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Abstract
This paper considers the challenge of estimating
treatment effects from observational data in the
presence of unmeasured confounders. A popular
way to address this challenge is to utilize an instru-
mental variable (IV) for two-stage regression, i.e.,
2SLS and variants, but limited to the linear setting.
Recently, many nonlinear IV regression variants
were proposed to overcome it by regressing the
treatment with IVs and observed confounders in
stage 1, leading to the imbalance of the observed
confounders in stage 2. In this paper, we propose
a Confounder Balanced IV Regression (CB-IV)
algorithm to jointly remove the bias from the un-
measured confounders and balance the observed
confounders. To the best of our knowledge, this
is the first work to combine confounder balancing
in IV regression for treatment effect estimation.
Theoretically, we re-define and solve the inverse
problems for the response-outcome function. Ex-
periments show that our algorithm outperforms
the existing approaches.

1. Introduction
Treatment effect estimation is one fundamental problem
in causal inference, and its key challenge is to remove the
confounding bias induced by the confounders, which affect
both treatment and outcome. Under the unconfoundedness
assumption (i.e., no unmeasured confounders), many con-
founder balancing methods, such as (Rubin, 1973; Kuang
et al., 2017; Shalit et al., 2017), have been proposed to break
the dependence between the treatment and all confounders.
In practice, however, the unconfoundedness assumption
is hardly satisfied and there always exist unmeasured con-
founders. How to precisely estimate the treatment effect
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Figure 1. (a) Causal structural with unmeasured confounders. (b)
Causal structure of outcome regression stage in the nonlinear IV
methods. The observed confounders would affect both the esti-
mated treatment T̂ and outcome Y , leading to confounding bias.

from observational data in the presence of unmeasured con-
founders is of vital importance for both academic research
and real applications.

A classical method to address the bias induced by unmea-
sured confounder is IV regression methods (Pearl et al.,
2000; Heckman, 2008; Stock & Trebbi, 2003). As shown
in Figure 1(a), let T denote the treatment, Y refer to the
interest of outcome, X and U represent the observed and
unobserved confounders, respectively, where U might affect
or be affected by X . Z refers to the instrumental variables
(IVs), which only influences Y via T . Two-stage least
squares (2SLS) regression and other variants (Imbens & An-
grist, 1994; Angrist & Krueger, 2001; Carrasco et al., 2007;
Buhlmann et al., 2014) can identify the treatment effect in
the presence of unobserved confounders, but are limited
to linear setting. For nonlinear scenarios (Example A.1),
recently, many nonlinear IV regression variants (Hartford
et al., 2017; Xu et al., 2021; Singh et al., 2019; Muandet
et al., 2020) were proposed by two-stage regression. In stage
1, they learn a joint mapping from the instruments Z and the
observed confounders X to the conditional distribution of
the treatment T , i.e., P (T |Z,X). Then, they estimate treat-
ment T̂ from P (T |Z,X) obtained in stage 1 and perform
nonlinear regression from the estimated treatment T̂ and the
observed confounders X to the outcomes Y in stage 2.

From the processes of these nonlinear IV methods, we know
that the confoundersX would affect the estimated treatment
T̂ obtained from stage 1, and also influences the outcome
Y as shown in the figure 1(b). Thereby, the distribution of
X would become imbalanced between different arms of T̂ ,
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hence bringing confounding bias1 for outcome regression in
stage 2 if their regression model is misspecified, leading to
poor performance of these methods in practice. Therefore,
explicitly removing confounding bias would improve treat-
ment effect estimation performance and make extrapolation
more credible (Abadie, 2003).

In this paper, we focus on treatment effect estimation with
IV regression under homogeneity assumptions, and we pro-
pose a Confounder Balanced IV Regression (CB-IV2) algo-
rithm to further remove the confounding bias from observed
confounders by balancing in nonlinear scenarios. Specif-
ically, our CB-IV algorithm contains the following three
main components: (i) treatment regression: given Z and X ,
identify conditional probability distribution of the treatment
variable T (i.e., P (T |Z,X)) for removing the confounding
from unmeasured confounders; (ii) confounder balancing:
learn a balanced representation of observed confounders
C = fθ(X), independent with the estimated treatment
T̂ ∼ P (T |Z,X), to reduce the confounding from X as
shown in the figure 1(b); and (iii) outcome regression: re-
gressing the outcome Y on the estimated treatment T̂ and
confounders’ representation C for counterfactual inference.
Theoretically, we re-define and solve two inverse problems
under different sufficient identification assumptions sepa-
rately, including: homogeneous treatment-outcome associ-
ation and homogeneous instrument-treatment association.
We also demonstrate the effectiveness of our proposed CB-
IV with extensive empirical experiments.

The main contributions in this paper are as follows:

• We study the problem of treatment effect estimation
with IV regression, and we find that previous IV regres-
sion methods would suffer from the confounding bias
from the observed confounders, if the outcome model
is misspecified and covariates are imbalanced.

• We propose a Confounder Balanced IV regression (CB-
IV) method to jointly remove the bias from both the
unobserved confounders with IV regression and the
observed confounders by balancing. To the best of our
knowledge, this is the first work to combine confounder
balancing in IV regression.

• In two general settings satisfying homogeneous
instrument-treatment association or homogeneous
treatment-outcome association respectively, we give
and solve the inverse relationship of response-outcome
function of our algorithm. Empirical experiments also
demonstrate the effectiveness of our algorithm.

1As introduced in Chapter 3.3 in Causality (Pearl, 2009b), the
confounding bias between the treatment and outcome can be
defined as the bias of treatment effect estimation when imbalanced
confounders exist. More discussion on confounding bias is given
in Section G in Appendix.

2The code is available at: https://github.com/anpwu/CB-IV

2. Related Works
2.1. Instrumental Variable Methods

A popular way to estimate the causal effect from obser-
vational data in the presence of unmeasured confounders
is to use an instrumental variable (IV). As a classical IV
method, two-stage least squares (Pearl et al., 2000; Imbens
& Angrist, 1994; Angrist & Krueger, 2001; Kuang et al.,
2020b) performs linear regression to model the relationship
between the treatments and outcomes conditional on the
instruments. To relax linearity assumption, nonlinear IV re-
gression variants learn a joint mapping from the instruments
Z and observed confounders X to the treatments T in stage
1. Sieve IV derives a finite dictionary of basis functions
to replace the linear counterparts on the structural function
and derives a lower bound. (Chen & Christensen, 2018;
Newey & Powell, 2003). Kernel IV (Singh et al., 2019) and
Dual IV (Muandet et al., 2020) implement 2-stage regres-
sion via mapping X to a reproducing kernel Hilbert space
and performing kernel ridge regression. DFIV (Xu et al.,
2021) adopts deep neural nets to replace the kernel counter-
parts. DeepIV (Hartford et al., 2017) and OneSIV (Lin et al.,
2019) estimate the conditional probability distribution of
treatments T using the instruments Z and confounders X in
stage 1 and performs a joint mapping from resampled treat-
ments T̂ ∼ P (T |Z,X) and confounders X to the outcomes
Y in stage 2.

As shown in Figure 1(b), if the outcome model is misspeci-
fied, imbalanced variables X will bring confounding bias
for outcome regression in stage 2 in previous IV regression
methods. To balance the overall sample, Abadie (2003);
Singh & Sun (2019) uses regularized machine learning and
achieves semiparametric efficiency with automatic kappa
weights, which requires binary instrument, binary treatment
and high dimensional covariates. In general settings, we
propose a novel algorithm to combine confounder balance
techniques with IV regression. To the best of our knowledge,
this is the first provably efficient algorithm that combines
the IV method with the confounder balance technique using
deep representation learning.

2.2. Confounder Balance with Representation Learning

Nonexperimental studies are increasingly used to estimate
treatment effect, and systematic differences between dif-
ferent treatment groups would introduce confounding bias.
Inspired by traditional confounder balance works (Kuang
et al., 2020a), such as propensity score methods(Rosenbaum
& Rubin, 1983; Rosenbaum, 1987; Li et al., 2016; 2020), re-
weighting methods(Athey et al., 2018; He & Garcia, 2009),
Doubly Robust (Funk et al., 2011) and backdoor criterion
(Pearl, 2009a), CFR (Johansson et al., 2016; Shalit et al.,
2017) formulates the problem of confounder balance as a
covariate shift problem, and regard the treated group as the
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source domain and the control group as the target domain
for domain adaptive balance under the unconfoundedness
assumption. Johansson et al. (2016); Shalit et al. (2017) ex-
pect that representation C = fθ(X), from all confounders
X , discard information related to T , but retain as much in-
formation related to Y as possible. SITE (Yao et al., 2018)
preserves local similarity and balances the distributions of
the representation C simultaneously. DR-CFR (Hassan-
pour & Greiner, 2019a;b) and DeR-CFR (Wu et al., 2022)
propose a disentanglement framework to identify the repre-
sentation of confounders from all observed variables.

Deep representation learning has good performance and can
capture complex relationships among treatments, observed
confounders, and outcomes, but it requires the unconfound-
edness assumption. Based on these confounder balance
methods, we propose to use an instrumental variable to
eliminate the bias from the unmeasured confounders.

3. Problem Setting and Assumptions
In this paper, we aim to estimate the average treatment effect
by the structural function from observational data in the
presence of unmeasured confounders. In the observational
data D = {zi, xi, ti, yi}ni=1, for each unit i, we observe a
treatment variable ti ∈ T where T ⊂ R, a outcome variable
yi ∈ Y where Y ⊂ R, instrumental variables zi ∈ Z where
Z ⊂ RmZ , and observed confounders xi ∈ X where X ⊂
RmX . Besides, there are some unmeasured confounders
ui ∈ U where U ⊂ RmU and might affect or be affected
by xi, but not recorded in the observational data. mX ,mZ

and mU are the dimensions of the observed confounders
X , instrumental variables Z and unobserved confounders
U . The causal relationship can be represented with the
following model (as shown in Figure 1(a)):

{Z,X,U} → T ; {T,X,U} → Y ;Z ⊥ U,X;X ̸⊥ U (1)

Definition 3.1. The average treatment effect (ATE):

ATE(t) = E[Y | do(T = t), X]− E[Y | do(T = 0), X] (2)

Definition 3.2. An Instrument VariableZ is an exogenous
variable that affects the treatment T , but does not directly
affect the outcome Y . Besides, an valid instrument variable
satisfies the following three assumptions:

Relevance: Z is a cause of T , i.e., P(T | Z) ̸= P(T ).
Exclusion: Z does not directly affect the outcome Y , i.e.,
Z ⊥ Y | T,X,U .
Unconfounded: Z is independent of all confounders, in-
cluding X and U , i.e., Z ⊥ X,U

Identification: Even if the instrument satisfies these as-
sumptions, at least one of the two homogeneity assumptions
is required to identify the average treatment effect of T on

Y (Imbens & Angrist, 1994; Angrist et al., 1996; Newey &
Powell, 2003; Hernan & Robins, 2010; Wooldridge, 2010).
The identifying assumptions in our paper basically fol-
low the homogeneity assumptions (Heckman et al., 2006;
Hernán & Robins, 2006; Hartwig et al., 2020), which is a
more general version than Monotonicity Assumption (Im-
bens & Angrist, 1994; Angrist et al., 1996) and Additive
Noise Assumption (Newey & Powell, 2003)) in the econo-
metrics literature (Wooldridge, 2010; Hartwig et al., 2020;
2021). The two homogeneity assumptions are as follows:
Assumption 3.3. Homogeneous Instrument-Treatment
Association: The association between the IV and the treat-
ment is homogeneous in the different level of unmeasured
confounders, i.e., E[T |Z = a, U ] − E[T |Z = b, U ] =
E[T |Z = a]− E[T |Z = b].
Assumption 3.4. Homogeneous Treatment-Outcome As-
sociation: The association between the treatment and the
outcome is homogeneous in the different level of unmea-
sured confounders, i.e., E[Y |T = a, U ]−E[Y |T = b, U ] =
E[Y |T = a]− E[Y |T = b].

Discussion about Confounder Imbalance: To precisely es-
timate the treatment effect, The implementation of IV meth-
ods estimates a conditional treatment distribution P (T |
Z,X) using {Z,X} in the treatment regression stage, then
learns the counterfactual prediction function h(T,X)
from the re-sampled treatment T̂ ∼ P (T |Z,X) and the
variables X to Y directly:

h(T̂ ,X) = E[Y | T̂ ,X] (3)

In outcome regression stage, the confounders X would af-
fect the resampled treatment T̂ obtained from stage 1 as
shown in the figure 1(b), leading to imbalance of X be-
tween different resampled treatment options in stage 2 since
the lack of randomization (Cook et al., 2002). If the out-
come model is misspecified, such confounder imbalance
would bring confounding bias for outcome regression in pre-
vious IV based methods, especially with high dimensional
X , introducing bias and large variance in the estimation
(Schroeder et al., 2016), i.e., h(T,X) = E[Y | T,X] holds
only in the same distribution, and h(t,X) ̸= E[Y | do(T =
t), X] out of the distribution.

Based on this, we propose to reduce the confounding bias
from observed confounders by confounder balancing (de-
tails in Section 4.1) in the outcome regression and re-build
the inverse problem (details in Section 4.2) for relationship
for the counterfactual prediction function h(T,X).

4. Methodology
In this section, we first introduce the proposed algorithm
(CB-IV) and achieve balanced confounder representation for
eliminating confounding bias in Section 4.1; then, with rep-
resentation obtained from CB-IV algorithm, we re-identify
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the inverse relationship for response-outcome function and
avoid ill-posed identification problem under general settings
in Section 4.2. The results in Section 4.2 can justify that the
algorithm (proposed in Section 4.1) can achieve a accurate
and robust estimation.

4.1. Algorithm and Optimization

IV regression is the classical method for addressing the
unmeasured confounders, but recent nonlinear IV-based
methods suffer the confounding bias from the observed
confounders as shown in the figure 1(b), leading to poor
performance on outcome regression and treatment effect
estimation in practice.

To address these challenges, we propose a Confounder Bal-
anced IV Regression (CB-IV) algorithm to achieve con-
founder balancing in IV regression. Specifically, confounder
balancing for removing the bias from observed confounders
and IV regression for eliminating the bias from unmeasured
confounders. The proposed CB-IV algorithm consists of
three main components: (i) treatment regression, (ii) con-
founder balancing, and (iii) outcome regression.

For simplicity, we introduce the proposed CB-IV algorithm
with binary treatment, but it can also be applied for contin-
uous treatment as verified in experiments (Section 5.2.3).
The continuous version of CB-IV algorithm is elabrated in
Section D in Appendix.

Treatment Regression: In this part, we propose to regress
treatment T with IVs Z and observed confounders X di-
rectly, as the treatment regression stage did in the previ-
ous nonlinear IV-based method. Specifically, we estimate
the conditional probability distribution of the treatments
P̂ (T |Z,X) with a logistic regression network πµ(zi, xi)
with learnable parameter µ for each unit i, and optimize the
following loss function for treatment regression:

LT = − 1
n

∑n
i=1(ti log (πµ(zi, xi))

+ (1− ti) (1− log (πµ(zi, xi)))) (4)

Confounder Balancing: After treatment regression, we can
obtain the causal graph as shown in the figure 1(b), where
the observed variablesX would become the confounders for
outcome regression. To address this problem, we propose
to learn a representation of X (i.e., C = fθ(X)) with a
representation network fθ(·) with learnable parameter θ,
and minimize the discrepancy of distributions for different
treatment arms to achieve C ⊥ T̂ for confounder balancing:

disc(T̂ , fθ(X)) = IPM({fθ(xi)P̂ (ti = 0 | zi, xi)}ni=1,

{fθ(xi)P̂ (ti = 1 | zi, xi)}ni=1) (5)

where {fθ(xi)P̂ (ti = k | zi, xi)}ni=1, k ∈ {0, 1} denotes
the distribution of representation C = fθ(xi) in the group

T = k given the P̂ (ti | zi, xi). The constraint term has
a another choice that force fθ(X) and original T to be
independent directly, fθ(X) ⊥ T .

Although many integral probability metrics (IPMs) can be
used to measure the discrepancy of distributions, there is no
known way or a simple method for some function families
to compute IPM or its gradients efficiently. As a distance
measure widely used in deep learning, Wass distance have
consistent estimators which can be efficiently computed in
the finite sample case (Shalit et al., 2017; Sriperumbudur
et al., 2012) and achieves many breakthroughs (Arjovsky
et al., 2017; Cuturi & Doucet, 2014). In CFR (Shalit et al.,
2017) and DR-CFR (Hassanpour & Greiner, 2019b), practi-
tioners adopt Wasserstein distance (Wass) to calculate the
dissimilarity of distributions from different treatment arms
and fit a balanced representation by minimizing the discrep-
ancy. For the sake of fairness, in binary (or multi-valued)
treatment T cases, we uniformly use Wass distance (Cuturi
& Doucet, 2014) as the discrepancy metrics. More discus-
sion on Wass distance is given in Section G.2 in Appendix.

Besides, for continuous treatment T , we learn a ”balanced”
representation (i.e., C) of the observed confounders X as
C = fθ(X) via mutual information (MI) minimization
constraints (Cheng et al., 2020): firstly, we use variational
distribution Qψ(T̂ | C) = N (µψ(C), σψ(C)) parameter-
ized by neural networks {µψ, σψ} to approximate the true
conditional distribution P (T̂ | C); then, we minimize the
log-likelihood loss function of variational approximation
Qψ(T̂ | C) with n samples to estimate MI:

disc(T̂ , C) =
1

n2

n∑
i=1

n∑
j=1

[
logQψ

(
t̂i | ci

)
− logQψ

(
t̂j | ci

)]
.

where, C = fθ(X). We adopt an alternating training strat-
egy to iteratively optimize Qψ(T̂ | C) and the network
C = fθ(X) to implement balanced representation in the
Confounder Balancing. The continuous version of CB-IV
algorithm is elabrated in Section D in Appendix.

Outcome Regression: Finally, we propose to regress the
outcome with the estimated treatment T̂ ∼ P (T |Z,X) ob-
tained in treatment regression module and the representation
of confounders C = fθ(X) obtained in confounder balanc-
ing module. With considering that high dimensional repre-
sentation fθ(X) would induce the loss of treatment informa-
tion in outcome regression function hξ(T̂ , fθ(X)) (Shalit
et al., 2017) with single neural network hξ(·). We propose
to regress the potential outcomes (i.e., Y (do(T = 1), X)
and Y (do(T = 0), X)) by optimizing hξ0(fθ(X)) and
hξ1(fθ(X)) as two different regression network with learn-
able parameters ξ0 and ξ1, respectively:

LY = 1
n

n∑
i=1

(
yi −

∑
ti∈{0,1}

hξti (fθ(xi))P̂ (ti | zi, xi)

)2

(6)
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where P̂ (ti = 1 | zi, xi) = πµ(zi, xi) and fθ(xi) are de-
rived from treatment regression module and confounder
balancing module, respectively.

Optimization: Like the optimization of the previous IV
regression method, we also set two-stage optimization for
our algorithm. In the first stage, we optimize the treatment
regression module πµ by minimizing the loss LT as defined
in Eq. (4). In the second stage, then, we simultaneously
optimize the confounder balancing and outcome regression
modules by setting the balanced learning representations C
as a kind of regularization on the outcome regression model,
with the following loss:

min
θ,ξ0,ξ1

LY + α disc(T̂ , fθ(X)) (7)

where α is a trade-off hyper-parameter.

Then, the average treatment effect can be estimated by

ÂTE = E[hξ1(fθ(X))− hξ0(fθ(X))]. (8)

The details of pseudo-code (Algorithm 1) and the network
structures (Table 5) of CB-IV are provided in Section E.1 in
Appendix. Besides, the discussion of hyper-parameters α
(Figure 3) is detailed in Section E.2 in Appendix.

Like (Shalit et al., 2017), the expected treatment effect
estimation error ϵ(h, θ) can be bounded by the standard
generalization-error and the distance between the treated
and control distributions induced by the representation:

ϵ(h, θ) ≤ 2 (ϵt=0
F (h, θ) + ϵt=1

F (h, θ)

+ BθIPMG

(
pt=1
θ , pt=0

θ

)
− 2σ2

Y ) (9)

where ϵT=t
F (h, θ) =

∫
X ℓ2(y, hξt(fθ(x)))p

T=t(x)dx for
t ∈ {0, 1}; pT=t(x) denotes the PDF of x given T = t;
pT=t
θ = {fθ(xi)}i:ti=t; Bθ is a constant; σ2

Y is the ex-
pected variance of Y . More discussion on Error Bound is
given in Section G.3 in Appendix.

4.2. Inverse Problem for Response-Outcome Function

Recent IV methods (Hartford et al., 2017; Newey & Pow-
ell, 2003; Lin et al., 2019) define an inverse problem for
the counterfactual prediction function h(T,X) with two
observable functions E[Y | T,X] and P (T | Z,X):

E[Y | Z,X] =
∫
h(T,X)dP (T | Z,X) (10)

The inverse relationship for h(T,X) holds only under the
additive noise assumption on response-outcome function:

Y = g(T,X) + U,E[U | Z] = 0 (11)

Nevertheless, in reality, the outcome functions are agnos-
tic and cannot be artificially controlled and assumed. In

contrast, the treatment made by human decision-making
is always traceable. For example, consider a promotional
activity that will affect the buying tendency of people ho-
mogeneously, but it is not easy to discuss the impact on the
employment rate of these people in the future. Thus, we
believe Homogeneous Instrument-Treatment Association
(Hartwig et al., 2020; 2021) is a more common setting in
the real-world. Based on the Homogeneous Instrument-
Treatment Assumption, we model a more general causal
relationship by relaxing the additive assumption to multi-
plicative assumption on response-outcome function as:

T = f1(Z,X) + f2(X,U) (12)
Y = g1(T,X) + g2(T )g3(U) + g4(X,U), Z ⊥ U,X (13)

where fi(·), gj(·) are unknown and potentially non-linear
continuous functions. g2(T )g3(U) denotes the multiplica-
tive terms of U with T (e.g., U2T−UT+U ), and we define
it as the multiplicative assumption. The completeness of
P(T | Z,X) and P(Y | T,X) guarantees uniqueness of the
solution (Newey & Powell, 2003). Binary treatment and
outcome cases can be modeled similarly (Section C).

The Eqs. (12) & (13) are a general form of the homogeneity
assumptions, and the Counterfactual Prediction Function
can be re-defined as:

E[Y | do(T ), C,X] = E[h(T,C) | T,C,X]

= E
[
gC1 (T,C) + g2(T )E[g3(U) | C

]
+ E [g4(X,U) | C] | T,C,X] (14)

where h(T,C) is the conditional expectation of Y given the
observables T and disentangled representation C. We trans-
form g1(T,X) as gC1 (T,C) with the disentangled represen-
tation C = fθ(X), satisfying E[gC1 (T,C) | T,C,X] =
E[g1(T,X) | T,C,X]. E[g3(U) | C] and E[g4(X,U) | C]
are constant for the specified C.

Under the causal relationship (12) & (13), we show the
inverse problem for the response-outcome function, imply-
ing that the identification of the counterfactual prediction
function can be identified, as follows:
Theorem 4.1. Inverse Relationship of Eqs. (12) & (13).
If the learned representation of observed confounders C =
fθ(X) is independent with the estimated treatment T̂ , then
the counterfactual prediction function h(T,C) can be iden-
tified with instrumental variables Z and representation C.
Then, we can establish an inverse relationship for h(T,C)
given E[Y | Z,C,X] and P (T | Z,X), as follow:

E[Y | Z,C,X] =
∫
[h(T,C)] dP (T | Z,X) (15)

where, dP (T | Z,X) is the conditional treatment distribu-
tion. The proof is given in Section B in Appendix.

Based on our proposed counterfactual prediction function
h(T,C) with the balanced representation C, similarly, we



Submission and Formatting Instru ctions for ICML 2022

can also establish the inverse relationship of Eq. (11) as:

E[Y | Z,C,X] =
∫
h(T,C)dP (T | Z,X) (16)

where E[h(T,C) | Z,C,X] = E[h(T,X) | Z,X], which
is consistent with Eq. (10) under Assumption 3.4.

Combining confounder balancing in IV methods, CB-IV
solves the inverse problem under Assumptions 3.3 or 3.4,
and achieves a more accurate and robust estimation.

Remark: Sufficient assumptions for identification of av-
erage treatment effect (Imbens & Angrist, 1994; Newey &
Powell, 2003; Hernan & Robins, 2010; Hartwig et al., 2020)
with the instruments inculude: homogeneity in the causal
effect of T on Y or homogeneity in the association of Z
with T . To avoid ill-posed identification problem (Kress
et al., 1989; Newey & Powell, 2003), we follow these two
identification assumptions, and focus on resolving the in-
verse problems. Under homogeneity assumptions, with the
balanced representations C = fθ(X), CB-IV eliminates the
bias from observed confounders X and guarantees unique-
ness of the solution h(T,C) from the inverse relationship.

5. Experiments
We evaluate our approach on both synthetic and real-world
datasets. Although the proposed algorithm was introduced
by setting the treatment as binary in section 4.1, we demon-
strate the effectiveness of our approach with both binary and
continuous treatment settings.

5.1. Baselines

We compare the proposed algorithm (CB-IV) with two
groups of methods. One group is IV based methods: (1)
DeepIV-LOG and DeepIV-GMM (Hartford et al., 2017): In
the first stage, DeepIV models the treatment network with
logistic regression network (LOG) or gaussian mixture mod-
els (GMM); (2) KernelIV (Singh et al., 2019) and DualIV
(Muandet et al., 2020): they implement 2-stage regression
with different dictionaries of basis functions from repro-
ducing kernel Hibert spaces; (3) OneSIV (Lin et al., 2019):
OneSIV merges the two stages to leverage the outcome to
estimate the treatment distribution; (4) DFIV (Xu et al.,
2021): DFIV uses neural networks to fit non-linear mod-
els to replace the linear counterparts in the conventional
2SLS approach. The other group is confounder balanc-
ing methods: (1) DFL (Xu et al., 2021): DFL, an ablation
experiment of DFIV, performs the nonlinear outcome re-
gression directly without using instrumental variables; (2)
DirectRep and CFR (Johansson et al., 2016; Shalit et al.,
2017): Both DirectRep and CFR learn the representation of
the observed confounders, but the former does not make any
constraints, and the latter requires the learned representation
to be independent of the treatments; (3) DRCFR (Hassan-

pour & Greiner, 2019b): DRCFR identifies and balances
the confounders from all observed variables.

Note that OneSIV can be seen as an ablation version of
our CB-IV algorithm without confounder balancing, and
DirectRep and CFR are the ablation versions of our CB-IV
algorithm without IV regression.

5.2. Experiments on Synthetic Datasets

5.2.1. DATASET.

In binary treatment cases, similar to (Hassanpour &
Greiner, 2019b), we generate the synthetic datasets sat-
isfying homogeneity assumption, as follows: the la-
tent variables {Z,X,U} drive from Z1, · · ·ZmZ

∼
N (0, ImZ

), X1, · · ·XmX
, U1, · · ·UmU

∼ N (0,ΣmX+mU
)

where mZ , mX and mU are the dimensions of instruments
Z, observed confounders X and unobserved confounders
U , respectively. ImZ

denotes mZ degree identity matrix,
ΣmX+mU

= ImX+mU
∗ 0.95 + 1mX+mU

∗ 0.05 means
that all elements except diagonal are 0.05 in the covariance
matrix, and 1mX+mU

denotes mX +mU degree all-ones
matrix. The treatment variable T and outcome variable Y
are generated as follows:

P (T | Z,X) = 1

1+exp (−(
∑mZ

i=1 ZiXi+
∑mX

i=1 Xi+
∑mU

i=1 Ui))
,

T ∼ Bernoulli(P (T | Z,X)),mX > mZ (17)
Y (T,X,U) = T

mX+mU
(
∑mX

i=1 X
2
i +

∑mU

i=1 U
2
i )

+ 1−T
mX+mU

(
∑mX

i=1 Xi +
∑mU

i=1 Ui) (18)

where Bernoulli(P (T | Z,X)) is the true logging policy
of the treatments T . Eqs. (17) & (18) is a common setting
used by Hassanpour & Greiner (2019a;b); Wu et al. (2022).

As for continuous treatment cases, demand Datasets
satisfying homogeneity assumption (that applied in DeepIV
(Hartford et al., 2017), KernelIV (Singh et al., 2019),
DualIV (Muandet et al., 2020) and DFIV (Xu et al., 2021))
is a choice, and we report mean squared error (MSE)
and its standard deviations over 10 trials: the outcome
variabl is Y = 100 + (10 + T )X1ψX2 − 2T + E; the
treatment variable is T = 25 + (Z + 3)ψX2

+ U ; ψX2
=

2
(
(X2 − 5)4/600 + exp

[
−4(X2 − 5)2

]
+X2/10− 2

)
;

where X1 ∈ {1, . . . , 7}, X2 ∼ unif(0, 10), Z,U ∼ N(0, 1)
and E ∼ N(0.5U, 0.75). In this case, the instrument
variable is Z, the treatment variable is T , the observed
variables are {X1, X2}, the outcome variable is Y , the
unmeasured confounder is {U,E}.

5.2.2. RESULTS IN BINARY TREATMENT CASES.

The results of treatment effect estimation in binary treat-
ment cases are reported in Table 1, where we use Syn-mZ-
mX -mU to denote the synthetic dataset with mZ instru-
ments, mX observed confounders and mU unobserved con-
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Table 1. The results of ATE estimation, including bias (mean(std)),
in binary treatment cases on Synthetic data with different settings
(Syn-mZ -mX -mU ).

Within-Sample
Method Syn-1-4-4 Syn-2-4-4 Syn-2-10-4 Syn-2-4-10

DeepIV-LOG 1.055(0.011) 1.057(0.008) 1.092(0.009) 1.020(0.008)
DeepIV-GMM 0.934(0.011) 0.874(0.019) 0.768(0.023) 0.925(0.017)

KernelIV 0.495(0.056) 0.457(0.054) 0.765(0.028) 0.624(0.062)
DualIV 1.469(0.072) 1.423(0.076) 1.719(0.076) 1.534(0.073)
OneSIV 0.823(0.075) 0.661(0.096) 0.689(0.054) 0.850(0.073)

DFIV 0.852(0.010) 0.860(0.007) 0.851(0.007) 0.886(0.009)
DFL 0.840(0.002) 0.851(0.002) 0.838(0.002) 0.831(0.004)

DirectRep 0.172(0.017) 0.163(0.008) 0.118(0.017) 0.199(0.016)
CFR 0.172(0.016) 0.158(0.015) 0.105(0.020) 0.198(0.018)

DRCFR 0.151(0.056) 0.136(0.034) 0.063(0.044) 0.154(0.032)
CB-IV 0.038(0.071) 0.016(0.047) 0.077(0.041) 0.009(0.065)

Out-of-Sample
Method Syn-1-4-4 Syn-2-4-4 Syn-2-10-4 Syn-2-4-10

DeepIV-LOG 1.055(0.010) 1.057(0.008) 1.093(0.009) 1.020(0.008)
DeepIV-GMM 0.933(0.011) 0.874(0.019) 0.768(0.023) 0.925(0.017)

KernelIV 0.495(0.055) 0.458(0.052) 0.765(0.028) 0.625(0.063)
DualIV 1.472(0.079) 1.467(0.076) 1.732(0.072) 1.513(0.066)
OneSIV 0.822(0.076) 0.661(0.095) 0.690(0.053) 0.851(0.073)

DFIV 0.851(0.009) 0.860(0.007) 0.851(0.007) 0.886(0.009)
DFL 0.840(0.002) 0.851(0.002) 0.838(0.002) 0.831(0.004)

DirectRep 0.172(0.016) 0.164(0.009) 0.116(0.015) 0.199(0.014)
CFR 0.172(0.015) 0.159(0.018) 0.103(0.019) 0.198(0.016)

DRCFR 0.151(0.055) 0.137(0.035) 0.062(0.045) 0.154(0.032)
CB-IV 0.037(0.075) 0.017(0.046) 0.075(0.040) 0.010(0.064)

founders. For each setting (such as Syn-1-4-4, Syn-2-4-4,
Syn-2-10-4, Syn-2-4-10), we sample 10,000 units and per-
form 10 replications to report the mean and the standard
deviation (std) of the bias of the average treatment effect
(ATE) estimation, where within-sample error is computed
over the training sets and out-of-sample error is over the
test set. From the results in Table 1, we have the follow-
ing observations: (1) For IV based methods, more valid
IVs would bring more accuracy on treatment effect estima-
tion by comparing with the results of setting Syn-1-4-4 and
setting Syn-2-4-4. (2) For confounder balancing methods,
high dimension of unmeasured confounder would lead to
poor performance by comparing with the results of setting
Syn-2-4-4 and setting Syn-2-4-10. (3) The existence of ob-
served confounders would result in the poor performance
of the IV-based methods, even worse than the confounder
balancing-based methods because traditional IV-based meth-
ods ignored the bias of observed confounders in their second-
stage regression. (4) Considering confounder balancing in
IV regression, our CB-IV improves considerably over the
traditional IV-based methods and achieves better perfor-
mance than confounder balancing methods in most settings.
When the observed confounders are high-dimensional, the
low-dimensional instruments’ information might get lost,
and CB-IV would be equivalent to CFR.

As a data-driven representation learning method, CB-IV re-
quires more training data to ensure performance. Hence we
implement experiments with different data sizes (500, 1000,
5000, 10000) on Syn-2-4-4 to study its impact on model
performance. Figure (2) shows that the bias of the average

Table 2. The results of latent outcome estimation, including MSE
(mean(std)), in continuous treatment cases on Demand datasets
with different settings (Demand-γ-λ).

Within-Sample
Method Demand-0-1 Demand-0-5 Demand-5-1

DeepIV-LOG - - -
DeepIV-GMM 1356(343.5) 3102(744.4) 1465(253.3)

KernelIV 1526(141.7) >5000 1428(227.3)
DualIV >5000 >5000 >5000
OneSIV >5000 >5000 >5000

DFIV 195.2(9.342) 1205(1740) 197.2(16.80)
DFL 195.9(11.13) 1159(1902) 200.3(8.916)

DirectRep 191.2(5.514) 888.6(1077) 440.1(117.3)
CFR 193.3(5.561) 465.3(181.4) 449.6(161.0)

DRCFR 427.2(162.0) 391.6(28.21) 405.8(105.9)
CB-IV 165.0(5.959) 234.1(30.06) 167.7(6.783)

Out-of-Sample
Method Demand-0-1 Demand-0-5 Demand-5-1

DeepIV-LOG - - -
DeepIV-GMM 1006(313.7) 2829(724.6) 1151(284.1)

KernelIV 994.9(146.2) 5435(435.2) 1004(216.7)
DualIV >5000 >5000 >5000
OneSIV >5000 >5000 >5000

DFIV 190.5(8.977) 668.3(566.7) 196.2(16.66)
DFL 182.9(11.52) 597.6(622.1) 189.7(7.422)

DirectRep 193.9(7.380) 689.6(692.1) 489.9(121.1)
CFR 192.0(8.932) 417.3(123.5) 469.7(140.7)

DRCFR 532.4(199.5) 497.3(26.37) 470.5(143.4)
CB-IV 172.9(5.340) 224.3(18.06) 165.8(7.142)

Figure 2. Results of CB-IV on Syn-2-4-4 by varying sample size.

treatment effect estimation of CB-IV is low in different data
sizes, but the variance is huge above small data sets. As
the number of data increases, the variance of CB-IV will
decrease linearly. When the amount of data exceeds 5000,
the upper bound of CB-IV’s estimation will be lower than
the lower bound of all baselines. In conclusion, our method
relies more on a large amount of data. One possible solu-
tion is to perform each experiment many times (e.g., ten
duplicates) and then take the average value to reduce the
variance, but this is not the paper’s focus. Due to limited
space, more Experiments about different variables used in
the different stages can be found in Section F in Appendix.

5.2.3. RESULTS IN CONTINUOUS TREATMENT CASES.

We adjust the difficulty of the simulation and perform ex-
periments to increase the importance of instrumental vari-
ables in the structure function of T (e.g., adjust γ and λ
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Table 3. The results of latent outcome estimation, including MSE
(mean(std)), in continuous treatment cases on Demand datasets.

Within-Sample
Method 500 1000 5000 10000

DeepIV-LOG - - - -
DeepIV-GMM >5000 >5000 3163.3(266.4) 1356(343.5)

KernelIV 3078(647.2) 2363(270.7) 1692(72.6) 1526(141.7)
DualIV >5000 >5000 >5000 >5000
OneSIV >5000 >5000 >5000 >5000

DFIV 240.0(381.7) 152.4(52.83) 198.9(30.62) 195.2(9.342)
DFL 141.4(26.42) 173.2(29.90) 196.8(17.82) 195.9(11.13)

DirectRep 138.7(24.01) 153.4(16.67) 193.0(12.87) 191.2(5.514)
CFR 126.9(20.98) 161.7(20.99) 191.6(10.24) 193.3(5.561)

DRCFR 705.5(462.9) 503.0(240.5) 419.0(126.1) 427.2(162.0)
CB-IV 117.6(23.25) 142.0(16.11) 164.6(7.443) 165.0(5.959)

Out-of-Sample
Method 500 1000 5000 10000

DeepIV-LOG - - - -
DeepIV-GMM >5000 >5000 3360(483.8) 1006(313.7)

KernelIV 2859(660.9) 2280(547.9) 1142(170.3) 994.9(146.2)
DualIV >5000 >5000 >5000 >5000
OneSIV >5000 >5000 >5000 >5000

DFIV 764.4(415.1) 404.9(133.1) 214.4(30.66) 190.5(8.977)
DFL 358.7(47.32) 261.3(35.68) 192.7(14.46) 182.9(11.52)

DirectRep 271.8(25.76) 222.3(9.575) 199.8(5.453) 193.9(7.380)
CFR 266.2(28.45) 225.9(11.75) 195.8(11.338) 192.0(8.932)

DRCFR 799.8(467.5) 621.7(275.9) 511.0(155.04) 532.4(199.5)
CB-IV 291.4(39.33) 229.1(42.22) 179.4(4.221) 172.9(5.340)

* The results of IV-based methods are consistent with those of the report in DeepIV (Hartford
et al., 2017), KernelIV (Singh et al., 2019), DualIV (Muandet et al., 2020) and DFIV (Xu
et al., 2021). The difference is that they scale the results by log10, but we don’t.

in T = 25 + γZ + (λZ + 3)ψX2
+ U ), we name it as

Demand-γ-λ. Demand-0-1 is the original Demand data
with T = 25 + (Z + 3)ψX2 + U . In Demand-0-5 with
T = 25+(5∗Z+3)ψX2+U , we increase the information of
the instrumental variable and amplify the confounding bias.
As for Demand-5-1 with T = 25+5∗Z+(Z+3)ψX2

+U ,
we increase the information of the instrumental variable but
keep the confounding bias unchanged.

The experimental results (reported in Table 2) shows that
(i) if the information of instrumental variables and con-
founders increases, all methods will become worse, but the
confounder balance based methods (e.g., CFR) still perform
much better than the pure IV based methods (e.g., DeepIV).
(ii) If we only increase the information of the instrumental
variable, the results of the pure IV-based methods and our
CB-IV are almost unchanged due to the same confounding
bias. However, the balanced representation methods are
basically worse, which is a very magical phenomenon. One
conjecture is that the fluctuation of T affects the change of
Y . Perhaps we should regularize the treatment variables
and outcome variables before regressing them. Anyway, the
confounding bias from the treatment regression stage is a
critical problem in IV-based methods.

Like the binary treatment studies in this paper, on this clas-
sical simulation data Demand-0-1 (Table 3) with different
data sizes (500, 1000, 5000, 10000), the confounder balanc-
ing based methods (without using IV) still perform much

Table 4. The results of ATE estimation, including bias (mean(std)),
on real-world data with different settings (Data-mZ -mX -mU ).

Within-Sample
Method IHDP-2-6-0 IHDP-2-4-2 Twins-5-8-0 Twins-5-5-3

DeepIV-LOG 2.874(0.058) 2.623(0.065) 0.013(0.021) 0.024(0.011)
DeepIV-GMM 3.776(0.032) 3.740(0.040) 0.019(0.005) 0.022(0.004)

KernelIV 3.061(0.305) 2.994(0.463) - -
DualIV 0.593(0.221) 0.658(0.243) - -
OneSIV 1.725(0.375) 1.741(0.342) 0.008(0.019) 0.008(0.017)

DFIV 3.554(0.089) 3.622(0.104) 0.027(0.001) 0.026(0.000)
DFL 3.202(0.050) 3.199(0.037) 0.062(0.059) 0.085(0.005)

DirectRep 0.068(0.056) 0.460(0.071) 0.017(0.017) 0.019(0.025)
CFR 0.085(0.058) 0.483(0.064) 0.011(0.017) 0.022(0.018)

DRCFR 0.055(0.064) 0.434(0.069) 0.011(0.022) 0.012(0.017)
CB-IV 0.012(0.388) 0.160(0.250) 0.007(0.027) 0.001(0.025)

Out-of-Sample
Method IHDP-2-6-0 IHDP-2-4-2 Twins-5-8-0 Twins-5-5-3

DeepIV-LOG 2.876(0.055) 2.623(0.069) 0.014(0.021) 0.024(0.011)
DeepIV-GMM 3.777(0.035) 3.739(0.042) 0.019(0.005) 0.022(0.004)

KernelIV 3.070(0.306) 3.023(0.440) - -
DualIV 0.564(0.266) 0.715(0.355) - -
OneSIV 1.729(0.372) 1.735(0.343) 0.008(0.019) 0.008(0.017)

DFIV 3.554(0.090) 3.623(0.106) 0.027(0.001) 0.026(0.000)
DFL 3.204(0.050) 3.199(0.038) 0.062(0.058) 0.085(0.005)

DirectRep 0.061(0.082) 0.457(0.076) 0.016(0.018) 0.019(0.025)
CFR 0.079(0.081) 0.480(0.069) 0.011(0.016) 0.022(0.018)

DRCFR 0.045(0.095) 0.432(0.067) 0.011(0.022) 0.012(0.017)
CB-IV 0.015(0.393) 0.158(0.254) 0.006(0.027) 0.002(0.025)

* Most confounders are discrete variables and the outcome is binary variable in Twins data.
The results of kernel-based IV methods in Twins are NaN. We use ’-’ to denote it.

better than the pure IV-based methods. Considering con-
founder balancing in IV regression, our CB-IV method im-
proves considerably over the traditional IV-based methods
and achieved better performance than confounder balancing-
based methods in most settings. Nevertheless, our method
still relies on large samples.

5.3. Experiments on Real-World Datasets

5.3.1. DATASET.

We also check the performance of CB-IV method with ex-
periments on two real-world datasets, which are adopted in
Yao et al. (2018); Wu et al. (2022): IHDP tends to evaluate
the effect of a specialist home visit on premature infants’
cognitive test scores, and Twins aims to estimate the effect
of the weight in twins on the infant’s mortality.

IHDP3: The Infant Health and Development Program
(IHDP) comprises 747 units (139 treated, 608 control). To
develop the instrument variables, we generate 2-dimension
random variables for each unit, i.e., Z1, · · ·ZmZ

∼
N (0, ImZ

),mZ = 2. Then, we select 6 variables from the
original data as the confounders, including mX variables as
observed confounders X and mU as unobserved U , where
mX +mU = 6. The treatment assignment policy is P (T |
Z,X) = 1

1+exp (−(
∑mZ

i=1 ZiXi+
∑mX

i=1 Xi)+
∑mU

i=1 Ui))
, T ∼

3http://www.fredjo.com/

http://www.fredjo.com/
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Bernoulli(P (T | Z,X)).
Twins4: Twins dataset is derived from all twins born in
the USA between the years 1989 and 1991 (Almond et al.,
2005). Similar to Yao et al. (2018), we select 5271 records
from same-sex twins who weighed less than 2000 grams
and had no missing characteristics. Then we generate 5-
dimension random variables as the instrument variables and
obtain mX variables as observed confounders X and mU

as unobserved U to design the treatments T according to
the policy in Eq. (17).

5.3.2. RESULTS.

We conduct our experiments over the 100 realizations of
IHDP and 10 realizations of Twins with a 63/27/10 propor-
tion of train/validation/test splits. In each realization, we
shuffle the data and then redivide it into train/validation/test
splits to simulate as many different data distributions as
possible. Data-mZ-mX -mU means that there are mZ di-
mension instruments, mX observed confounders and mU

unobserved confounders in the corresponding Data. We
report the results in Table 4, including the mean and stan-
dard deviation (std) of the bias of average treatment effect
estimation.

In the dataset without unmeasured confounders (IHDP-2-
6-0 and Twins-5-8-0), the performance of CB-IV is better
than confounder balance methods (DRCFR, CFR), better
than two-head methods (DirectRep), and the IV methods
(DeepIV, KernelIV, DFIV) are the worst. DualIV and One-
SIV have the best performance in the traditional IV meth-
ods on IHDP and Twins, respectively. When there are un-
measured confounders (IHDP-2-4-2 and Twins-5-5-3), it
is evident that the performance of the confounder balance
methods decreased a lot. Still, the performance of CB-IV
and IV methods are almost unaffected, which is in line with
our expectations. CB-IV requires a larger amount of data
to ensure the convergence of the variance. Because the
training set of IHDP has only 471 samples, CB-IV has a
small bias but a large variance. Despite this, in the presence
of unobserved confounders, the upper bound of the error
of CB-IV is much lower than these baselines. In general,
CB-IV achieves the best performance among all baselines.

6. Conclusion
The majority of instrumental variable methods ignore the
confounding bias in the outcome regression stage in non-
linear scenarios. A promising direction is to implement
confounder balancing. Under sufficient identification as-
sumption, we propose a Confounder Balanced IV Regres-
sion (CB-IV) algorithm to confirm this and solve two inverse
problems under different Homogeneity Assumptions. Exten-

4http://www.nber.org/data/

sive experiments show that the proposed method achieves
state-of-the-art performance in the average treatment effect
estimation.

Like previous works on treatment effect estimation (Hart-
ford et al., 2017; Xu et al., 2021; Shalit et al., 2017; Hassan-
pour & Greiner, 2019b), we also did not examine the statisti-
cal properties in inference (e.g., the convergence rates). It’s
generally challenging to analyze the statistical guarantees of
inference after deep neural network training in multi-stage
(Farrell et al., 2021). It is possible to use bootstrap to esti-
mate the standard errors of the estimated treatment effects,
and we leave this for future work.
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A. Nonlinear Case
Example A.1. (Complicated nonlinear case). T = f(Z,X) +U = ZX +U, Y = g(T,X) +U = TX2 +X +U , where

Z ∼ N (0, 1), X, U ∼ N
(
(0, 0),

(
1 0.05

0.05 1

))
.

Solution 1 (a). Stage 1, classical IV methods perform linear/nonlinear regression from Z to T :

E[T |Z] = E[ZX + U |Z] = E[ZX|Z] + E[U |Z] = E[X]Z = 0

Then, we get a wrong conclusion that Z and T are independent.

Solution 1 (b). Stage 1, nonlinear IV regression variants perform linear/nonlinear regression from {Z,X} to T :

E[T |Z,X] = E[ZX + U |Z,X] = E[ZX|Z,X] + E[U |Z,X] = XZ + E[U |X]

where E[ZX|Z,X] = ZX , because Z and X are independent. We define T̂ = E[T |Z,X] = XZ + E[U |X] in the
continuous case.

Stage 2, if we perform linear/nonlinear regression from {Z,X} to Y :

E[Y |Z,X] = E[TX2 +X + U |Z,X]

= E[(ZX + U)X2 +X + U |Z,X]

= E[(ZX3 +X + U + UX2|Z,X]

= ZX3 +X + E[U |X](X2 + 1)

= (ZX + E[U |X])X2 +X + E[U |X]

= T̂X2 +X + E[U |X]

= g(T̂ ,X) + E[U |X]

we will get the structure function (g(T̂ ,X) + E[U |X]) and an unbiased arverage treatment effect (ATEZ ) estimation of Z
on Y :

ATEZ = E[Y |Z1, X]− E[Y |Z0, X]

= [E[g(T ′
1, X)] + E[U |X]]− [E[g(T ′

0, X)] + E[U |X]]

= E[g(T ′
1, X)]− E[g(T ′

0, X)]

= E[(Z1X + E[U |X])X2 +X)− (Z0X + E[U |X])X2 +X)]

= E[Z1X
3 − Z0X

3]

= E[Z1 − Z0]E[X3]

= 0

Nevertheless, we want to obtain the causal relationship (ATE) between the treatments T and outcomes Y , instead of the
average causal effect estimation (ATEZ) of Z on Y . ATE and ATEZ are not equivalent. Therefore, We have to perform
linear/nonlinear regression from {T̂ ,X} to Y in stage 2, i.e., E[T̂X2 +X + U |T̂ ,X], T̂ = E[T |Z,X]:

E[Y |T̂ ,X] = E[TX2 +X + U |T̂ ,X] = E[TX2 +X|T̂ ,X] + E[U |X]

Obviously, X would be a confounder (T̂ = E[T |Z,X] derives from {Z,X}, and {X, T̂} are the cause of Y ) and these
algorithms would get a biased causal effect between the T̂ /T and Y without prior knowledge of regression function. In other
words, T is related to X , so there may be multiple different solutions ĝ of argming′{E[TX2 +X|T̂ ,X]− g′(T,X)} and
ĝ may be different from true structural function g without prior knowledge of regression function.

Fortunately, the unobserved confounders U will no longer confound the causal relationship between T̂ and Y in stage 2
(figure 1(b)), and we only need to analyze and reduce the bias from the observed confounders X .
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B. Theorems
Theorem B.1. (Inverse Relationship of Eq. (13)). If the learned representation of observed confounders C = fθ(X) is
independent with the estimated treatment T̂ , then the counterfactual prediction function h(T,C) can be identified with
instrumental variables Z and representation C:

h(T,C) = gC1 (T,C) + g2(T )E[g3(U)|C] + E[g4(X,U)|C] (19)

Then, we can establish an inverse relationship for h(T,C) given E[Y | Z,C,X] and P (T | Z,X), as follow:

E[Y | Z,C,X] =
∫
[h(T,C)] dP (T | Z,X) (20)

where, dP (T | Z,X) is the conditional treatment distribution.

Proof. In this paper, we model the causal relationship more general and relax the additive separability assumption to the
multiplicative assumption (Eq. (12)(13)):

T = f1(Z,X) + f2(X,U)

Y = g1(T,X) + g2(T )g3(U) + g4(X,U), Z ⊥ U,X

Then, we expect use the disentangled representation C ⊥ T,C = fθ(X) to approximate the structural equation Y =
gC1 (T,C) + g2(T )g3(U) + g4(X,U).

Treatment Regression Stage, we perform nonlinear regression from {Z,X} to T using deep neural networks:

E[T |Z,X] = E[f1(Z,X) + f2(X,U)|Z,X]

= E[f1(Z,X)|Z,X] + E[f2(X,U)|Z,X]

= f1(Z,X) + E[f2(X,U)|X]

where E[f1(Z,X)|Z,X] = f1(Z,X), because Z and X are independent. We define the conditional treatment distribution
as T̂ ∼ P (T |Z,X).

Outcome Regression Stage, we perform linear/nonlinear regression from {Z,X} to Y = gC1 (T,C)+g2(T )g3(U)+g4(X,U)
using deep neural networks:

E[Y |Z,C,X] = E[g1(T,X) + g2(T )g3(U) + g4(X,U)|Z,C,X]

= E[gC1 (T, fθ(X)) + g2(T )g3(U) + g4(X,U)|Z,C,X]

= E[gC1 (T,C) + g2(T )g3(U) + g4(X,U)|Z,C,X]

= E[gC1 (T,C)|Z,X] + E[g2(T )g3(U)|Z,C,X] + E[g4(X,U)|C/X]

=

∫
gC1 (T,C)dP (T |Z,X) + E[g2(T )g3(U)|Z,C,X] + E[g4(X,U)|C/X]

=

∫ [
gC1 (T,C) + E[g4(X,U)|C]

]
dP (T |Z,X) + E[g2(T )g3(U)|Z,C,X] (21)

where P (T |Z,X) is the conditional treatment distribution, E[gC4 (C,U)|X] is a constant for the specified X/C. Because

E[gC1 (T,C)|Z,X] =
∫
gC1 (T,C)dP (T |Z,X): the completeness of P(T | Z,X) and P(Y | T,X) would guarantees

uniqueness of the solution (Newey & Powell, 2003). The relationship in Equation (21) defines an inverse problem for g1 in
terms of two directly observable functions: E[Y |Z,X] and P (T |Z,X). Eq. (5) in Hartford et al. (2017) and Eq. (6) in Lin
et al. (2019) use same relationship to solve the inverse problem:

h(T,X) ≡ g(T,X) + E[e | X]

E[Y | X,Z] = E[g(T,X) | X,Z] + E[e | X] =
∫
ℏ(T,X)dF (T | X,Z)

where, again, dF (T | X,Z) is the conditional treatment distribution in Hartford et al. (2017); Lin et al. (2019).
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If C ⊥ g2(T̂ ), then g2(T̂ ) ⊥ g3(U) | Z,C:

E[E[g2(T̂ )g3(U) | Z,C] | Z,X]

= E[E[g2(T̂ ) | Z,C]E[g3(U) | Z,C] | Z,X]

= E[g2(T̂ )E[g3(U) | C] | Z,X]

=

∫
g2(T )E[g3(U) | C]dP (T |Z,X)

Summarily, E[Y |Z,C,X] = E[h(T,C)|Z,C,X] =
∫ [
gC1 (T,C) + g2(T )E[g3(U)|C] + E[g4(X,U)|X]

]
dP (T |Z,X) .

The counterfactual prediction function is h(T,C) = gC1 (T,X)+g2(T )E[g3(U)|C]+E[g4(X,U)|X], and can be identified
by IVs and balanced representation.

Then, we can establish an inverse relationship for h(T,C) given E[Y | Z,C,X] and P (T | Z,X), as follow:

E[Y | Z,C,X] =
∫
[h(T,C)] dP (T | Z,X)

where, dP (T | Z,X) is the conditional treatment distribution.

C. Binary Treatment and Binary Outcome Case
In this paper, we model a more general causal relationship and relax the additive separability assumption to the multiplicative
assumption with Homogeneous Instrument-Treatment Association, as follows:

T = f1(Z,X) + f2(X,U) (22)
Y = g1(T,X) + g2(T )g3(U) + g4(X,U), Z ⊥ U,X (23)

where fi(·), gj(·) are unknown and potentially non-linear continuous functions. g2(T )g3(U) denotes the multiplicative terms
of U with T (e.g., U2T − UT + U ), and we define it as the multiplicative assumption. The completeness of P(T | Z,X)
and P(Y | T,X) guarantees uniqueness of the solution (Newey & Powell, 2003). For binary treatment and binary outcome
case, we can also model it similarly:

T ∼ Bernoulli(P (T )),where P (T ) = 1
1+exp−(f1(Z,X)+f2(X,U)) ,

Y ∼ Bernoulli(P (Y )),where P (Y ) = 1
1+exp−(g1(T,X)+g2(T )g3(U)+g4(X,U)) ,

log P (T )
1−P (T ) = f1(Z,X) + f2(X,U), log P (Y )

1−P (Y ) = g1(T,X) + g2(T )g3(U) + g4(X,U), Z ⊥ U,X (24)

In this paper, all relevant theories and proofs can be transformed into binary cases. We can use the expectation of the samples
to approximate the probability distribution of the data.

D. Continuous Version of CB-IV
Treatment Regression: For continuous treatment T , we propose to regress treatment T with IVs Z and observed
confounders X . Specifically, we estimate the conditional probability distribution5 of the treatments P̂ (T |Z,X) ∼
N (µω(Z,X), σω(Z,X)) with neural networks {µω, σω}:

ϕ(t | zi, xi) =
1√

2πσω(zi, xi)
exp

(
− (t− µω(zi, xi))2

2σ2
ω(zi, xi)

)
(25)

where ϕ(·) is probability density function for the conditional probability distribution P̂ (T |Z,X) ∼
N (µω(Z,X), σω(Z,X)). Then, we optimize the following loss function for treatment regression:

LT =

∫ +∞

−∞

(
1

n

n∑
i=1

(1 {ti ≤ v} log(Φ(v)) + 1 {ti > v} log(1− Φ(v)))

)
dv, Φ(v) =

∫ v

−∞
ϕ(t | zi, xi)dt (26)

5The conditional probability distribution is a mixture of gaussian distribution with multiple sub-networks {µω,k, σω,k}, k = 1, ...,K,
where K denotes the number of latent gaussian distributions.
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where Φ(·) is cumulative distribution function, and 1{·} is an indicator function of the events (ti ≤ v) or (ti > v).

Besides, to reduce computational complexity, we can set σψ = c as constant for low uncertainty models, and simplify the
distribution estimation as a regression problem:

LT =
1

n

n∑
i=1

m∑
j=1

(
ti − t̂ji

)2
, t̂ji ∼ P̂ (ti|zi, xi), (27)

we sample m (the larger the better) treatment {t̂ji}j=1,...,m for each unit {zi, xi} to approximate the true treatment ti.
Empirically, the above objective (Eq. (27)) is sufficient to accurately estimate causal effects in continuous CB-IV framework.

Confounder Balancing: For continuous treatment T , we learn a ”balanced” representation (i.e., C) of the observed
confounders X as C = fθ(X) via mutual information (MI) minimization constraints (Cheng et al., 2020): firstly, we use
variational distribution Qψ(T̂ | C) = N (µψ(C), σψ(C)) parameterized by neural networks {µψ, σψ} to approximate the
true conditional distribution P (T̂ | C); then, we minimize the log-likelihood loss function of variational approximation
Qψ(T̂ | C) with n samples to estimate MI:

disc(T̂ , C) =
1

n2

n∑
i=1

n∑
j=1

[
logQψ

(
t̂i | ci

)
− logQψ

(
t̂j | ci

)]
. (28)

where, C = fθ(X). We adopt an alternating training strategy to iteratively optimize Qψ(T̂ | C) and the network C = fθ(X)

to implement balanced representation in the Confounder Balancing.

Outcome Regression: Finally, we propose to regress the outcome with the estimated treatment T̂ ∼ P (T |Z,X) obtained in
treatment regression module and the representation of confounders C = fθ(X) obtained in confounder balancing module:

LY = 1
n

n∑
i=1

(
yi − hξ(t̂i, fθ(xi))

)2
(29)

where t̂i ∼ P̂ (T |Z,X) and fθ(xi) are derived from treatment regression module and confounder balancing module,
respectively.

Optimization: Like the optimization of the previous IV regression method, we also set two-stage optimization for our
algorithm. In the first stage, we optimize the treatment regression networks {µψ, σψ} by minimizing the loss LT ( Eq. (26)
or Eq. (27) ). In the second stage, we adopt an alternating training strategy to iteratively optimize the variational distribution
Qψ(T̂ | C) and the outcome regression modules with representation C = fθ(X), with the following loss:

min
ψ
Lψ = disc(T̂ , fθ(X)), (30)

min
θ,ξ
Lθ,ξ = LY + α disc(T̂ , fθ(X)), (31)

where α is a trade-off hyper-parameter. We minimize Lψ by using stochastic gradient descent to update the parameters of the
variational distribution Qψ(T̂ | C), and then, minimize Lθ,ξ to implement confounder balance and estimate counterfactual
outcome.

E. Pseudo-Code and Hyper-parameters
E.1. Pseudo-Code and Network Structures

We formulate the regression problems into optimization problems, and optimize them sequentially (Alternating training
strategy is also an option). The optimization loss functions of the two regression networks are:

min
µ
LT = − 1

n

n∑
i=1

(ti log (πµ(zi, xi)) + (1− ti) (1− log (πµ(zi, xi)))) (32)

min
θ,ξ0,ξ1

LY + αLC =
1

n

n∑
i=1

yi − ∑
t̂∈{0,1}

hξt̂(fθ(xi))P̂ (t̂ | zi, xi)

2

+ α disc(T̂ , fθ(X)) (33)
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Table 5. Network structures of CB-IV on Data-mZ -mX -mU .

Stage Setting Syn IHDP Twins

Treatment Regression

Loss log log log
Epoch 3 3 3

Batchsize 500 500 500
MLPLayers [128,64] [128,64] [128,64]
Activation ReLU ReLU ReLU
BatchNorm True True True

Learning Rate 0.05 0.05 0.05
Optimizer SGD SGD SGD

Outcome Regression

Loss MSE MSE log
Epoch 3000 100 200

Batchsize 256 100 100
MLPLayers R [256]∗3 [200]∗3 [256]∗3
MLPLayers Y [256]∗5 [100]∗3 [128]∗5

Activation ELU ELU ELU
BatchNorm False False False

Learning Rate 0.0005 0.0005 0.0005
Optimizer Adam Adam Adam

α 0.01/0.001 0.1 0.001/0.0001

where α is a trade-off hyper-parameter.

For the Treatment Regression, we use multi-layer perceptrons with ReLU activation function and BatchNorm as our logistic
regression network πµ and the network has two hidden layers with 128, 64 units, respectively. Then, We use stochastic
gradient descent (SGD, (Duchi et al., 2011)) to train the network πµ with a loss LT for three epochs with a batch size of 500.

For the Outcome Regression and Confounder Balancing, we use Adam (Kingma & Ba, 2014) to train the three networks
fθ, hξ0 , hξ1 with loss LY + αLC jointly. To prevent overfitting, we add a regularization term to regularize the prediction
functions hξ0 , hξ1 with a small l2 weight decay.

Table 5 shows the details of the structure networks of CB-IV in different datasets. In the Treatment Regression Stage, the
Loss would be an MSE-loss for continuous treatments and a log-loss for binary treatments, and the treatment network
has multiple hidden layers with [MLPLayers] units. In the Treatment Regression Stage, the Loss would be an MSE-loss
for continuous outcomes and a log-loss for binary outcomes. The representation network has multiple hidden layers with
[MLPLayers R] units, and the outcome network has multiple hidden layers with [MLPLayers Y] units. Algorithm 1 shows
the pseudo-code of our methods (CB-IV).

Hardware used: Ubuntu 16.04.5 LTS operating system with 2 * Intel Xeon E5-2678 v3 CPU, 384GB of RAM, and 4 *
GeForce GTX 1080Ti GPU with 44GB of VRAM.

Software used: Python with TensorFlow 1.15.0, NumPy 1.17.4, and MatplotLib 3.1.1.

E.2. Hyper-parameters Analysis on Data-mZ-mX -mU

Given the multi-term objective function (Eq. (7)) in CB-IV, we study the confounder balance item (Eq. (5)) on the
average treatment effect estimation of different datasets (Data-mZ-mX -mU ) by changing hyper-parameter α in the scope
{0, 0.0001, 0.001, 0.01, 0.1, 1}. The result in Figure 3 demonstrates the confounder balance item is necessary for CB-IV.
Combined with the two-head outcome functions, CB-IV indeed learn an effective independent representation and accurately
estimate the average treatment effect.

F. The Experiments about Different Variables Used in Different Stage
According to the preliminaries, we confirm that it is not sufficient to use instruments only in the first stage of the IV methods.
In this section, we use Syn(vars used in stage 1)(vars used in stage 2) to represent that the regression variables we would
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Algorithm 1 CB-IV: Instrumental Variable Regression with Confounder Balancing
Input: Observational data D = {zi, xi, ti, yi}ni=1; Maximum number of iterations I
Output: Ŷ0 = hξ0(fθ(X)), Ŷ1 = hξ1(fθ(X))
Loss function: LT and LY + αLC
Components: Logistic regression network πµ(·); Representation learning network fθ(·); Two-head outcome regression
networks hξ0(·) and hξ1(·).
Treatment Regression Stage:
for itr = 1 to I do
{zi, xi}ni=1 → πµ(zi, xi)→ P̂ (t = 1 | zi, xi)
LT = − 1

n

∑n
i=1 (ti log (πµ(zi, xi)) + (1− ti) (1− log (πµ(zi, xi))))

update µ← SGD{LT }
end for
Outcome Regression Stage:
for itr = 1 to I do
{xi}ni=1 → Ci = fθ(xi)

{zi, xi}ni=1 → πµ(zi, xi)→ P̂ (t = 1 | zi, xi)
{fθ(xi), ti}ni=1 → disc(T̂ , fθ(X))

LY + αLC = 1
n

∑n
i=1

(
yi −

∑
t̂∈{0,1} hξt̂(fθ(xi))P̂ (t̂ | zi, xi)

)2
+ α disc(T̂ , fθ(X))

update θ, ξ0, ξ1 ← Adam{LY + αLC}
end for

use in the two stages of the instrumental variable method, respectively. Then we sample 10000 units from Syn-2-4-4 to
construct the datasets Syn(vars used in stage 1)(vars used in stage 2) perform 10 replications. For example, Syn(Z)(X) means
that we perform logistic regression from the instruments Z to the treatments T in the first stage for all IV methods. We
estimate the causal effect of the treatments T on outcomes Y using observed confounders X in the second stage for all IV
methods or in the outcome regression stage of representation methods.

We report the mean and the standard deviation on the bias of average treatment effect (ATE) estimation on different
data settings in the Table 6. We find that almost all methods achieve the best results on Syn(Z,X)(X), compared with
Syn(Z)(X),Syn(X)(X) and Syn(Z,X)(Z,X), which is in line with our expectations. Comparing the results of Syn(Z)(X) and
Syn(Z,X)(X), all IV methods, including CB-IV, are no longer effective in the setting Syn(Z)(X), DRCFR will achieve the best
average treatment effect estimation. In addition, the results of DeepIV and DFIV methods are poor and almost unchanged
on all data. The result confirms that these IV methods would be no longer effective, using only instrumental variables Z or
only observed confounding variables X in the first stage.

In reality, we may not identify which variables we observed are instrumental variables Z and which are confounders X .
Fortunately, our proposed model is still valid in this case. The result of setting Syn(Z,X)(Z,X) shows CB-IV, using all observed
variables {Z,X} in stage 1 and learning a balanced representation of all observed variables {Z,X} to implement causal
effect estimation in stage 2, can still obtain a SOTA results. Moreover, the confounder balance methods (DirectRep,CFR and
DRCFR) transiently balances the representation of instrumental variables Z, the performance will degrade. The traditional
instrumental variable methods (DeepIV,OneSIV and DFIV) cannot identify causal effects in this scenario.

G. Discussion on Confounder Balancing
G.1. Confounder Bias and Confounder Balancing

Estimating the causal effect is crucial for explanatory analysis and decision-making across many domains (Li et al., 2022;
Zhang et al., 2020; 2021). The gold standard approach for treatment effect estimation is to perform Randomized Controlled
Trials (RCTs), where different treatments are randomly assigned to units. Unlike RCTs, the treatment T in the observational
studies is not randomly assigned; instead depends on confounders X . As introduced in Chapter 3.3 in Causality (Pearl,
2009b), this change could result in confounding bias: P(T |X) ̸= P(T ). Specifically, in binary treatment cases, confounder
(X) may become imbalanced between different treatment arms T̂ , e.g., P (X | T̂ = 1) ̸= P (X | T̂ = 0), leading to
confounding bias ϵ = E[Y (T̂ = 1)− Y (T̂ = 0) | X]−

(
E[Y (T̂ = 1)) | T̂ = 1, X]− E[Y (T̂ = 0) | T̂ = 0, X]

)
, where



Submission and Formatting Instru ctions for ICML 2022

Within-sample

Out-of-Sample

Figure 3. Hyper-parameter sensitivity analysis on Data-mZ -mX -mU . The green lines show the ATE bias of the hyper-parameter α within
the specified range {0, 0.0001, 0.001, 0.01, 0.1, 1}. The red line indicates the parameters chosen by CB-IV.

Y (t) denotes the potential outcome.

Definition G.1. Confounding bias between the treatment and outcome can be defined as the bias of treatment effect
estimation when the confounders exist (Pearl, 2009b).

For example, in the hospital scenario, most patients (have an injection) in the treated group have severe comorbidity,
i.e., P(T = injection|X = severe comorbidity) > P(T = injection|X = mild comorbidity). If we directly regress
E[Y |T,X] = hξ(T,X), then, the potential injection output estimation for patients with mild comorbidity will be biased
towards the actual results of patients with severe comorbidity due to the confounding bias. Thus, confounder balancing
means that we try to balance the distributions of confounders X between different treatment arms T to simulate the results
of Randomized Controlled Trials (RCTs), i.e., P(T = 1|X) = P(T = 0|X), equivalent to P(X|T = 1) = P(X|T = 0).

In the current non-linear IV regression models, the observed confounders X would affect both the estimated treatment T̂ and
the outcome Y in the outcome regression in stage 2 as shown in Figure 1. Then, it would bring confounding bias between
T̂ and Y if the outcome regression model is misspecified. To address the confounding bias from observable confounders,
traditional confounder balance works, such as propensity score methods(Rosenbaum & Rubin, 1983; Rosenbaum, 1987;
Li et al., 2016; 2020), re-weighting methods(Athey et al., 2018; He & Garcia, 2009), Doubly Robust (Funk et al., 2011)
or backdoor criterion (Pearl, 2009a) to control the confounders’ distributions. CFR (Johansson et al., 2016; Shalit et al.,
2017) formulates the problem of confounder balance as a covariate shift problem and regards the treated group as the source
domain and the control group as the target domain for domain adaptive balance in observational data. In this paper, we use
”balanced” representation learning to tackle the problem.

Discussion on direct regression: In the randomized controlled trial setting, two distributions of confounders in treated
and control group are same, i.e., P(X|T = 0) = P(X|T = 1) = P(X). We can estimate the potential control and treated
outcome well enough by directly implementing neural network regression from the treatments and confounders to the
outcomes, i.e., E[Y |T,X] = hξ(T,X). However, in the observational study, estimating causal effects from observational
data is different from supervised learning (Yuan et al., 2022). This is close to “learning from logged bandit feedback” (Strehl
et al., 2010), with the distinction that we do not have access to the action generator model.

When we directly regress E[Y |T,X] = hξ(T,X), If if the regression model is misspecified, there will be two vital problems:
(1) Finite Samples:The neural network, without any regularization, may be overfitted on the limited training data. In binary
treatment case , such as the hospital scenario, most patients (have an injection) in the treated group have severe comorbidity,
i.e., P(X = severe comorbidity|T = injection) > P(X = mild comorbidity|T = injection) . Then, the potential injection
output estimation for patients with mild comorbidity will be biased towards the actual results of same patients with severe
comorbidity due to the confounding bias. (2) Treatment Indicator might get lost: T̂ is a mediator in chains X → T̂ → Y ,
and the information of treatment might got lost in high-dimension confounders (Johansson et al., 2016; Shalit et al.,
2017), resulting in the consistency of the predicted potential outcomes from different treatments for the specified X , i.e.,
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Table 6. The results of ATE estimation, including bias (mean(std)), in binary treatment cases on Synthetic data with different settings
(Syn(vars used in stage 1)(vars used in stage 2)).

Within-Sample
Method Syn(Z)(X) Syn(X)(X) Syn(Z,X)(Z,X) Syn(Z,X)(X)

DeepIV-LOG 1.055(0.006) 1.054(0.007) 1.059(0.009) 1.057(0.008)
DeepIV-GMM 0.862(0.016) 0.992(0.007) 0.961(0.006) 0.874(0.019)

KernelIV 0.964(0.070) 0.865(0.174) 0.890(0.157) 0.457(0.054)
DualIV 0.658(0.561) 1.611(0.495) 1.763(0.042) 1.423(0.076)
OneSIV 1.048(0.030) 1.176(0.046) 1.053(0.045) 0.661(0.096)

DFIV 1.003(0.010) 0.894(0.004) 0.838(0.007) 0.860(0.007)
DFL 0.842(0.002) 0.843(0.002) 0.842(0.002) 0.851(0.002)

DirectRep 0.163(0.008) 0.163(0.008) 0.178(0.022) 0.163(0.008)
CFR 0.158(0.015) 0.158(0.015) 0.177(0.023) 0.158(0.015)

DRCFR 0.136(0.034) 0.136(0.034) 0.141(0.054) 0.136(0.034)
CB-IV 0.495(0.263) 0.529(0.100) 0.115(0.072) 0.016(0.047)

Out-of-Sample
Method Syn(Z)(X) Syn(X)(X) Syn(Z,X)(Z,X) Syn(Z,X)(X)

DeepIV-LOG 1.055(0.005) 1.055(0.007) 1.059(0.010) 1.057(0.008)
DeepIV-GMM 0.862(0.016) 0.992(0.007) 0.961(0.006) 0.874(0.019)

KernelIV 0.963(0.070) 0.865(0.177) 0.916(0.157) 0.458(0.052)
DualIV 0.800(0.307) 1.606(0.501) 1.760(0.037) 1.467(0.053)
OneSIV 1.048(0.030) 1.176(0.045) 1.053(0.045) 0.661(0.095)

DFIV 1.003(0.009) 0.894(0.004) 0.838(0.006) 0.860(0.007)
DFL 0.842(0.002) 0.843(0.002) 0.842(0.002) 0.851(0.002)

DirectRep 0.164(0.009) 0.164(0.009) 0.179(0.019) 0.164(0.009)
CFR 0.159(0.018) 0.159(0.018) 0.178(0.023) 0.159(0.018)

DRCFR 0.137(0.035) 0.137(0.035) 0.142(0.052) 0.137(0.035)
CB-IV 0.493(0.261) 0.528(0.099) 0.114(0.071) 0.017(0.046)

hξ(0, XT=t) = hξ(1, XT=t) = hξ(XT=t), XT=t denotes variables from the group T = t.

In finite samples, confounder balance is a important regularization on the outcome regression model. Converting P(X|T =
1) > P(X|T = 0) to P(fθ(X)|T = 1) = P(fθ(X)|T = 0) = P(fθ(X)) via balancing the distributions of confounders X
between different treatment arms T , we can enforce the representation distribution of training samples to approximate that of
the population and keep T not replaced byX in the outcome regression stage. When we balance the representations, although
the representationsC = fθ(X)will lose information predictive of T̂ , we will emphasize the information of T̂ . Even under the
ideal condition, we expect that the discarded information inX can be can reconstructed by representationC and T , it’s a trade-
off in balanced learning representations. Besides, we use the ”balanced” representation to bound the expected treatment effect
estimation error (Shalit et al., 2017): ϵ(h,Φ) ≤ 2

(
ϵt=0
F (h,Φ) + ϵt=1

F (h,Φ) +BΦIPMG

(
pt=1
Φ , pt=0

Φ

)
− 2σ2

Y

)
. ”Balanced”

representation means that the gain is from decreasing the bias of the population, including the bias of counterfactual
estimation, at the price of a small increase in the estimation bias of common samples in data.

”Balanced” representation (Johansson et al., 2016; Shalit et al., 2017) has good performance and can capture complex
relationships among treatments, observed confounders, and outcomes, but it requires the unconfoundedness assumption. For
example, physical fitness (i.e., unobserved confounders U ) may not be recorded in the historical data. The causal effects of
the treatments on outcomes are not identifiable from data with unmeasured confounders. To address this challenge, the
patients’ income, an instrumental variable (IV) Z that only affects the treatments and does not affect the outcomes directly,
can be used to eliminate the unmeasured confounding bias (Pearl et al., 2000; Wright, 1928; Heckman, 2008; Stock &
Trebbi, 2003).
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G.2. About the Wasserstein Distance

For representation balancing, CFR (Johansson et al., 2016; Shalit et al., 2017) and DR-CFR (Hassanpour & Greiner,
2019b) adopt Maximum Mean Discrepancy (MMD) and Wasserstein distance (Wass) to calculate the dissimilarity of
distributions from different treatment arms and fit a balanced representation by minimizing the discrepancy. For the sake of
fairness, we uniformly use Wass distance as the discrepancy metrics for CFR, DR-CFR, and CB-IV in the experimental
comparison. Wass distances (Wp(µ, ν)

def
=
(
infπ∈Π(µ,ν)

∫
Ω2 D(x, y)pdπ(x, y)

)1/p
, p ∈ [1,∞) and probability measures

µ, ν ∈ Borel probability measuresP (Ω)) have many favorable properties, documented both in theory (Villani, 2009; Cuturi
& Doucet, 2014) and practice (Pele & Werman, 2009). Besides, Wass distance have consistent estimators which can be
efficiently computed in the finite sample case (Shalit et al., 2017; Sriperumbudur et al., 2012) and Wass distance is a common
measure in deep learning: many algorithm breakthroughs (Arjovsky et al., 2017; Cuturi & Doucet, 2014) benefit from
it. However, there is no known way or a simple method for some function families to compute the integral probability
metric or its gradients efficiently. Therefore, this paper adopts the Wass distance in binary treatment cases for fairness and
expects better performance. As for continuous treatment cases, we learn a ”balanced” representation via mutual information
minimization constraints CLUB (Cheng et al., 2020). The experiments and the theory (Shalit et al., 2017) both prove that a
”balanced” representation facilitates tighter expected error bounds in the enormous sample size.

In binary treatment cases, P(C|T = 0) = P(C|T = 1) if and only if IPM = Wass(CT=0, CT=1) = 0. Obviously, in
binary case, IPM = 0 means that the distributions of representation C are the same in the treated group and the control
group, i.e., P(C|T = 0) = P(C|T = 1) = P(C). The learned representation C is independent of T . In continuous
treatment cases, we can regard the minimization of mutual information between representation C and treatment T as C ⊥ T .

G.3. Error Bounds with Representation Balancing

Shalit et al. (2017) gives a novel, and intuitive generalization-error bound showing that the expected treatment effect
estimation error is bounded by the standard generalization-error and the distance between the treated and control distributions
induced by the representation:

ϵ(h, θ) ≤ 2
(
ϵt=0
F (h, θ) + ϵt=1

F (h, θ) +BθIPMG

(
pt=1
θ , pt=0

θ

)
− 2σ2

Y

)
(34)

where ϵT=t
F (h, θ) =

∫
X ℓ2(y, h(T = t, fθ(x)))p

T=t(x)dx for t ∈ {0, 1}; pT=t(x) denotes the PDF of x given T = t;
pT=t
θ = {fθ(xi)}i:ti=t; Bθ is a constant; σ2

Y is the expected variance of Y .

The instrumental variable deals with unobserved confounders, as shown in Figure 1(b), variables X , common causes of the
conditional treatments T̂ and outcomes Y , are confounders and not deconfounded in stage 2 of these nonlinear IV regression
methods (Example A.1 in Section A and corresponding Experiments in Section F in Appendix). Based on the two-stage
regression of IV methods, we propose to use confounder balance techniques to reduce the error in the outcome regression
stage. Consequently, we use L2 (Eq. 7) as the loss function in the outcome regression stage:

min
θ,ξ0,ξ1

LY + αLC =
1

n

n∑
i=1

yi − ∑
t̂∈{0,1}

hξt̂(fθ(xi))P̂ (t̂ | zi, xi)

2

+ α disc(T̂ , fθ(X)) (35)

In mathematical, the optimization goal LY and LC are consistent with error bound
2
(
ϵt=0
F (h, θ) + ϵt=1

F (h, θ) +BθIPMG

(
pt=1
θ , pt=0

θ

)
− 2σ2

Y

)
. If we directly regress E[Y |T,X] = hξ(T,X), non-

parametric models without prior knowledge may have poor prediction performance for samples that rarely appear in the
data (overfiting). Thus, confounder balance is a great regularization on the outcome regression model. We bound the error
ϵ(h, θ) by minimizing ϵt=0

F (h, θ) + ϵt=1
F (h, θ) and IPMG

(
pt=1
θ , pt=0

θ

)
simultaneously. Combining with IV methods and

confound balance methods, we eliminate the confounding bias from observed confounders and unmeasured confounders.


