepresen-
tation level decreased (from top to bottom), the generaliza-
tion performance of CFRNet, VANILLA, and StableCFR
improved. Overall, StableCFR demonstrates robust per-
formance and provides reliable HTE estimation in most
populations.
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Figure 3. The PEHE Results (the lower the better) on Syn-γ
Datasets for Adjusting the Underrepresentation Level by Changing
the Parameter (γ = 0.5, 0.8, 1.0) of N (0, γ). We partition X1

and X2 into 10 equal parts according to the range of values, and
then compute the local PEHE of the 10× 10 region, in turn, to test
the performance of the StableCFR under different OOD data.

X1 X1 X1

X2

CFRNet VANILLA StableCFR

Figure 4. The PEHE Results on Semi-PM-CMR Dataset.

Main Results on Semi-PM-CMR.

To evaluate the effectiveness of our StableCFR on real-world
applications, we conduct simulations using Semi-synthetic
data with the real covariates of PM-CMR. As shown in
Tab. 2, the performance of VANILLA, IPWNet, CFRNet,
and StableCFR is similar in ID data due to the low under-
representation level of the real variables. The difference
between our StableCFR and the state-of-the-art methods is
within 0.015 in each metric. On OOD data, our StableCFR
outperforms the state-of-the-art model, reducing the PEHE,
ϵATE , MAXE metrics by 11%, 32%, and 8%, respectively,
and improving by 1% in the P↓0.3 metric. Additionally, in
different 10 × 10 OOD subpopulations in Fig.4, our Sta-
bleCFR maintains the most robust performance and achieves
low HTE errors in most subpopulations.

Further Analysis on Real-PM-CMR. Since real-
world datasets lack counterfactuals, as shown in Tab. 3,
we implement the StableCFR algorithm by individu-

ally shifting the distribution of each variable in all
cities to the left or right based on relative values of
{−0.3,−0.2,−0.1, 0.0, 0.1, 0.2, 0.3}, while keeping the
distributions of the other six variables fixed. Rank-
ing of the fluctuation of HTE with the change of vari-
ables: Vacant(10.04) > Edu(9.115) > Female(3.817) >
Unempoly(3.01) > Poverty(2.368) > Owner(0.638) >
Income(0.456). The results demonstrate that counties with
high levels of education and development are more sus-
ceptible to contracting CMR due to poor air quality. This
is consistent with recent research findings that individuals
working in high-tech industries may be more prone to ne-
glecting physical exercise, as they often spend prolonged
periods sitting in front of a computer screen. These regions
may need to increase their focus on air quality and imple-
ment relevant policies. This is a demonstration of how our
algorithm is connected to real-world applications.

6. Conclusion
In real applications, observational datasets are often con-
structed by pooling data from multiple sources or time peri-
ods, which can lead to concerns about representation issues.
This problem is particularly pronounced when heteroge-
neous treatment effects are of primary interest, such as
in precision medicine or targeted marketing. In the esti-
mation of Heterogeneous Treatment Effects, conventional
causal models have effectively addressed confounding bias,
but they might unreliably estimate treatment effects and
allocate suboptimal treatments for underrepresented pop-
ulations. Our StableCFR can be seen as a robust HTE
estimation scheme that improves the accuracy of HTE es-
timation for underrepresented populations. By filling the
gap in techniques for stable HTE estimation and underrep-
resented issues, our StableCFR can provide a reliable and
stable estimation of Heterogeneous Treatment Effects.

Acknowledgements
This work was supported in part by National Natural Science
Foundation of China (62006207, 62037001, U20A20387),
Young Elite Scientists Sponsorship Program by CAST
(2021QNRC001), Zhejiang Province Natural Science Foun-
dation (LQ21F020020), Project by Shanghai AI Laboratory
(P22KS00111), Program of Zhejiang Province Science and
Technology (2022C01044), the StarryNight Science Fund
of Zhejiang University Shanghai Institute for Advanced
Study (SN-ZJU-SIAS-0010), and the Fundamental Research
Funds for the Central Universities (226-2022-00142, 226-
2022-00051). Bo Li’s research was supported by the Na-
tional Natural Science Foundation of China (No.72171131,
72133002); the Technology and Innovation Major Project
of the Ministry of Science and Technology of China under
Grants 2020AAA0108400 and 2020AAA0108403.

9



Stable Estimation of Heterogeneous Treatment Effects

References
Abadie, A. and Imbens, G. W. Large sample properties of

matching estimators for average treatment effects. econo-
metrica, 74(1):235–267, 2006.

Abadie, A. and Imbens, G. W. Bias-corrected matching esti-
mators for average treatment effects. Journal of Business
& Economic Statistics, 29(1):1–11, 2011.

Angrist, J. D. and Pischke, J.-S. Mostly harmless econo-
metrics: An empiricist’s companion. Princeton university
press, 2009.

Athey, S., Imbens, G. W., and Wager, S. Approximate resid-
ual balancing: debiased inference of average treatment
effects in high dimensions. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 80(4):
597–623, 2018.

Branco, P., Torgo, L., and Ribeiro, R. P. Smogn: a pre-
processing approach for imbalanced regression. In First
international workshop on learning with imbalanced do-
mains: Theory and applications, pp. 36–50. PMLR, 2017.

Branco, P., Torgo, L., and Ribeiro, R. P. Rebagg: Resampled
bagging for imbalanced regression. In Second Interna-
tional Workshop on Learning with Imbalanced Domains:
Theory and Applications, pp. 67–81. PMLR, 2018.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. Smote: synthetic minority over-sampling technique.
Journal of artificial intelligence research, 16:321–357,
2002.

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., and Belongie, S. Class-
balanced loss based on effective number of samples. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9268–9277, 2019.

Erba, V., Gherardi, M., and Rotondo, P. Intrinsic dimen-
sion estimation for locally undersampled data. Scientific
reports, 9(1):1–9, 2019.

Funk, M. J., Westreich, D., Wiesen, C., Stürmer, T.,
Brookhart, M. A., and Davidian, M. Doubly robust
estimation of causal effects. American journal of epi-
demiology, 173(7):761–767, 2011.

Hassanpour, N. and Greiner, R. Counterfactual regression
with importance sampling weights. In IJCAI, pp. 5880–
5887, 2019a.

Hassanpour, N. and Greiner, R. Learning disentangled repre-
sentations for counterfactual regression. In International
Conference on Learning Representations, 2019b.

He, H. and Garcia, E. A. Learning from imbalanced data.
IEEE Transactions on knowledge and data engineering,
21(9):1263–1284, 2009.

He, Y.-Y., Wu, J., and Wei, X.-S. Distilling virtual exam-
ples for long-tailed recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 235–244, 2021.

Hong, Y., Han, S., Choi, K., Seo, S., Kim, B., and Chang,
B. Disentangling label distribution for long-tailed visual
recognition. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6626–
6636, 2021.

Imai, K., Keele, L., and Yamamoto, T. Identification, infer-
ence and sensitivity analysis for causal mediation effects.
2010.

Imbens, G. W., Rubin, D. B., et al. Causal inference for
statistics, social, and biomedical sciences. Cambridge
Books, 2015.

Johansson, F., Shalit, U., and Sontag, D. Learning repre-
sentations for counterfactual inference. In International
conference on machine learning, pp. 3020–3029. PMLR,
2016.

LaLonde, R. J. Evaluating the econometric evaluations of
training programs with experimental data. The American
economic review, pp. 604–620, 1986.

Li, S., Vlassis, N., Kawale, J., and Fu, Y. Matching via di-
mensionality reduction for estimation of treatment effects.
In IJCAI, pp. 3768–3774, 2016.

Liu, J., Sun, Y., Han, C., Dou, Z., and Li, W. Deep repre-
sentation learning on long-tailed data: A learnable em-
bedding augmentation perspective. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 2970–2979, 2020.

Mooij, J. M., Peters, J., Janzing, D., Zscheischler, J., and
Schölkopf, B. Distinguishing cause from effect using ob-
servational data: methods and benchmarks. The Journal
of Machine Learning Research, 17(1):1103–1204, 2016.

Pearl, J. Causal inference in statistics: An overview. Statis-
tics surveys, 3:96–146, 2009a.

Pearl, J. Causality. Cambridge university press, 2009b.

Ren, J., Zhang, M., Yu, C., and Liu, Z. Balanced mse
for imbalanced visual regression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7926–7935, 2022.

Rosenbaum, P. R. Model-based direct adjustment. Journal
of the American statistical Association, 82(398):387–394,
1987.

10



Stable Estimation of Heterogeneous Treatment Effects

Rosenbaum, P. R. and Rubin, D. B. The central role of
the propensity score in observational studies for causal
effects. Biometrika, 70(1):41–55, 1983.

Saltelli, A. Sensitivity analysis for importance assessment.
Risk analysis, 22(3):579–590, 2002.

Shalit, U., Johansson, F. D., and Sontag, D. Estimating
individual treatment effect: generalization bounds and
algorithms. In International Conference on Machine
Learning, pp. 3076–3085. PMLR, 2017.

Shen, L., Lin, Z., and Huang, Q. Relay backpropagation for
effective learning of deep convolutional neural networks.
In European conference on computer vision, pp. 467–482.
Springer, 2016.

Steininger, M., Kobs, K., Davidson, P., Krause, A., and
Hotho, A. Density-based weighting for imbalanced re-
gression. Machine Learning, 110(8):2187–2211, 2021.

Tang, K., Tao, M., Qi, J., Liu, Z., and Zhang, H. Invariant
feature learning for generalized long-tailed classification.
In European Conference on Computer Vision, pp. 709–
726. Springer, 2022.

Torgo, L., Ribeiro, R. P., Pfahringer, B., and Branco, P.
Smote for regression. In Portuguese conference on artifi-
cial intelligence, pp. 378–389. Springer, 2013.

VanderWeele, T. J. and Ding, P. Sensitivity analysis in
observational research: introducing the e-value. Annals
of internal medicine, 167(4):268–274, 2017.

Wu, A., Yuan, J., Kuang, K., Li, B., Wu, R., Zhu, Q.,
Zhuang, Y. T., and Wu, F. Learning decomposed represen-
tations for treatment effect estimation. IEEE Transactions
on Knowledge and Data Engineering, 2022.

Wyatt, L. H., Peterson, G. C. L., Wade, T. J., Neas, L. M.,
and Rappold, A. G. Annual pm2. 5 and cardiovascular
mortality rate data: Trends modified by county socioe-
conomic status in 2,132 us counties. Data in brief, 30:
105–318, 2020.

Xiang, L., Ding, G., and Han, J. Learning from multiple
experts: Self-paced knowledge distillation for long-tailed
classification. In European Conference on Computer
Vision, pp. 247–263. Springer, 2020.

Yang, Y., Zha, K., Chen, Y., Wang, H., and Katabi, D. Delv-
ing into deep imbalanced regression. In International
Conference on Machine Learning, pp. 11842–11851.
PMLR, 2021.

Yao, L., Li, S., Li, Y., Huai, M., Gao, J., and Zhang, A.
Representation learning for treatment effect estimation
from observational data. Advances in Neural Information
Processing Systems, 31, 2018.

Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., and Zhang,
A. A survey on causal inference. arXiv preprint
arXiv:2002.02770, 2020.

Yi, X., Tang, K., Hua, X.-S., Lim, J.-H., and Zhang, H.
Identifying hard noise in long-tailed sample distribution.
In European Conference on Computer Vision, pp. 739–
756. Springer, 2022.

Zubizarreta, J. R. Stable weights that balance covariates
for estimation with incomplete outcome data. Journal of
the American Statistical Association, 110(511):910–922,
2015.

11



Stable Estimation of Heterogeneous Treatment Effects

A. The PM-CMR Datasets.
PM-CMR2 (Wyatt et al., 2020) study the impact of PM2.5 partical level on the cardiovascular mortality rate (CMR) in
2132 counties in the US using the data provided by the National Studies on Air Pollution and Health. As a real application,
we select 7 variables (unemployment, income, female householder, vacant housing, owner-occupied housing, educational
attainment, and families below the poverty level) associated with cardiovascular disease in 2010 as covariates and use the
PM2.5 partical level as treatment variable. The corresponding description of each variable is detailed in Tab. 4. The data
presented in Fig. 5 displays skewed distributions resulting from an underrepresented population, where certain features have
significantly fewer observations, i.e., few-shot samples. Such imbalanced data would introduce additional estimation error
into HTE estimation. As shown in Tab. 5, we split the data into two parts with the median of each variable and calculated
the difference between PM2.5 and CMR for the two parts separately. To some extent, the results presented in Tab. 5 suggest
that there is a confounding effect from each imbalanced covariate. The feature distributions illustrated in Fig. 5, demonstrate
underrepresentation issues in the data.

Figure 5. The Data Distribution on PM-CMR.

Table 4. The Description for Real Variables on Real-PM-CMR.

Variable Description

PM2.5(T ) Annual county PM2.5 concentration, µg/m3

CMR(Y ) Annual county cardiovascular mortality rate, deaths/100,000 person-years

Unemploy(X1) Civilian labor force unemployment rate in 2010
Income(X2) Median household income in 2009
Female(X3) Family households - female householder, no spouse present in 2010 / Family households in 2010
Vacant(X4) Vacant housing units in 2010 / Total housing units in 2010
Owner(X5) Owner-occupied housing units - percent of total occupied housing units in 2010
Edu(X6) Educational attainment - persons 25 years and over - high school graduate (includes equivalency) in 2010
Poverty(X7) Families below poverty level in 2009

2PM-CMR:https://pasteur.epa.gov/uploads/10.23719/1506014/SES PM25 CMR data.zip
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Table 5. The Confounding Effect from the Imbalanced Covariates.

Unemploy Income Female Vacant Owner Edu Poverty

PM2.5 0.302 0.208 0.765 -0.855 0.241 0.418 0.130
CMR 32.57 -51.70 45.78 22.12 1.491 35.78 54.34

Table 6. The Generalization Experiments for Heterogeneous Treatment Effect on Syn-0.5 dataset.

ID data (training distribution) OOD data (uniform distribution)

Method MSE(T=0) MSE(T=1) PEHE ϵATE MSE(T=0) MSE(T=1) PEHE ϵATE MAXE P↓0.3

VANILLA 0.003(0.001) 0.004(0.002) 0.073(0.012) 0.000(0.017) 1.186(0.392) 3.575(1.366) 2.711(0.567) 0.923(0.377) 24.349(2.382) 48.6%

Reweight 0.026(0.016) 0.014(0.004) 0.190(0.046) 0.021(0.036) 1.813(0.585) 5.630(1.359) 3.350(0.429) 1.079(0.206) 27.393(1.661) 33.6%
BMC 2.192(0.304) 3.417(0.592) 2.199(0.102) 0.766(0.133) 4.014(0.973) 4.990(0.986) 3.223(0.303) 0.362(0.449) 23.087(1.941) 7.3%
GAI 1.115(0.129) 0.872(0.101) 1.507(0.026) 0.082(0.031) 15.808(2.808) 6.950(1.771) 6.151(0.589) 4.734(0.379) 13.526(1.757) 5.6%
DIRNet 0.013(0.008) 0.010(0.003) 0.125(0.031) 0.000(0.011) 1.464(0.380) 4.947(1.631) 2.886(0.517) 0.729(0.433) 24.900(1.956) 38.8%
IPWNet 0.003(0.001) 0.005(0.002) 0.073(0.012) 0.001(0.018) 0.978(0.339) 3.380(1.435) 2.497(0.600) 0.732(0.414) 22.589(3.169) 49.1%

CFRNet 0.964(0.051) 1.224(0.044) 1.576(0.038) 0.083(0.048) 18.868(0.206) 28.747(0.157) 9.370(0.029) 6.581(0.041) 41.385(0.041) 4.6%
SITE 0.211(0.022) 0.223(0.027) 0.714(0.049) 0.043(0.052) 12.585(0.899) 16.028(2.822) 7.239(0.297) 4.887(0.223) 37.374(1.118) 9.2%
CFRISW 0.480(0.400) 0.893(0.502) 1.123(0.527) 0.051(0.067) 9.870(7.575) 22.354(9.976) 6.878(2.667) 4.662(2.066) 33.626(9.101) 10.6%
DRCFR 0.021(0.008) 0.025(0.015) 0.176(0.040) 0.016(0.034) 1.196(0.270) 6.771(2.991) 3.009(0.652) 1.249(0.500) 23.023(2.965) 36.1%
DERCFR 0.009(0.004) 0.014(0.005) 0.145(0.019) 0.015(0.039) 1.178(0.399) 4.090(2.171) 2.610(0.513) 1.177(0.445) 18.330(3.183) 35.7%

StableCFR 0.005(0.001) 0.005(0.001) 0.085(0.011) 0.003(0.015) 0.925(0.554) 1.722(0.849) 1.961(0.615) 0.511(0.411) 18.407(3.363) 54.4%

B. Additional Experiments.
B.1. The Experiments for Adjusting the Underrepresentation Level

We expand experiments to various underrepresentation scenarios and adjust the underrepresentation level of Syn-γ datasets
by changing the parameter γ = 0.5, 0.8, 1.0 in Tabs. 6, 7 & 8. From the results, we have the following observations:
(1) When the underrepresentation level is high (γ = 0.5 or 0.8 in Tabs. 6 & 7), the pure neural network will achieve SOTA
performance on all metrics on ID data by fitting the training distribution without restriction. While the representation-based
methods (CFRNet, SITE, and CFR-ISW) will overbalance and may map all input data to a constant vector in the face of
severe underrepresentation distributions.
(2) In the experiments on the Syn-0.8 dataset (Tab. 7), StableCFR achieves SOTA performance on all metrics on OOD
data. However, in the experiments on the Syn-0.5 dataset (Tab. 6), StableCFR does not perform as well as BMC and GAI
methods on ϵATE and MAXE metrics for OOD data, respectively. One possible reason is that BMC and GAI methods
utilize balanced MSE as the training objective, which would reduce the maximum error by a penalty constraint term, but the
error is still large on the Syn-0.8 dataset (Tab. 7).
(3) As the underrepresentation level decreases (γ = 1.0 in Tabs. 8), the estimation error from the neural network will
decrease, and then the inverse propensity weighting method IPWNet will outperform the pure neural network method in the
ID distribution, because the confounding bias caused by the imbalanced confounders will become the dominant error source.
(4) In Tabs. 7 & 8, through sampling from a multivariate uniform distribution and epsilon-greedy matching, our StableCFR
balance confounders and smooth the imbalanced distribution to obtain the best HTE estimation on each individual (OOD
data). Its gain is from increasing the HTE estimation performance on OOD data at the price of decreasing the estimation
performance on ID data. Compared with the SOTA model, our StableCFR reduces the PEHE, ϵATE , MAXE metrics by
40%, 43%, 7%, and improves 7% in P↓0.3 metric in Tab. 7. Correspondingly, our StableCFR reduces the PEHE, ϵATE ,
MAXE metrics by 15%, 40%, 21%, and improves 2% in P↓0.3 metric in Tab. 8.

B.2. The Experiments for Adjusting the Hyper-parameters

In this paper, we split the samples on each dataset into training/validation data with an 80/20 proportion of training/validation
splits. We return the best-evaluated iterate on validation data with early stopping and choose the best hyper-parameters from
ϵ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}3 & σ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.

The greedy strategy of searching for nearest neighbors for matching may lead to a frequent sampling of sparse samples in
underrepresentation populations, hurting the model’s generality. Therefore, we propose a hyper-parameters ϵ to trade-off
exploration (distance-based sampling, with the receptive field controlled by hyper-parameter σ) and exploitation (nearest

3ϵ = 1.0 denotes the greedy match algorithm without random exploration.
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Table 7. The Generalization Experiments for Heterogeneous Treatment Effect on Syn-0.8 dataset.

ID data (training distribution) OOD data (uniform distribution)

Method MSE(T=0) MSE(T=1) PEHE ϵATE MSE(T=0) MSE(T=1) PEHE ϵATE MAXE P↓0.3

VANILLA 0.006(0.002) 0.005(0.004) 0.089(0.020) 0.003(0.019) 0.139(0.043) 0.069(0.036) 0.500(0.113) 0.047(0.056) 10.044(1.745) 84.8%

Reweight 0.026(0.007) 0.353(0.246) 0.609(0.170) 0.055(0.069) 0.197(0.071) 1.008(0.319) 1.205(0.140) 0.155(0.114) 14.508(1.455) 31.4%
BMC 1.263(0.174) 2.246(0.322) 1.782(0.102) 0.499(0.108) 1.565(0.252) 0.816(0.146) 1.574(0.109) 0.361(0.123) 10.128(1.225) 8.1%
GAI 0.315(0.028) 0.245(0.045) 0.919(0.045) 0.032(0.020) 1.140(0.203) 1.462(0.513) 2.136(0.208) 1.323(0.148) 6.329(0.917) 19.1%
DIRNet 0.025(0.003) 0.073(0.012) 0.294(0.023) 0.003(0.023) 0.188(0.051) 0.465(0.119) 0.860(0.105) 0.025(0.042) 12.698(1.322) 52.5%
IPWNet 0.007(0.002) 0.009(0.004) 0.105(0.018) 0.003(0.021) 0.140(0.053) 0.095(0.044) 0.546(0.093) 0.031(0.089) 10.220(1.561) 80.5%

CFRNet 2.517(1.653) 2.634(1.731) 2.370(1.482) 0.124(0.103) 10.955(7.129) 16.377(10.666) 5.990(3.702) 3.582(2.362) 28.930(16.810) 26.9%
SITE 3.491(1.769) 1.933(1.093) 2.741(0.999) 0.058(0.060) 19.208(8.076) 11.341(6.235) 7.008(2.078) 4.086(1.399) 36.735(5.464) 7.4%
CFRISW 0.953(1.337) 0.875(1.359) 1.070(1.142) 0.047(0.069) 3.950(5.892) 5.400(9.204) 2.560(2.996) 1.212(2.010) 16.136(12.823) 37.6%
DRCFR 0.077(0.024) 0.065(0.012) 0.249(0.027) 0.008(0.039) 0.446(0.121) 0.315(0.091) 0.683(0.146) 0.007(0.083) 8.306(2.345) 60.4%
DERCFR 0.021(0.013) 0.020(0.007) 0.192(0.037) 0.007(0.065) 0.200(0.076) 0.223(0.103) 0.634(0.114) 0.128(0.144) 7.628(1.908) 64.4%

StableCFR 0.008(0.003) 0.006(0.003) 0.099(0.017) 0.009(0.017) 0.046(0.020) 0.037(0.017) 0.299(0.054) 0.004(0.042) 5.889(1.577) 90.8%

Table 8. The Generalization Experiments for Heterogeneous Treatment Effect on Syn-1.0 dataset.

ID data (training distribution) OOD data (uniform distribution)

Method MSE(T=0) MSE(T=1) PEHE ϵATE MSE(T=0) MSE(T=1) PEHE ϵATE MAXE P↓0.3

VANILLA 0.007(0.002) 0.006(0.003) 0.093(0.013) 0.010(0.014) 0.051(0.037) 0.022(0.007) 0.247(0.070) 0.012(0.025) 5.244(1.858) 92.7%

Reweight 0.033(0.015) 0.237(0.127) 0.528(0.099) 0.020(0.069) 0.091(0.027) 0.495(0.152) 0.839(0.091) 0.109(0.082) 8.906(3.032) 41.3%
BMC 1.126(0.144) 1.457(0.191) 1.566(0.086) 0.417(0.058) 1.156(0.180) 0.634(0.073) 1.334(0.085) 0.124(0.051) 7.913(0.926) 11.2%
GAI 0.204(0.017) 0.144(0.015) 0.739(0.024) 0.001(0.043) 0.470(0.060) 0.447(0.066) 1.262(0.079) 0.629(0.060) 4.320(0.546) 27.4%
DIRNet 0.036(0.006) 0.099(0.013) 0.354(0.036) 0.014(0.009) 0.096(0.027) 0.278(0.058) 0.616(0.051) 0.045(0.028) 8.466(2.070) 55.1%
IPWNet 0.006(0.002) 0.006(0.002) 0.087(0.009) 0.002(0.018) 0.036(0.016) 0.021(0.006) 0.217(0.072) 0.010(0.029) 5.067(2.364) 93.8%

CFR 0.014(0.005) 0.018(0.007) 0.131(0.018) 0.012(0.034) 0.067(0.028) 0.056(0.032) 0.255(0.051) 0.005(0.049) 4.056(1.305) 88.6%
SITE 1.756(1.262) 2.089(1.181) 2.130(0.745) 0.251(0.120) 4.608(3.382) 4.437(4.277) 3.201(1.485) 1.375(0.779) 20.410(6.920) 14.4%
CFRISW 0.114(0.033) 0.119(0.025) 0.430(0.088) 0.011(0.050) 0.346(0.082) 0.363(0.126) 0.729(0.192) 0.017(0.082) 7.867(2.499) 52.5%
DRCFR 0.120(0.028) 0.101(0.027) 0.296(0.042) 0.021(0.021) 0.346(0.086) 0.235(0.045) 0.510(0.121) 0.035(0.063) 6.497(1.707) 64.5%
DERCFR 0.016(0.008) 0.021(0.009) 0.183(0.033) 0.024(0.052) 0.076(0.041) 0.083(0.041) 0.382(0.090) 0.074(0.079) 5.540(1.962) 76.0%

StableCFR 0.007(0.001) 0.007(0.001) 0.107(0.012) 0.006(0.014) 0.023(0.012) 0.014(0.002) 0.184(0.045) 0.006(0.022) 3.994(1.542) 95.4%

neighbor sampling). As shown in Fig. 2(b), we use the probability density function f(·|σ) of the normal distribution
N (µ = 0, σ) as the relative sampling probability. The closer the sample in training is to the point qj , the higher the
probability of the sample being sampled. In this paper, we set three hyper-parameters {K, ϵ, σ} to denote top-K nearest
neighbors, probability ϵ ∈ [0, 1] of greedy matching, and the standard deviation σ} of the normal distribution.

As demonstrated in Tab. 1 and Fig. 6, the pure uniform sampling with nearest neighbor sample (ϵ = 1) has outperformed
the best baseline in the PEHE on uniform data. Furthermore, based on the best-evaluated iterate, the uniform sampling
with epsilon-greedy match (K = 10, ϵ = 0.6, σ = 0.25) improves HTE estimation by avoiding frequent sampling of
sparse samples. The experiments (Fig. 6) for adjusting the hyper-parameters demonstrate that the using parameters
{K = 10, ϵ = 0.6, σ = 0.25} results in more stable HTE estimation with lower PEHE.

є

σ

Figure 6. The Experiments for Adjusting the Hyper-parameters.

Table 9. Average Running Time(s) for Various Methods.

Method Syn-γ Semi-PM-CMR
(3000 units with 3 covariate) (2132 units with 7 covariate)

VANILLA 85.5s 76.9s

Reweight 109.6s 107.2s
BMC 210.8s 193.4s
GAI 178.4s 169.5s
DIRNet 792.9s 653.1s
IPWNet 95.4s 94.0s

CFR 132.9s 120.0s
SITE 285.1s 243.9s
CFRISW 179.2s 173.6s
DRCFR 216.3s 203.3s
DERCFR 297.7s 266.4s

StableCFR 289.7s 287.5s
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B.3. The Time Cost of Baselines and Further Analysis for StableCFR

The above algorithms are trained based on the same network architecture, but different training techniques will increase
model complexity and training cost. In the synthetic and semi-synthetic datasets, we implement 10 replications to study the
average running time(s) for the proposed model in a single execution and compare it to baselines. From the results (Table 9),
we have the following observations: (1) The training cost of the pure neural network is only 85.5s on Syn-γ and 76.9s on
Semi-PM-CMR, while the training cost of the DIRNet method is the largest, taking more than 10 minutes (600 seconds). (2)
Except for DIRNet, all methods (including our StableCFR) can be executed in a single run within 300s, either on Syn-γ or
on Semi-PM-CMR. (3) The single execution time for our StableCFR is 289.7s on Syn-γ and 287.5s on Semi-PM-CMR,
which is within the acceptable range (600s).

Through sampling from a multivariate uniform distribution and epsilon-greedy matching, our StableCFR balance confounders
and smooths the imbalanced distribution to obtain the best HTE estimation on each individual. As model complexity
increases, both the time complexity and the single execution time of the model increase. In this section, we reformulate our
calculations in matrix form:
(1) Calculate the distance matrix D ∈ Rmn (Computational Complexity: O(mnd)):

D = ∥Q−X∥22, (12)

where, Q ∈ Rmd denotes the random points’ matrix and X ∈ Rnd denotes the covariates’ matrix.
(2) Sort the distance matrix by row (Computational Complexity: O(mn log n)):

sort(D, 1), (13)

(3) Calculate the probability density P ∈ RmK based on the distance of top-K points KD ∈ RmK (Computational
Complexity: O(mK)):

f(KD|σ) = 1

σ
√
2π

e−
1
2 (

KD
σ )

2

(14)

(4) Match and sample the nearest neighbors with relative sampling probability P (Computational Complexity: O(mK)).

In summary, our StableCFR requires an additional computational cost to calculate the distance between samples, and this
method is more suitable for small data. The computational complexity of the Epsilon-Greedy Matching is O(mn(log n+
d) + 2mK), and the single execution time of our StableCFR is less than 300 seconds on 3000 samples. We believe this is
acceptable. Besides, for a large dataset, we can randomly split the large data into multiple sub-datasets and then randomly
select one sub-dataset to create the uniformed nearest neighbor batch.

Hardware used: Ubuntu 16.04.5 LTS operating system with 2 * Intel Xeon E5-2678 v3 CPU, 384GB of RAM, and 4 *
GeForce GTX 1080Ti GPU with 44GB of VRAM.

Software used: Python 3.7.15 with TensorFlow 1.15.0, Pytorch 1.7.1, NumPy 1.18.0, and MatplotLib 3.5.3.
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