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Abstract

Meta-learning has emerged as a potent paradigm
for quick learning of few-shot tasks, by leveraging
the meta-knowledge learned from meta-training
tasks. Well-generalized meta-knowledge that fa-
cilitates fast adaptation in each task is preferred;
however, recent evidence suggests the undesirable
memorization effect where the meta-knowledge
simply memorizing all meta-training tasks dis-
courages task-specific adaptation and poorly gen-
eralizes. There have been several solutions to
mitigating the effect, including both regularizer-
based and augmentation-based methods, while
a systematic understanding of these methods in
a single framework is still lacking. In this pa-
per, we offer a novel causal perspective of meta-
learning. Through the lens of causality, we con-
clude the universal label space as a confounder to
be the causing factor of memorization and frame
the two lines of prevailing methods as different
deconfounder approaches. Remarkably, derived
from the causal inference principle of front-door
adjustment, we propose two frustratingly easy
but effective deconfounder algorithms, i.e., sam-
pling multiple versions of the meta-knowledge via
Dropout and grouping the meta-knowledge into
multiple bins. The proposed causal perspective
not only brings in the two deconfounder algo-
rithms that surpass previous works in four bench-
mark datasets towards combating memorization,
but also opens a promising direction for meta-
learning.
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1. Introduction
Recently, there has been renewed interest in meta-learning
which empowers more human-like machines that suffice to
learn a wide range of tasks with minimal supervision (Ben-
gio et al., 1991; Thrun & Pratt, 2012; Finn et al., 2017;
Raghu et al., 2020). While metric-based meta-learning
algorithms (Vinyals et al., 2016; Snell et al., 2017) only
solve few-shot classification problems, we focus on gradient-
based meta-learning algorithms in this work that are more
flexible (Finn et al., 2017; Li et al., 2017). Gradient-based
meta-learning algorithms formulate the meta-knowledge as
the initialization for a base learner and learn the initializa-
tion by a bi-level optimization procedure during the meta-
training phase. Concretely, the initialization is adapted to
each meta-training task by its support set, while the perfor-
mance of the adapted model on its query set in turn serves
as feedback to update the initialization.

This bi-level optimization scheme, though designed to learn
a well-generalized initialization, runs a high risk of induc-
ing a sufficiently expressive initialization that memorizes
all meta-training tasks. This kind of overfitting is named
memorization overfitting (Yin et al., 2020), where the ini-
tialization solves the query set even without relying on the
support set for adaptation. As a consequence, such an ini-
tialization poorly generalizes to meta-testing tasks. As sug-
gested in Yin et al. (2020), the more non-mutually exclusive
meta-training tasks are and the more powerful the model
initialization is, the higher risk of memorization arises. To
combat the memorization overfitting, Yin et al. (2020) pro-
posed to regularize the capacity of the initialization, and
task augmentation strategies have been recently explored
in Rajendran et al. (2020); Yao et al. (2021).

Despite the effectiveness of the three algorithms, under-
standing their benefits rigorously within a unified analytic
tool remains a mystery. To bridge the gap, we develop a
causal perspective on meta-learning, as illustrated by the
causal graph in Figure 1. We argue that the universal label
space of the base learner turns to be a confounder causing a
spurious correlation between the initializations learned in
different steps of meta-training. Such a spurious correlation
biases the meta-knowledge that should be only updated by
the performance of task-specific models. Fortunately, the
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(b) Causal graph of meta-learning

Figure 1: An overview of meta-learning training. Yellow
nodes are inputs to the meta-model, green nodes are outputs
by the meta-model, and black nodes represent intermediate
variables. (a) The workflow of meta-learning, where a set
of meta-training tasks are sampled from p(T ), and a task-
specific model ϕi is updated by the support set si, then
meta-knowledge θ is optimized on the likelihood of query
sets {qi}Ni=1. (b) The causal graph of meta-learning, where
θ′ and θ are the initialization learned from last step and
current step, respectively.

causal graph in Figure 1b offers valuable insights into how
to minimize memorization via deconfounder approaches. In
particular, we have demonstrated the deconfounding role of
both lines of existing works: 1) regularizer-based methods
directly weaken the correlation between the initialization
meta-trained in the last step (i.e., θ′) and the task-specific
model Φ during meta-training, though the limited flexibil-
ity of the initialization in this case still promotes spurious
relations; 2) augmentation-based methods take different
mapping functions from task labels to the universal label
space for various tasks, but the performance highly depends
on the independence between mapping functions.

Drawing upon the causal perspective, we put forward a
new direction of deconfounder approaches by applying the
causal inference principle of front-door adjustment. We
propose two easy implementations of this principle, which
are to sample multiple stratification of the initialization by
Dropout and to predict the label as well as the bin that
the label belongs to, respectively. Take the backbone of
MAML (Finn et al., 2017) as an example. We name the two
deconfounder approaches as MAML-Dropout and MAML-

Bins, respectively.

The main contributions of our paper are as follows. (1)
We, for the first time, develop a causal perspective of meta-
learning and shed light on the memorization overfitting with
causality in Section 2.2. (2) We place existing methods
into the proposed causal framework and adequately demon-
strate how they alleviate the memorization overfitting in
Section 2.3 and Section 2.4. (3) We propose a new decon-
founder approach following the principle of front-door ad-
justment in Section 2.4 and two methods that implement the
approach in Section 3. (4) We showcase that our methods
remain compatible with off-the-shelf meta-learning algo-
rithms and consistently improve their performance.

2. Problem Formulation
2.1. Meta-Learning and the Overfitting Problem

Meta-learning learns the model initialization θ from a series
of tasks Ti sampled from a specific task distribution p(T ).
All tasks in p(T ) share some common features, so that
starting from the initialization θ a new task sampled from
the same task distribution can be quickly learned with a
resulting task-specific model ϕ. The tasks used to learn the
initialization are considered as meta-training tasks Dtrain,
while novel tasks are meta-testing tasks Dtest. Each i-th
task Ti consists of a support set si = {(xs

i,j , y
s
i,j)}

Ks
i

j=1
and

a query set qi = {(xq
i,j , y

q
i,j)}

Kq
i

j=1
, where (x, y) denote the

features and the label of a sample, Ks
i and Kq

i denote the
number of support and query samples, respectively.

Gradient-based meta-learning formulates learning of such
an initialization θ as a bi-level optimization problem (see
Figure 1a). During inner-loop optimization, the adapted
model ϕi for the i-th task is initialized from θ and updated
by its support set si. In outer-loop optimization, the initial-
ization θ is optimized according to performances of adapted
models on query sets, i.e., by losses between label yqi,j and
prediction ŷqi,j of query samples. Following (Grant et al.,
2018; Gordon et al., 2019; Yin et al., 2020), we formulate
the objective of meta-learning as maximizing the condi-
tional likelihood pϕ(ŷ

q|xq, θ, s), where the inner-loop opti-
mization learns the conditional distribution of task-specific
models, i.e., p(ϕ|θ, s), and the outer-loop optimizes the dis-
tribution of θ, i.e., p(θ|Dtrain). Consequently, the objective
for inner-loop optimization (a.k.a., task objective) is

L(ϕi) =
1

Ks

Ks∑
j=1

L(fϕi,θ(x
s
i,j), y

s
i,j), (1)

and the objective for outer-loop optimization (a.k.a., meta-
objective) is

L(θ) = 1

N

N∑
i=1

Ep(ϕi|θ,si)[
1

Kq
i

K
q
i∑

j=1

L(fϕi,θ(x
q
i,j), y

q
i,j)].
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Take the algorithm of MAML (Finn et al., 2017) as a con-
crete example. During the outer-loop update, MAML opti-
mizes the delta function p(θ|Dtrain) on meta-training tasks
to learn the initialization θ of a base learner f ; in the inner-
loop update, p(ϕ|θ, s) is also a point estimation by gradient
optimization, i.e., ϕi = θ−α∇θ

1
Ks

∑Ks

j=1 L(fθ(xs
i,j), y

s
i,j).

Finally, we predict for a query sample by the adapted model,
i.e., p(ŷqi,j |x

q
i,j , ϕi) = fϕi(x

q
i,j) (Grant et al., 2018; Yin

et al., 2020).

In meta-learning, there are two types of overfitting problems:
1) memorization overfitting, which happens when the meta-
knowledge memorizes all query sets in meta-training tasks
even without adapting on the support sets, and 2) learner
overfitting, which happens when meta-knowledge is only
effective on meta-training tasks and fails to generalize to
meta-testing tasks (Yin et al., 2020; Rajendran et al., 2020).
In this paper, we focus on the former. Regularizer-based and
augmentation-based methods have been proposed to com-
bat the memorization overfitting, but how to systematically
understand the benefits of these methods within a unified
analytic tool is still a mystery.

2.2. A Causal View of Meta-learning

We would first like to introduce causality and causal graph,
which are main theoretical tools we resort to. Next, we
show the causal graph for gradient-based meta-learning and
formulate the memorization overfitting (Yin et al., 2020;
Rajendran et al., 2020) in a causal view. Besides, we explain
the reason why existing methods alleviate the memorization
to various degrees via our causal graph. Lastly, we propose
a deconfounding principle with frontdoor adjustment.

Causation and causal graph. Causation describes causal
relationship among variables instead of correlation. A causal
graph (Pearl et al., 2016) addresses causality problems with
a directed acyclic graph G = ⟨V,E⟩ where a node Vi ∈ V
denotes a variable and a directed edge Vi → Vj ∈ E denotes
that the variable Vi is a direct cause of Vj .

Revisit of meta-learning: a causal view. Given N meta-
training tasks during the meta-training phase, we define
si and qi to be the support set and the query set of task i,
respectively. Then, in the meta-training data Dtrain, we
have all support sets {si}Ni=1 as S and all query sets {qi}Ni=1

as Q. Support sets S and query sets Q consist of randomly
drawn examples that are i.i.d, which implies that S and Q
are independent given meta-training tasks. Given query sets
of the training set, the input variables XQ = {xqi}Ni=1 is
determined, so Q → XQ. It is obvious that query sets
Q has a causal effect on labels of query sets (i.e., Q →
Y ). According to the workflow of meta-learning shown
in Figure 1a, we can easily find the causal links of inner-
loop optimization S → Φ and outer-loop optimization
Φ→ ŶQ→ θ← Y as shown in Figure 1.

In Figure 1b, let θ′ denote the initial parameters optimized
by the last step, which is trained in the same way as θ (the
meta-knowledge learned from current step); therefore, there
is also a causal link from Y to θ′ (i.e., Y → θ′). We omit
the connection from the predictions in the last step since the
causal effect can be merged into the effect from Φ→ ŶQ

(see Appendix A.1). The connection θ′→ Φ denotes that
the meta-knowledge θ′ obtained in last update has a causal
effect on task-specific models Φ since Φ is always trained by
leveraging the meta-knowledge θ′ as initialization. Finally,
we have the causal graph of meta-learning in Figure 1.

In Figure 1b, the key idea of meta-learning is that by uti-
lizing the past meta-knowledge θ′ as initialization, one can
optimize the task-specific model Φ with new support sets S
for a more generalized meta-knowledge θ. But it ignores the
confounder Y (in the causal path ŶQ ← Φ← θ′ ← Y → θ)
which influences both the meta-knowledge in the past step
and the current step, leading to spurious correlation between
θ′ and θ. This spurious correlation biased by the confounder
Y makes the task-specific model especially challenging to
be sufficiently adapted by support sets S, thereby putting
the initialization at high risk of memorization.

We would highlight the difference of labels Y in meta-
learning from those in conventional machine learning. In
meta-learning, despite the universal label space, the same
label varies from task to task in semantic meanings. For
example, the label of 0 may indicate “dog” in one task and
represent “cat” in another. Thus, Y is not only affected
by query sets Q, but also by a hidden variable (i.e., how
to map a task label to the universal label space for various
tasks). The hidden variable can be denoted as an unobserved
exogenous variable and omitted in Figure 1.

Deconfounded meta-learning. In meta-learning, the meta-
knowledge θ is learned by p(θ|θ′, S,Q) in each step, al-
though the correlation between θ′ and θ would be spurious
since the causal path ŶQ ← Φ ← θ′ ← Y → θ shown in
Figure 1b demonstrates that Y is a confounder of the path
θ′ → · · · → θ (see proof in A.2). Given Dtrain = (S,Q),
we simplify the causal graph with three nodes {Y, θ′, θ} as
shown in Figure 2a via omitting the intermediate nodes. Y
opens the backdoor path from θ and θ′. Unfortunately, the
backdoor adjustment criterion (Pearl, 2009) is not applicable
to break the causal relationship between Y and θ′ because
the edges Y → θ and Y → θ′ in the causal graph would
change simultaneously since they play exactly the same
roles in meta-learning. Despite this, we propose two kinds
of deconfounded methods applying to MAML (Finn et al.,
2017) – one is inspired by some recent works (Rajendran
et al., 2020; Yin et al., 2020; Yao et al., 2021; Tseng et al.,
2020); the other is based on the front-door criterion (Pearl,
2009). We will detail the two methods in Section 2.3 and
Section 2.4.
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Figure 2: Simplified causal graphs of meta-training and
deconfounded methods.

2.3. Deconfounded Meta-knowledge

One possible solution to break the connection from Y to θ′

is to use different label mapping functions in different steps
of meta-training as shown in Figure 2b. Ỹ ← Q → Y
denotes two kinds of label representations of query sets. In
this fork structure, Y and Ỹ are independent, conditioned
on query sets Q. The backdoor path from Y to θ′ is closed.
Thus, there is no confounder in the new causal graph and
the model can learn p(θ|θ′, S,Q) directly.

Under this view, Meta-Augmentation (Rajendran et al.,
2020) and MetaMix (Yao et al., 2021) can be considered
as two instantiations of the deconfounded meta-knowledge.
Both methods randomize the labels of query sets to pre-
vent the memorization. As spurious correlations are re-
duced, these methods achieve better performance than
the vanilla MAML. Meta-Augmentation applies a CE-
increasing augmentation(Rajendran et al., 2020) in each
step which changes the labels of the same task. MetaMix
generates fake samples with manifold mixup (Verma et al.,
2019) and channel shuffle. As a result, the meta-knowledge
θ is equivalent to being optimized in even different label
spaces in different steps.

In fact, even though these two methods reduce spurious
correlations in the same manner, they perform quite differ-
ently on the same tasks. This phenomenon is attributed to
the fact that conditioning on Q makes only a partial of the
spurious correlations blocked. The augmentation function
sampled from a random space still confounds the model. To
be specific, Y ′ and Y are not completely independent.

Another possible way to deconfounding the meta-
knowledge is to constrain the meta-knowledge θ′ so as to
weaken the correlation between Y and θ′, which is adopted
by Yin et al. (2020) via meta-regularization of parameters.

However, such naive regularization which meantime limits
Y → θ weakens the effectiveness of fast adaptation in the
inner-loop. As a result, regularizer-based methods struggle
to address the trade-off between effectiveness and general-
ization. Besides, the weakened correlation between θ′ and
Φ still confounds the model.

2.4. Deconfounded Meta-learning Model

Taking the mediator Φ in the path from θ′ to θ into con-
sideration, we can alternatively simplify the causal path
ŶQ ← Φ ← θ′ ← Y → θ in Figure 1 with four nodes
{Y, θ′,Φ, θ} as shown in Figure 2c. Another renowned way
of blocking the backdoor path from θ′ to θ is to discon-
nect the path from meta-knowledge θ′ to Φ via frontdoor
adjustment. We propose a novel way to deconfound the
meta-learning model in Figure 2d, and propose to calcu-
late p(θ|do(Φ), Q) instead of p(θ|Φ, Q), which eliminates
the confounder Y , i.e., p(θ|do(θ′), S,Q). This follows the
“frontdoor adjustment”, which is proved in Appendix A.2.
The deconfounded meta-learning model is

p(θ|do(θ′), S,Q) =
∑
Φ

p(Φ|θ′, S)p(θ|do(Φ), Q)

=
∑
Φ

p(Φ|θ′, S)
∑
θ′
i

p(θ|Φ, θ′i, Q)p(θ′i)

=
∑
θ′
i

p(θ|Φ, θ′i, Q)p(θ′i),

(2)

where p(Φ|θ′, S) = 1 denotes the delta function. In Eq. (2),
we stratify the confounded past meta-knowledge θ′, i.e.,
θ′ = {θ′i}, where θ′i is a stratum of θ′. p(θ|Φ, θ′i, Q) denotes
optimizing θ grouped by θ′i. Similarly, Φ is grouped in the
same way. We propose two implementations of MAML
to stratify θ′ in Section 3. After frontdoor adjustment, we
break the frontdoor path from θ′ to Φ. Therefore, the model
would not memorize query sets of meta-training tasks.

3. Two Methods to Deconfounding MAML
3.1. MAML-Dropout

Our first idea is inspired from MC-dropout (Gal & Ghahra-
mani, 2016). We split θ′ into different parts by dropout, i.e.,

p(θ|do(Φ), Q) =

∫
p(θ|Φ, θ′i, Q)p(θ′i)dθ

′
i

≈ 1

M

M∑
i=1

p(θ|Φ, θ′i, Q)

=
1

M

M∑
i=1

p(θ|Φ, θ′, Q, zi),

(3)
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where M is the number of sampling, and θ′i indicates a
combination of θ′ and zi which is a set of dropout variables
sampled from the Bernoulli distribution. Note that θ′ is
independent with zi.

Different from DropGrad (Tseng et al., 2020), we add
dropout layers in the forward network only on query sets
during meta-training. We adopt multi-step optimization in
the inner-loop (Antoniou et al., 2019) to update almost all
meta-knowledge in each training step, which avoids limita-
tion of the model flexibility. In each training step, a batch of
meta-training tasks are used to optimize the model, so em-
pirically we sample different parts of θ′ through the Monte
Carlo method for different tasks in a batch to approximate
results of Eq. (3). The meta-training objective of MAML-
Dropout follows Eq. (4) as below.

L(θ) = − 1

N

N∑
i=1

T∑
t=0

vt
Kq

i

K
q
i∑

j=1

L(fϕi,t,zi,t(x
q
j), y

q
j ),

s.t. ϕi,t =

{
θ′, if t = 0

ϕi,t−1−α∇ϕi,t−1
1

Ks
i

∑Ks
i

j=1 L(fϕi,t−1(x
s), ys)), otherwise

.

(4)

In Eq. (4), N is the number of meta-training tasks, T is
the number of inner-loop steps, vt denotes the importance
weight of the target set loss at step t (Antoniou et al., 2019),
Kq

i denotes the number of query samples in the i-th task, the
learned weights ϕi,t and random variable zi,t parameterize
the adaptive model. The gradients of the dropped part in
ϕi,t are set to zero.

In the meta-testing phase, we remove all dropout layers.
All meta-knowledge guides the model to learn a new task
without regularization and spurious correlation.

3.2. MAML-Bins

As the meta-knowledge in MAML extracts powerful fea-
tures (Raghu et al., 2020), we propose another method to
stratify θ′ through the linear combination of features. In this
situation, we add an auxiliary task to classify training data
to several bins covering all training data points and dividing
features into finite groups. Therefore, we have Eq. (2) as:

p(θ|do(Φ), Q) =
1

M

∑
M

p(θ|Φ, θ′m, Q). (5)

We genertate m feature groups by linear combination. In
the m-th group, the feature featm = fθ′

m
(x), where x is

the input and θ′m indicates the parameters that lead to this
feature group. θ′m consists parts of information of θ, so that
θ′m can be considered as a stratification of θ′.

We define an N -way M -bin task as an N -way classification
with M bins. We propose an auxiliary task as an M -class
classification problem to assign each sample to different
bins. We detail the auxiliary task in Appendix C. We cluster

features of all training data to K bins with a pretrained
classifier and set the cluster index of a sample to be its
auxiliary task label, i.e., b. During the inner loop, the model
learns the main task and the auxiliary bin classification task
jointly, i.e., the combination of a group of meta-knowledge.
Denote the output of the model as O = fϕ(x), where O ∈
RM×N . The prediction of the auxiliary bin classification
task is p(b̂|x, ϕ) = 1

N

∑N
j=1 O

T
j and the prediction of of the

main task is p(ŷ|x, ϕ) = 1
M

∑M
i=1 Oi, where OT

j is the j-th
column vector of O and Oi is the i-th row vector of O, which
is parameterized by Wi × ϕ. Therefore, supposingthat λ is
the weight of bin classification loss, we have the outer-loop
objective as the following Eq. (6).

L(θ) = 1
NT

∑NT

i=1 Ep(ϕi|θ,si){ 1
Kq

i

∑Kq
i

j=1[L(ŷ
q
j , y

q
j ) + λL(b̂qj , b

q
j)]},

(6)

As for a regression task, we split the range of the label space
covered by all training samples into several intervals as bins
and set the interval index of a sample as its auxiliary task
label. The training process is like a “1-way M -bin classifi-
cation”, and its objective is the same as Eq. (6). The M -bin
task reshapes the meta-knowledge θ′ into M stratifications,
which effectively implements the frontdoor adjustment.

MAML-Dropout only adds dropout layers and MAML-Bins
only adds an additional objective in the outer-loop optimiza-
tion, which are easy to apply and do not incur additional
computational overhead. We combine MAML-Dropout and
MAML-Bins in Algorithm 1 and discuss more details in
Appendix B.

4. Related Work
Gradient-based meta-learning methods (Finn et al., 2017;
Raghu et al., 2020; Grant et al., 2018; Li et al., 2017; Lee
& Choi, 2018) learn a model initialization as the meta-
knowledge and enable fast adaptation to new tasks with
the initialization. Because these methods are model agnos-
tic, they are wildly implemented in many research areas,
e.g., few-shot learning, reinforcement learning and transfer-
learning. However, the learned initialization tends to over-
fit the meta-training tasks, especially query sets of meta-
training tasks. Yin et al. (2020) and Rajendran et al. (2020)
firstly formulated the meta-overfitting problem. Various
methods were proposed to solve the overfitting problem in
gradient-based methods. The most common way is using
the standard regularization techniques, such as adding adap-
tive noise (Lee et al., 2019), limiting the size of trainable
parameters (Yin et al., 2020; Oh et al., 2021; Zintgraf et al.,
2019), and discouraging the dissimilarity between different
tasks (Jamal & Qi, 2019). The regularizer-based method,
DropGrad (Tseng et al., 2020), applies dropout to support
sets but not to query sets. The common positive sides of
these methods is reduction of the spurious correlation, while
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Algorithm 1 Meta-training Process of MAML-Dropout and MAML-Bins

Require: Task distribution p(T ); Learning rate α, β; A pretrained bin classifier C; Number of inner-loop steps t; Auxiliary
classification loss weight λ; Dropout rate r. Randomly initialize parameter θ0
while not coverage do

Sample a batch of tasks {Ti}ni=1

for all Ti do
Sample support set si = {(xs

i,j .y
s
i,j)}

Ks
i

j=1 and query set qi = {(xq
i,j .y

q
i,j)}

Kq
i

j=1 from Ti
Classify the query set by C and match bin labels B to query set qi = {(xq

i,j .y
q
i,j), b

q
i,j}

Kq
i

j=1

Compute the task-specific parameter ϕi = ϕi,t on the support set using Eq. (4)
Sample dropout masks zi ∼ Bernoulli(r) for model fϕi

Compute the output of the model fϕi with dropout masks zi, i.e., Oi = fϕi,zi(X
q
i )

Compute the model prediction Ŷ q
i with the mean of Oi’s column vectors and the bin prediction B̂q

i with the mean of
Oi’s row vectors
Compute the the loss as L(Ŷ q

i , Y
q
i ) + λL(B̂q

i , B
q
i )

end for
Update θ0 = θ0 − β

n

∑n
i=1∇θ0 [L(Ŷ

q
i , Y

q
i ) + λL(B̂q

i , B
q
i )]

end while

they still use confounded past meta-knowledge that limits
the flexibility of the meta-knowledge as described in Sec-
tion 2.3. Recently, Yao et al. (2021) and Rajendran et al.
(2020) proposed task-augmentation methods to solve the
overfitting problem. Though both methods empirically ad-
vance regularizer-based methods, they only partially block
the backdoor path.

Our work solves the confounder of meta-learning
through causal reasoning, especially causal graph and do-
calculus (Pearl, 2009; Pearl et al., 2016). Some recent
works (de Haan et al., 2019; Zhang et al., 2020; Kocaoglu
et al., 2018; Yang et al., 2020; Kurutach et al., 2018; Qi et al.,
2020; Nair et al., 2019; Mahajan et al., 2019; Nauta et al.,
2019) have shown that causal reasoning helps deep learn-
ing models to mine causal relations instead of correlations;
meanwhile, the powerful representation ability of neural
networks is beneficial to causal models for dealing with
high-dimensional data. Most relevant to ours are (Bengio
et al., 2020) and (Yue et al., 2020), both of which com-
bine meta-learning and causality. The goal of (Bengio et al.
(2020)) is to leverage a meta-learning objective to discover
causal structures for fast transfer learning, which solves
a completely different research problem from ours. Yue
et al. (2020) proposed IFSL to deconfound the pre-trained
knowledge during meta-testing, which cannot handle the
memorization issue arised during meta-training. Our work
mainly focuses on the meta-training process and solves
memorization overfitting, which is crucial in meta-learning.

5. Experiment
We compare our methods with the state-of-the-art solution
of memorization overfitting – MetaMix (Yao et al., 2021).
We evaluate the performance on several backbones, such

as MAML (Finn et al., 2017), ANIL (Raghu et al., 2020),
MetaSGD (Li et al., 2017), and T-NET (Lee & Choi, 2018)
(together with MetaMix in Appendix E.4), to show the com-
patibility of our methods. In addition, the ablation study
and the analysis of hyperparameters show the robustness of
our methods.

Table 1: Performance (MSE) comparison on the sinusoid
regression problem.

MODEL 5-SHOT 10-SHOT

IFSL 0.59± 0.15 0.15± 0.04
DROPGRAD 0.57± 0.15 0.14± 0.07
MR-MAML 0.57± 0.11 0.10± 0.02
META-AUG 0.53± 0.10 0.10± 0.02

ANIL 0.54± 0.10 0.10± 0.02
ANIL-METAMIX 0.51± 0.10 0.08± 0.02
ANIL-OURS 0.49± 0.10 0.08± 0.02

MAML 0.59± 0.12 0.16± 0.06
MAML-METAMIX 0.47± 0.10 0.08± 0.02
MAML-OURS 0.45± 0.08 0.06± 0.01

METASGD 0.56± 0.11 0.14± 0.04
METASGD-METAMIX 0.46± 0.10 0.07± 0.02
METASGD-OURS 0.43± 0.07 0.04± 0.01

T-NET 0.54± 0.11 0.11± 0.03
T-NET-METAMIX 0.49± 0.10 0.08± 0.02
T-NET-OURS 0.47± 0.09 0.07± 0.02

5.1. Sinusoid Regression

First, we evaluate the performance on a toy sinusoid regres-
sion problem. We construct a more challenging problem to
further corroborate the superiority of our methods. The data
for each task is created in forms of A · sinw · x+ b + ϵ ,
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Table 2: Performance comparison on drug activity prediction.

MODEL
GROUP 1 GROUP 2 GROUP 3 GROUP 4

MEAN MED. >0.3 MEAN MED. >0.3 MEAN MED. >0.3 MEAN MED. >0.3

ANIL 0.357 0.294 50 0.300 0.245 45 0.327 0.301 50 0.338 0.302 50
ANIL-METAMIX∗ 0.347 0.292 49 0.301 0.282 47 0.302 0.258 45 0.348 0.303 51
ANIL-OURS 0.394 0.321 53 0.312 0.284 46 0.338 0.271 48 0.370 0.297 50

MAML 0.366 0.317 53 0.312 0.239 44 0.321 0.258 43 0.348 0.280 47
MAML-OURS 0.410 0.376 60 0.320 0.275 46 0.355 0.257 48 0.370 0.337 56

METASGD 0.388 0.306 51 0.298 0.236 41 0.326 0.237 46 0.353 0.316 52
METASGD-METAMIX∗ 0.364 0.296 49 0.271 0.230 45 0.312 0.267 48 0.338 0.319 51
METASGD-OURS 0.390 0.342 57 0.316 0.269 43 0.358 0.339 56 0.360 0.311 50
* : RESULTS FROM YAO ET AL.(2021)’S PAPER

with A ∈ [0.1, 5.0], w ∈ [0.5, 2.0] and b ∈ [0, 2π]. Gaus-
sian observation noise with µ = 0 and ϵ = 0.3 is added to
each data point sampled from the target task. The regression
results are computed by a two-layer Multilayer Perceptron.
Implementation of our methods (MAML-Dropout+MAML-
Bins) in this experiment uses 5 bins and a dropout rate of
0.3. Please kindly refer to Appendix D.1 for more details of
the experimental setup. We report the mean squared error
(MSE) as the evaluation criterion.

Table 1 shows the comparison of various baselines combat-
ing memorization overfitting, where IFSL (Yue et al., 2020)
only focuses on the meta-testing phase, so that it cannot im-
prove the performance in a non-mutually-exclusive setting;
MR-MAML (Yin et al., 2020) achieves a minor improve-
ment, which accords with our analysis in Section 2.3. The
error rate by Meta-Augmentation (Rajendran et al., 2020)
is larger than MetaMix (Yao et al., 2021), as mapped labels
in different steps generated by MetaMix are more random
and independent. As expected, our methods bring a huge
improvement when applied to different backbones, showing
high compatibility.

We also evaluate our method separately, as shown in Figure
3b. We find that both MAML-Dropout and MAML-Bins
contribute the performances and combining both achieves
the best performance. Besides, we explore how the number
of bins and the dropout rate influence results (see Figure 5b
and Figure 5d in Appendix E.1). As a result, the dropout rate
should be in [0.1, 0.3], give that an extremely low dropout
rate stratifies θ′ in similar ways while an extremely high
dropout rate limits the generalization of the meta-knowledge.
For the same reason, the optimal number of bins M resides
in the range of [4, 10].

5.2. Drug Activity Prediction

Following Yao et al. (2021), we apply our methods to the
drug activity prediction task (Martin et al., 2019). The task
set contains 4276 assays (i.e., tasks). In each task, we need

to predict activities of several compounds against a specific
target protein, whereas there are only a few labeled samples
in the support set. We split the tasks into meta-training
tasks, meta-validation tasks and meta-testing tasks in the
same way as Yao et al. (2021). Other details of datasets
and settings are given in Appendix D.3. We also evaluate
the square of Pearson coefficient, denoted as R2, between
the predictions and the ground-truth in each task (Martin
et al., 2019; Yao et al., 2021) rather than the mean squared
error as an evaluation metric, because activity values of
compounds from biochemical experiments are noisy and
the Pearson coefficient is more meaningful. For the same
reason, MAML-Bins brings additional noise, so we only
apply MAML-Dropout with a dropout rate of 0.1 in this
experiment. We report the mean and median of R2 values
over all meta-testing assays, and we also report the num-
bers of assays of R2 > 0.3 which shows the reliability in
pharmacy. Results of our method are in Table 2. In four
different groups, our method (MAML-Dropout) is capable
of improving the performances by a large margin regarding
all three backbones.

5.3. Pose Prediction

We also evaluate another regression task created from Pas-
cal 3D data (Xiang et al., 2014). Following Yin et al.
(2020), we randomly select 50 objects for meta-training
and the other 15 objects for meta-testing. Same as the past
works (Yin et al., 2020), we use a base model consisting of
a three-convolution-block encoder and a four-convolution-
block decoder. Implementation of our methods (MAML-
Dropout+MAML-Bins) in this experiment uses 5 bins and
a dropout rate of 0.2. Detailed settings are described in
Appendix D.2.

In Table 3, we evaluate more algorithms in this experiment.
We observe that it is difficult for regularizer-based methods
to overcome memorization overfitting, especially under the
10-shot setting. If there are only a few samples in support
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Table 3: Performance (MSE ± 95% confidence interval)
comparison on pose prediction.

MODEL 10-SHOT 15-SHOT

WEIGHT DECAY 2.772± 0.259 2.307± 0.226
CAVIA 3.021± 0.248 2.397± 0.191
META-DROPOUT 3.236± 0.257 2.425± 0.209
META-AUG 2.553± 0.265 2.152± 0.227
MR-MAML 2.907± 0.255 2.276± 0.169
IFSL 3.186± 0.256 2.482± 0.231
TAML 2.785± 0.261 2.196± 0.163

ANIL 6.746± 0.416 6.513± 0.384
ANIL-METAMIX 6.354± 0.393 6.112± 0.381
ANIL-OURS 6.289± 0.416 6.064± 0.397

MAML 3.098± 0.242 2.413± 0.177
MAML-METAMIX 2.438± 0.196 2.003± 0.147
MAML-OURS 2.396± 0.209 1.931± 0.134

METASGD 2.803± 0.239 2.331± 0.182
METASGD-METAMIX 2.390± 0.191 1.952± 0.154
METASGD-OURS 2.369± 0.204 1.926± 0.112

T-NET 2.835± 0.189 2.609± 0.213
T-NET-METAMIX 2.563± 0.201 2.418± 0.182
T-NET-OURS 2.487± 0.212 2.402± 0.178

sets, the model is hard to adapt to a specific task and tends
to memorize query sets in the meta training phase. The per-
formances of the proposed method exceed MetaMix again,
which highlights the deconfounding ability of our methods.
In Figure 3a, either MAML-Bins or MAML-Dropout indi-
viduals still achieves a significant advancement compared
with MAML itself.

5.4. Image Classification

We also study the memorization overfitting in a few-shot im-
age classification problem with two benchmarks, i.e., Om-
niglot (Lake et al., 2011) and MiniImagenet (Vinyals et al.,
2016). Following (Yin et al., 2020; Rajendran et al., 2020),
these experiments are under a non-mutually-exclusive set-
ting. “non-mutually-exclusive N -way K-shot classification”
means each class is assigned with an unchangeable label
from 1 to N in different tasks and training steps. Each task
contains N classes labeled from 1 to N . This setting aggra-
vates the memorization overfitting according to the causality
described in Section 2.3 and again validates the power of
deconfounding. We use a four-block convolutional network,
which is the same as the model used in (Yao et al., 2021)
which suffers from less meta-overfitting than the deeper neu-
ral network used in (Yin et al., 2020; Rajendran et al., 2020).
We evaluate different meta-learning backbones and compare
them with our methods (MAML-Dropout+MAML-Bins) us-
ing 5 bins and a dropout rate of 0.1. Detailed settings are
described in Appendix D.4.
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Figure 3: Ablation studies of the proposed method on 4
different problems.

We report our results in Table 4. Under a non-mutually-
exclusive setting, our method significantly boosts gradient-
based methods; it even outperforms MetaMix, which proves
that our methods are more capable of deconfounding than
the baselines. Besides, under the same setting, we investi-
gate the influence of different hyperparameters on classifica-
tion tasks, including different numbers of bins and dropout
rates. Figure 5a and Figure 5c in Appendix E.1 show that
different hyperparameters improve the performance con-
sistently, though the best hyperparameters further improve
the performance. The ablation studies on these two image
classification datasets are reported in Figure 3c and Figure
3d, respectively. Combining the two implementations of the
frontdoor adjustment criterion arrives the best performance
achieved so far. To further understand the superiority of
our proposed methods, we compare the pre-inner-update
accuracy and the meta-testing post-inner-update accuracy
during meta-training under the Omniglot 20-way, 1-shot set-
ting as shown in Table 5 in Appendix E.2. Additionally, we
conduct the experiments on the mutually-exclusive setting
of MiniImageNet in Appendix E.3.

6. Conclusion
In this paper, we rethink memorization overfitting from a
causal perspective and construct a causal graph for gradient-
based meta-learning. Under this causal graph, we iden-
tify the root cause of the memorization problem as a spuri-
ous correlation in meta-learning. Drawing upon our causal
graph, we not only illustrate how existing methods solve
the memorization problem but also propose a novel causal
intervention principle to debias the spurious correlation.
Two implementations of the proposed principle have demon-
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Table 4: Performance (accuracy ± 95% confidence interval) of image classification on Omniglot and MiniImagenet.

MODEL
OMNIGLOT MINIIMAGENET

20-WAY 1-SHOT 20-WAY 5-SHOT 5-WAY 1-SHOT 5-WAY 5-SHOT

WEIGHT DECAY 86.81± 0.64% 96.20± 0.17% 33.19± 1.76% 52.27± 0.96%
CAVIA 87.63± 0.58% 94.16± 0.20% 34.27± 1.79% 50.23± 0.98%
DROPGRAD 87.69± 0.57% 94.21± 0.20% 34.42± 1.70% 52.92± 0.98%
MR-MAML 89.28± 0.59% 96.66± 0.18% 35.00± 1.60% 54.39± 0.97%
META-DROPOUT 85.60± 0.63% 95.56± 0.17% 34.32± 1.78% 52.40± 0.96%
TAML 87.50± 0.63% 95.78± 0.19% 33.16± 1.68% 52.78± 0.97%

ANIL 88.35± 0.56% 95.85± 0.19% 34.13± 1.67% 52.59± 0.96%
ANIL-METAMIX 92.24± 0.48% 98.36± 0.13% 37.94± 1.75% 59.03± 0.93%
ANIL-OURS 92.82± 0.49% 98.42± 0.14% 38.09± 1.76% 59.17± 0.94%

MAML 87.40± 0.59% 93.51± 0.25% 32.93± 1.70% 51.95± 0.97%
MAML-METAMIX 92.06± 0.51% 97.95± 0.17% 39.26± 1.79% 58.96± 0.95%
MAML-OURS 92.89± 0.46% 98.03± 0.15% 39.89± 1.73% 59.32± 0.93%

METASGD 87.72± 0.61% 95.52± 0.18% 33.70± 1.63% 52.14± 0.92%
METASGD-METAMIX 93.59± 0.45% 98.24± 0.16% 40.06± 1.76% 60.19± 0.96%
METASGD-OURS 93.93± 0.40% 98.49± 0.12% 40.22± 1.78% 60.24± 0.91%

T-NET 87.71± 0.62% 95.67± 0.20% 33.73± 1.72% 54.04± 0.99%
T-NET-METAMIX 93.27± 0.46% 98.09± 0.15% 38.33± 1.73% 59.13± 0.99%
T-NET-OURS 93.54± 0.49% 98.27± 0.14% 38.38± 1.77% 59.25± 0.97%

strated their effectiveness and compatibility in four bench-
mark datasets. More importantly, we believe that this causal
perspective opens a new door to improving meta-learning.
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A. Detailed Proof
A.1. Proof of Merged Causal Relation

We merge the causal relation XQ → Ŷ ′
Q → θ′ → Φ→ ŶQ to XQ → Ŷ ′

Q. We have:

p(XQ, ŶQ, Ŷ
′
Q,Φ, θ

′) = p(ŶQ|XQ,Φ)p(Φ|θ′)p(θ′|Ŷ ′
Q)p(Ŷ

′
Q|XQ)p(XQ).

Given θ′, then,

p(XQ, ŶQ,Φ|θ′ = θ∗) =
∑
Ŷ ′
Q

p(ŶQ|XQ,Φ)p(Φ|θ′ = θ∗)p(Ŷ ′
Q|XQ)p(XQ)

= p(ŶQ|XQ,Φ)p(Φ|θ′ = θ∗)p(XQ),

(7)

whose graph is the same as Figure 1b.

A.2. The Causal Effect

Causal effect rule (Pearl et al., 2016) Given a causal graph G in which PA is a set of parent nodes of X , the causal effect
of X on Y is given by

p(Y = y|do(X = x)) =
∑
z

p(Y = y|X = x, PA = z)p(PA = z), (8)

where z ranges over all the combinations of values that the variables in PA can take.

If a variable Z has no effect on Y , then we have

p(Y = y|do(X = x)) =
∑
z

p(Y = y|X = x, Z = z)p(Z = z)

=
∑
z

p(Y = y|X = x)p(Z = z)

= p(Y = y|X = x).

(9)

In this case, the correlation between X and Y is the causal effect of X on Y . However, if a variable Z has a effect on Y ,
then

p(Y = y|X = x) =
∑
z

p(Y = y|X = x, Z = z)p(Z = z|X = x)

̸=
∑
z

p(Y = y|X = x, Z = z)p(Z = z),
(10)

so the correlation between X and Y is different from the causal effect. In this case, Z open the backdoor path of X and Y ,
which causes a spurious correlation.

In Figure 1b, there is no backdoor path between {S, θ} and {Q, θ}, but Y open the backdoor path between {θ′, θ}. Therefore,
the causal effect of {θ′, S,Q} on θ is

p(θ|do(θ′, S,Q)) = p(θ|do(θ′), S,Q) (11)

Frontdoor adjustment We apply frontdoor adjustment (Pearl et al., 2016) to calculate p(θ|do(θ′), S,Q). Firstly, according
to the causal graph Figure 1b, we have

p(Φ|θ′, S) = P (Φ|do(θ′), S),

and,
p(θ|do(Φ), Q) =

∑
θ′
i

p(θ|Φ, θ′i, Q)p(θ′i)
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Then, the frontdoor adjustment for meta-learning is

p(θ|do(θ′), S,Q) =
∑
Φ

p(Φ|do(θ′), S)p(θ|do(Φ), Q)

=
∑
Φ

p(Φ|θ′, S)p(θ|do(Φ), Q)

=
∑
Φ

p(Φ|θ′, S)
∑
θ′
i

p(θ|Φ, θ′i, Q)p(θ′i)

=
∑
θ′
i

p(θ|Φ, θ′i, Q)p(θ′i)

(12)

Complete causal graphs Complete causal graphs of two kinds of deconfounding methods mentioned in Section 2.3 and
Section 2.4 are shown in Figure 4. Augmentation-based methods randomize the labels of query sets, i.e., , Y ′ ← Q→ Y .
The frontdoor adjustment breaks the link θ′ → Φ. According to causal graphs, both these two kinds of methods solve the
problem that Y is a confounder in meta-learning.
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Figure 4: Complete causal graph of Figure 2b and Figure 2d. (a) The complete causal graph of augmentation-based methods.
(b) The complete causal graph of the frontdoor adjustment.

B. Detailed Algorithm
B.1. Discussion of Our Two Methods

The two proposed methods sample stratification and deconfound in different manners: different stratums in MAML-Dropout
are θ′s dropping different parts of features, while different stratums in MAML-Bins are different combinations of existing
features represented by θ′. They are complementary and mutually reinforcing, as evidenced in Figure 3. In general,
MAML-Dropout tends to have more stratums than MAML-Bins, accounting for its better performance.

C. Auxiliary Classification Task
To assign the images into different groups, we propose a novel method to train the feature extractor and groups the output of
network with a standard clustering algorithm, kmeans. Thus, our method has two procedure: training stage and clustering
stage.

Training stage. We train a feature extractor fθ (parametrized by the network parameters θ) and the classifier C(·|W )
(parametrized by the weight matrix W ∈ Rd×c) from scratch by minimizing a standard cross-entropy classification loss
Lpred using the training examples in the base classes xi ∈ X . Here, we denote the dimension of the encoded feature as
d and the number of output classes as c. The classifier C(.|W ) consists of a linear layer WT

θ (xi) followed by a softmax
function σ.

Note that the training procedure in this model does not involve sampling mini-batches of classes and data points (episode) as
in typical meta-learning algorithms.
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Clustering stage. To assign the images into different groups, we fix the pre-trained network parameter θ in our feature
extractor fθ, and cluster the output of the network by a standard clustering algorithm, k-means. k-means takes the
representation fθ(x) as input, and clusters them into k distinct groups based on a geometric criterion. More precisely, it
jointly learns a d× k centroid matrix C and the cluster assignments yn of each image n by solving the following problem:

min
C∈Rd×k

1

N

N∑
n=1

min
yn∈{0,1}k

∥fθ(xn)− Cyn∥22 such that y⊤n 1k = 1. (13)

Solving this problem provides a set of optimal assignments (y∗n)n≤N and a centroid matrix C∗. These assignments are then
used as pseudo-labels of bins; we make no use of the centroid matrix.

D. Detailed Experimental Setup
D.1. Sinusoid Regression

To set up a toy sinusoid regression problem that is non-mutually-exclusive, we create data for each task in the following
way: The data for each task is created in forms of A · sinw · x+ b+ ϵ, with A ∈ [0.1, 5.0], w ∈ [0.5, 2.0] and b ∈ [0, 2π].
At the test time, we expand the range of the tasks by randomly sampling the data-generating A uniformly from [0.1, 5], w
from [0.5, 2.0], b from [0, 2π] and use a one-hot vector for each (A, b), w as input to the network. The meta-training tasks
are a proper subset of the meta-testing tasks. We set the number of bins to be 5, the dropout rate to be 0.3 and the weight of
auxiliary task to be 1 in these tasks.

D.2. Pose Prediction

To preprocess the pose prediction tasks, we follow (Yin et al., 2020) to preprocess the pose tasks1. There are 50 and 15
categories in the meta-training and meta-testing, respectively, where each category contains 100 gray images in the size of
128× 128.

Following (Yin et al., 2020), in pose prediction task, the base model is comprised of a fixed encoder with three convolutional
blocks and an adapted decoder with four convolutional blocks. Each convolutional block is composed of a convolutional
layer, a batch normalization layer and a ReLU activation layer. We set the number of bins to be 5, the dropout rate to be 0.2
and the weight of auxiliary task to be 0.6 in these tasks.

D.3. Drug Activaty Prediction

This task comes from a public dose-response activity assay dataset from ChEMBL 2 and preprocessed by Martin et al.
(2019). The training compounds in support sets and the testing compounds in query sets are separated by Martin et al. (2019)
and the split of the meta-training, meta-validation and meta-testing tasks are as same as (Yao et al., 2021).

The base model of drug activity prediction is a two-layer Multilayer Perceptron(MLP) neural network with 500 neurons
in each layer. Each fully connected layer is followed by a batch normalization layer and leaky ReLU activation. In either
meta-training or meta-testing, the number of inner-loop adaptation steps equals to 10. During meta-training, the task batch
size, the outer-loop learning rate, the inner-loop learning rate are set to 8, 0.001 and 0.01. The meta-training process
altogether runs for 50 epochs while 60 epochs using Dropout, each of which includes 500 iterations. Dropout rate is set to
be 0.1. In order to prevent the influence of noise data, we use a query-set-mixup strategy as Yao et al. (2021), i.e., we apply
manifold mixup on query set for all experiments in this task.

D.4. Image Classification

In image classification, for non-mutually exclusive setting in 5-way miniImagenet, 64 meta-training classes are split to 5
sets, where 4 sets have 13 classes and the rest one has 12 classes. For each set, a fixed class label is assigned to each class
within this set, which remains unchanged across different tasks. During meta-training, we randomly select one class from
each set and take all the five selected classes to construct a task, which ensures that each class consistently has one label
across tasks. In our experiments, we list the classes within each set as follows.

1code link: https://github.com/google-research/google-research/tree/master/meta learning without memorization/pose data
2https://www.ebi.ac.uk/chembl

https://github.com/google-research/google-research/tree/master/meta_learning_without_memorization/pose_data
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• Set 1: n07584110, n04243546, n03888605, n03017168, n04251144, n02108551, n02795169, n03400231, n03476684,
n04435653, n02120079, n01910747, n03062245

• Set 2: n03347037, n04509417, n03854065, n02108089, n04067472, n04596742, n01558993, n04612504, n02966193,
n07697537, n01843383, n03838899, n02113712

• Set 3: n04604644, n02105505, n02108915, n03924679, n01704323, n09246464, n04389033, n03337140, n06794110,
n04258138, n02747177, n13054560, n04443257

• Set 4: n13133613, n01770081, n02606052, n02687172, n02101006, n03676483, n04296562, n02165456, n04515003,
n01749939, n02111277, n02823428, n01532829

• Set 5: n02091831, n07747607, n03998194, n02089867, n02074367, n02457408, n04275548, n03220513, n03527444,
n03908618, n03207743, n03047690

A similar process is applied to Omniglot, where 1200 meta-training classes are randomly split into 20 sets with 60 classes
in each set. For all datasets, we utilize the classical convolutional neural network with 4 convolutional blocks as the base
model (Finn et al., 2017; Snell et al., 2017). We set the number of bins to be 5, the dropout rate to be 0.1 and the weight of
auxiliary task to be 0.2 in these tasks.

The image sizes of Omniglot and MiniImagenet are set to be 28× 28× 1 and 84× 84× 3, respectively.

E. Additional Experiment Results
E.1. Hyperparameter Sensitivity

The hyperparameters in our experiments are determined according to the performance on a hold-out set of meta-validation
tasks. Besides, we analyze the influence of different numbers of bins for MAML-Bins and different dropout rate for
MAML-Dropout. The results show the robustness of our methods against different hyperparameters.
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Figure 5: Hyperparameter analysis in (a - b) Bins Number (c - d) Dropout Rate.

E.2. Overfitting Analysis

We compare the shallow and deeper base model under the Omniglot 20-way 1-shot setting in Table 5. As for MAML, the
memorization overfitting on the deep model is more serious, which really hurts the testing performance. Our methods solves
the memorization problem in meta-knowledge achieves a better performance.

Table 5: Comparison between the shallow and deeper base model under the Omniglot 20-way 1-shot setting.

Methods Meta-training Pre-update Meta-testing Post-update
Shallow Deep Shallow Deep

MAML 14.38± 0.40% 98.59± 0.05% 87.40± 0.59% 8.82± 0.42%
Ours 5.46± 0.38% 5.07± 0.41% 92.11± 0.39% 84.37± 0.59%
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E.3. Results under Mutually-exclusive Setting

In Table 6, we report the results under the standard mutually-exclusive setting on MiniImagenet. Label shuffling is introduced
to construct meta-training tasks under the mutually-exclusive setting, which significantly reduces the memorization
overfitting. However, applying the proposed methods on this setting still achieves comparable and even better performance
than original MAML, which further demonstrates the effectiveness of our proposed methods.

Table 6: Performance (Accuracy) of MiniImagenet under the mutually-exclusive setting.

Model MiniImagenet
5-way 1-shot 5-way 5-shot

MAML 48.70± 1.84% 63.11± 0.92%
MAML-Bins 49.18± 1.70% 63.85± 0.97%
MAML-Dropout 49.68± 1.82% 64.11± 0.96%
MAML-Both 50.06± 1.76% 64.73± 0.92%

E.4. Results together with MetaMix

We apply our methods together with MetaMix to Omniglot, MiniImagenet and sinusoid regression. The results in the Table 7
and Table 8 show further and big improvement of the combination compared to using MetaMix only.

Table 7: Comparison with MetaMix on image classifications.

Model Omniglot MiniImagenet
20-way 1-shot 20-way 5-shot 5-way 1-shot 5-way 5-shot

MAML 87.40± 0.59% 93.51± 0.25% 32.93± 1.70% 51.95± 0.97%
MAML + MetaMix 92.06± 0.51% 97.95± 0.17% 39.26± 1.79% 58.96± 0.95%
MAML + ours 92.89± 0.46% 98.03± 0.15% 39.89± 1.73% 59.32± 0.93%
MAML + MetaMix + Ours 93.02± 0.68% 98.07± 0.22% 39.92± 1.77% 59.37± 0.95%

Table 8: Comparison with MetaMix on the sinusoid regression.

Model 5-shot 10-shot

MAML 0.59± 0.12 0.16± 0.06
MAML + MetaMix 0.47± 0.10 0.08± 0.02
MAML + ours 0.45± 0.08 0.06± 0.01
MAML + MetaMix + Ours 0.44± 0.09 0.05± 0.02


