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ABSTRACT

Learning high-quality representation is important and essential for visual recogni-
tion. Unfortunately, traditional representation learning suffers from fairness issues
since the model may learn information of sensitive attributes. Recently, a series of
studies have been proposed to improve fairness by explicitly decorrelating target
labels and sensitive attributes. Most of these methods, however, rely on the as-
sumption that fully annotated labels on target variable and sensitive attributes are
available, which is unrealistic due to the expensive annotation cost. In this paper,
we investigate a novel and practical problem of Fair Unsupervised Representation
Learning with Partially annotated Sensitive labels (FURL-PS). FURL-PS has two
key challenges: 1) how to make full use of the samples that are not annotated with
sensitive attributes; 2) how to eliminate bias in the dataset without target labels.
To address these challenges, we propose a general Fairness-aware Contrastive
Learning (FairCL) framework consisting of two stages. Firstly, we generate con-
trastive sample pairs, which share the same visual information apart from sensitive
attributes, for each instance in the original dataset. In this way, we construct a bal-
anced and unbiased dataset. Then, we execute fair contrastive learning by closing
the distance between representations of contrastive sample pairs. Besides, we also
propose an unsupervised way to balance the utility and fairness of learned rep-
resentations by feature reweighting. Extensive experimental results illustrate the
effectiveness of our method in terms of fairness and utility, even with very limited
sensitive attributes and serious data bias.

1 INTRODUCTION

Learning powerful representation takes an important role in visual recognition, and there are a lot
of works proposed to learn visual representations (Bengio et al., 2013; Kolesnikov et al., 2019;
Wang et al., 2020a; Liu et al., 2022). Among them, contrastive learning achieves state-of-the-art
performance on various vision tasks (Tian et al., 2020; Chuang et al., 2020). Contrastive learning
first generates views from original images by random data augmentation, and the views from the
same image are defined as positive samples. Then the model can learn effective representations by
closing the distance between representations of positive samples, while being protected from mode
collapse via an additional module such as negative samples (Chen et al., 2020a; He et al., 2020; Chen
et al., 2020b), momentum update (Grill et al., 2020), and stopping gradient (Chen & He, 2021).

Unfortunately, traditional representation learning methods ignore potential fairness issues, which
becomes an increasing concern as recognition systems are widely used in the real world (Zemel
et al., 2013; Madras et al., 2018; Creager et al., 2019; Lv et al., 2023). For example, the model
trained by contrastive learning may learn the information of sensitive attributes (e.g., gender, race)
by using it as a shortcut to minimize the distance between representations of positive samples in the
training stage, since the positive samples have the same sensitive attributes. As a result, decisions
based on biased representation models may discriminate against certain groups or individuals in
practice, by using spurious correlations between predictive target and sensitive attributes (Wang
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et al., 2020b; Park et al., 2021; Zhang et al., 2021). Therefore, how to develop a fair representation
model is of paramount importance for both academic research and real applications.

Most of existing works achieve fairness via decorrelating target labels and sensitive attributes ex-
plicitly, which rely on the data annotations (Mehrabi et al., 2021; Wu et al., 2022; Zhang et al., 2022;
Zhu et al., 2022). However, assuming that all data have fully annotated labels can be unrealistic (Liu
et al., 2016; Zhang et al., 2020b; Shao et al., 2021; Jung et al., 2022; Song et al., 2023). In many
real scenarios, the target labels and even downstream tasks are not provided, and all we have are
images and limited annotations of sensitive attributes. Data labels require additional expensive cost
of human annotations, which naturally leads us to ask the following question: Can we train a fair
unsupervised representation model with only partially annotated sensitive attributes?

In this paper, we investigate a practical and novel problem of Fair Unsupervised Representation
Learning with Partially annotated Sensitive attributes (FURL-PS). Our goal is to utilize the images
and limited sensitive labels to learn visual representations that can be used for various downstream
tasks of visual recognition, while achieving fairness by being minimally correlated with sensitive at-
tributes. It is challenging to solve the proposed problem. Firstly, most samples are not labeled with
sensitive attributes. A natural idea is to pseudo-label the unlabeled data by a sensitive attribute clas-
sifier. However, it is not advisable to train a representation model on the data with pseudo-sensitive
labels, since the noises in pseudo labels may severely affect the fairness performance. Secondly,
there may be data imbalance between demographic groups. Assuming that the female group has a
large proportion of samples of blond hair, while the male group has the opposite proportion. As a
result, the models trained on the above biased data may learn spurious correlation between gender
and blond hair. Unfortunately, it is difficult to balance the data distribution of different groups with-
out the prior of downstream tasks or annotated target labels. Generally, FURL-PS problem has two
main challenges: 1) How to make full use of the data that are not annotated with sensitive attributes?
2) How to balance the possible agnostic bias in data without target labels?

To address these challenges, our idea is to construct a balanced dataset annotated with sensitive
labels based on the original dataset, and then train a representation model with fair contrastive learn-
ing on the unbiased dataset. We propose a two-stage Fairness-aware Contrastive Learning (FairCL)
framework to implement the above idea. In the first stage, we design a semi-supervised learning
algorithm to train the image attribute editor with limited sensitive labels, which is used to edit the
pre-defined sensitive attributes of a given image. In the second stage, we train a representation model
by fair contrastive learning with balanced augmentation. Specifically, based on the image attribute
editor, we can generate contrastive sample pairs, which share the same visual information apart from
sensitive attributes (e.g., male and female), for each sample in the original dataset. By closing the
distance between representations of contrastive sample pairs, the model can learn powerful and fair
representations. Our approach has two advantages: 1) we can get the utmost out of unlabeled im-
ages by generating samples with given sensitive attributes from them; 2) the augmented dataset is
unbiased, since it consists of contrastive sample pairs and thus the data proportions are naturally
balanced for different demographic groups. Furthermore, we also develop an unsupervised way to
balance the utility and fairness of learned representations by feature reweighting.

We validate the effectiveness of our method on two facial attribute recognition datasets: CelebA (Liu
et al., 2018) and UTK-Face (Zhang et al., 2017). Extensive experimental results show that the pro-
posed method outperforms the existing unsupervised learning methods in terms of both classifica-
tion accuracy and fairness, and even achieves comparable performance with the semi-supervised
methods that require annotations on the target labels. Besides, our method is robust to the ratio of
sensitive labels and severity of data bias. Furthermore, we also show the extensibility of our general
framework to different contrastive learning algorithms through experiments.

Main Contributions: 1) To the best our knowledge, we are the first one to propose the practical and
challenging problem of Fair Unsupervised Representation Learning with only Partially annotated
Sensitive attributes (FURL-PS). 2) We develop the Fairness-aware Contrastive Learning (FairCL)
framework to solve the proposed problem, which can be compatible with all of contrastive learning
algorithms to learn a fair and powerful representation model. 3) Extensive experiments illustrate the
effectiveness of our proposed method in terms of fairness and utility.
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2 RELATED WORK

Fairness in Unsupervised and Semi-supervised Learning. There are three branches to guarantee
fairness in unsupervised learning. Firstly, fair feature selection, a pre-processing paradigm, finds
a subset of features that preserve the original information as much as possible while being mini-
mally correlated with sensitive attributes (Grgic-Hlaca et al., 2016; Grgić-Hlača et al., 2018; Xing
et al., 2021). However, this kind of methods is designed for structured data, and cannot be applied
to images data and deep models. Secondly, fair clustering balances the distribution of different
subgroups formed by sensitive attributes in each cluster, but it cannot yield a model for various
downstream tasks (Chierichetti et al., 2017; Kleindessner et al., 2019; Li et al., 2020). At last, some
studies based on fair representation learning have been bringing a paradigm for fair unsupervised
learning (Louizos et al., 2015; Raff & Sylvester, 2018). As for fair semi-supervised learning, most
existing methods first pseudo-label the unlabeled data via a classifier, and then train a model on these
data with fairness constraints (Jung et al., 2022; Zhang et al., 2020b;c). However, the pseudo-label
noise may exacerbate model unfairness in turn. Instead, our proposed method does not directly use
pseudo-labels when training the fair representation model.

Contrastive Learning. Self-supervised contrastive learning provides a representation learning
paradigm without target labels, and achieves better accuracy than the state-of-the-art methods on
various tasks (Xiao et al., 2020; Zhang et al., 2020a). Some methods such as SimCLR (Chen et al.,
2020a) and MoCo (He et al., 2020) first define the positive/negative samples as patches generated
from the same/different images via random data augmentation, and then train a representation model
by closing/pushing away the distance between representations of positive/negative samples. Re-
cent studies argue that negative samples are not necessary for contrastive learning, and they use
some techniques, e.g., momentum update (Grill et al., 2020) and stopping gradient (Chen & He,
2021) to protect the model from mode collapse instead of negative samples. Afterwards, supervised
contrastive learning outperforms other state-of-the-art methods based on traditional cross-entropy
loss (Khosla et al., 2020). However, existing self-supervised contrastive learning methods ignore
potential fairness issues. To this end, FSCL proposes a fair supervised contrastive loss to train a
fair representation model (Park et al., 2022). However, FSCL relies on target labels and sensitive
attributes. Besides, FSCL is based on supervised contrastive learning which needs negative sam-
ples, while our proposed framework is general to be applied to any contrastive learning algorithm to
improve fairness.

Image Generation. Our proposed method involves the task of image attribute editing, which takes
an image as input and aims to generate a new image with desired attributes while preserving other
details (Liu et al., 2019; He et al., 2019; Dogan & Keles, 2020). We emphasize that advances in the
field of image attribute editing can help improve the performance of our work, since the subsequent
methods can also be used here. Some studies aim to construct a balanced and unbiased dataset by
data augmentation (Ramaswamy et al., 2021). However, they need the prior of downstream task to
generate new samples. Recent works have proposed to evaluate counterfactual fairness by generating
counterfactual samples (Denton et al., 2019; Joo & Kärkkäinen, 2020; Dash et al., 2022). Different
from them, we consider a more challenging problem to train a fair representation model. Moreover,
we consider a more practical setting where there are no target labels and fully annotated sensitive
attributes.

3 METHOD

In this section, we start with a brief introduction of the problem formulation of FURL-PS and overall
flow of our proposed method in Sec. 3.1. Then we display how to generate augmented samples of
different sensitive attributes with limited annotated sensitive labels in Sec. 3.2. We elaborate on how
to execute fair contrastive learning with balanced augmentation in Sec. 3.3. Lastly, to balance the
trade-off between utility and fairness of learned representations, we propose a feature reweighting
module for those sensitive attribute-dependent sub-features in Sec. 3.4.

3.1 PROBLEM FORMULATION AND OVERALL FLOW

Assume that we have n original images {xk}k=1,2,..,n, where xk ∈ X ⊂ Rd. Labeled dataset is
denoted as Dl = {xk, sk}nl

k=1, where nl is the number of images with annotated sensitive labels, and
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Figure 1: Semi-supervised Learning of Image Sensitive Attribute Editor.

sk ∈ {0, 1, ...,MS − 1} represents the sensitive attribute label (e.g., male and female). Unlabeled
dataset is denoted as Du = {xk}nk=nl+1. The target labels {yk}k=1,2,..,n are not available in the
training state, where yk ∈ {0, 1, ...,MY − 1}. In this paper, we assume that both target labels
and sensitive attributes are binary variables for convenience, i.e., MS = MY = 2. We emphasize,
however, that our proposed problem and framework can be easily generalized to multivariate setting.
The goal is to train an effective and fair encoder network F (·) that maps the image xk ∈ X into
representation hk ∈ H, where the representations can be used for various downstream tasks while
not discriminating against demographic groups with given sensitive attributes.

Our proposed method consists of two stages: 1) Contrastive Sample Generation and 2) Fairness-
aware Contrastive Learning. We first define the contrastive samples as a pair of images that share
the same visual information except for sensitive attributes. In the first stage, our goal is to prepare
contrastive samples {(x0

k, x
1
k)}k=1,2,..,n based on the original dataset. To achieve it, we design a

semi-supervised algorithm to train an image sensitive attribute editor G(·, ·), which takes an image
xk and sensitive attribute s ∈ {0, 1} as input and can map the original image to a new image xs

k
with given sensitive attribute s while keeping other information as unchanged as possible. In the
second stage, we execute fairness-aware contrastive learning on the augmented dataset to train a
representation model F (·) without any target label or sensitive label.

3.2 CONTRASTIVE SAMPLE GENERATION WITH LIMITED SENSITIVE ATTRIBUTE LABELS

We start with training a generative model used to generate contrastive samples. We implement it
based on AttGAN (He et al., 2019), but we emphasize that any approach designed for image attribute
editing can be adapted to be a backbone method. The training architecture of generative model G
is shown in Figure 1(a). The encoder Genc maps an input image x to latent representation z. Then
the decoder Gdec takes z and sensitive attributes as input, and generates images with corresponding
sensitive attributes. There are three loss optimized jointly: 1) discriminative loss ldis given by the
discriminator D guaranteeing that the generated images look realistic enough, 2) classification loss
lcls guaranteeing that the generated images have given sensitive attributes, and 3) reconstruction loss
lrec given by the classifier C encourages the generator to preserve the sensitive attribute-excluding
information as much as possible.

Note that the sensitive labels are needed in the training stage of the image attribute editor G, while
we only have limited annotated sensitive sensitive labels. To this end, we develop a semi-supervised
learning algorithm to train the sensitive attribute classifier and image editor by making them mutu-
ally promote each other. We first train a classifier C and image editor G on the labeled data. Then,
as shown in Figure 1(b), we assign the predictive sensitive labels to the unlabeled data by C. We
only select pseudo-labeled samples with confidence cf (i.e., Softmax output score) above a certain
threshold thr, and train the generative model G on them. Afterwards, we use G to generate addi-
tional images with sensitive labels, of which high-confidence images are used to train the classifier
C. We repeat the above steps until there is no new high-confidence data. Note that the classifier C
is used to pseudo-label the unlabeled data, thereby providing the generator G with more annotated
training data. Meanwhile, the generator G also generates additional high-quality training data for
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Figure 2: Training Flow of Fairness-aware Contrastive Learning (taking SimCLR as an example).
Our proposed FairCL closes the distance between representations of positive samples (i.e., the views
from the same original image but have different sensitive attributes), and pushes away the distance
between representations of negative samples (i.e., the views from different original images but have
the same sensitive attributes).

the classifier C. In this way, the two can promote each other. Please refer to Appendix A for the
details of the above algorithm. The discussion of hyper-parameter thr is in Appendix B.

Here we get an image attribute editor G, based on which we can generate an augmented dataset
{(x0

k, x
1
k)}k=1,2,..,n from original dataset, even without the knowledge of the sensitive attributes of

the original images. It is worth mentioning that we only use pseudo-sensitive labels in the contrastive
sample generation stage, which avoids the direct impact of pseudo-label noise on learning fair rep-
resentation. Furthermore, the augmented dataset is unbiased and balanced for sensitive attributes.

3.3 FAIRNESS-AWARE CONTRASTIVE LEARNING WITH BALANCED AUGMENTATION

Based on the balanced augmented dataset generated by the image attribute editor G, our goal is to
train a fair and powerful representation model. To this end, we develop a fairness-aware contrastive
learning framework, and elaborate how it works based on SimCLR. However, we emphasize that
our proposed general framework is not confined to SimCLR but can be easily applied to any con-
trastive learning algorithm. The key idea is to define the positive samples as the contrastive samples
with different sensitive attributes generated by the image attribute editor G, and define the nega-
tive samples as the views generated from the different images with the same sensitive attributes.
Based on it, for a minibatch of contrastive image pairs {(x0

k, x
1
k)}k=1,2,..,N , we first generate views

{(x̂0
2k−1, x̂

0
2k, x̂

1
2k−1, x̂

1
2k)}k=1,2,..,N by data augmentation. An encoder F (·) maps the views into

representations {(ĥ0
2k−1, ĥ

0
2k, ĥ

1
2k−1, ĥ

1
2k)}k=1,2,..,N , then a projection head P (·) maps hk into an-

other representations {(ẑ02k−1, ẑ
0
2k, ẑ

1
2k−1, ẑ

1
2k)}k=1,2,..,N for contrastive learning. Then we define

fairness-aware contrastive loss as:

LFair = −
N∑

k=1

log
exp(ẑ02k−1 · ẑ12k−1/τ)∑

l ̸=k exp(ẑ
0
2k · ẑ02l/τ) +

∑
l ̸=k exp(ẑ

1
2k · ẑ12l/τ)

, (1)

where τ is a temperature parameter. As shown in Figure 2, a fair and effective representation model
can be trained on the balanced augmented dataset with the proposed fairness-aware contrastive loss.

3.4 BALANCE UTILITY AND FAIRNESS VIA FEATURE REWEIGHTING

There is often a trade-off between utility and fairness of representation (Zhao & Gordon, 2019).
To balance them without target labels, we propose the feature reweighting module. Our idea is
to identify the sensitive attribute-dependent sub-features and reweight them when computing the
similarity/distance between representations in contrastive learning. Intuitively, larger weights for
those sensitive attribute-dependent sub-features will result in a fairer model.

The challenge is to judge whether a sub-feature is related to a sensitive attribute. Suppose that
we train a linear classifier Cprobe to classify sensitive attributes, which takes the representations
generated by the fixed encoder F (·) and projection head P (·) as input. An intuition is that those
sensitive attribute-dependent sub-features are easier to activate when predicting sensitive attributes,
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and the corresponding parameters of trained classifier Cprobe will have a larger absolute value. Based
on it, we propose a simple but effective solution. We alternately optimize the representation model
F (·), P (·) and an additional linear classifier Cprobe. We can strengthen the fairness constraint by
assigning more weights to those sub-features where the absolute values of corresponding classifier
parameters are large. We use the soft selection which is more flexible and general. Assuming that the
parameters of Cprobe is (θ1, θ2, ..., θd), where d is the number of dimensions of latent representation.
Then we can compute the weights w = (w1, w2, ..., wd) of sub-features as:

wi =
exp(α · |θi|)∑d
j=1 exp(α · |θj |)

, (2)

where α ∈ R is a scaling parameter, and a larger α means a stronger fairness constraint. Now we
can balance the utility and fairness of learned representation in fairness-aware contrastive learning
via the weights w as the following:

LFairW = −
N∑

k=1

log
exp(ẑ02k−1 · ẑ12k−1 · w/τ)∑

l ̸=k exp(ẑ
0
2k · ẑ02l · w/τ) +

∑
l ̸=k exp(ẑ

1
2k · ẑ12l · w/τ)

. (3)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We validate our method on the following datasets: 1) CelebA (Liu et al., 2018) is a dataset
with over 200k facial images, each with 40 binary attributes labels. In this paper, we follow the
setting of the previous works (Park et al., 2022). We select Male (m) and Young (y) as the sensitive
attributes, and set Attractive (a), Big Nose (b), and Bags Under Eyes (e) as target attributes, which
have the highest Pearson correlation with the sensitive attributes. Besides, to verify the performance
of our method in the setting of multi-target labels and multi-sensitive attributes, we also set {Male,
Young} as sensitive attribute and {Big Nose, Bags Under Eyes} as target label. The downstream
task is unknown and only 5% sensitive attribute labels are available in the training stage. 2) UTK-
Face (Zhang et al., 2017) contains over 20k facial images, each with attributes labels. We first define
a binary sensitive attribute Young based on whether age is under 35 or not and construct a task to
predict whether the facial image is Male or not. We further validate the robustness of our method to
the ratio of sensitive labels and data bias on UTK-Face dataset. More details are in Appendix F.

Evaluation Metrics. The goal of FURL-PS is to learn a fair and powerful representation model.
To validate the fairness and utility of the learned representations, we train a linear classifier on top
of the frozen representation model and then use the test performance of the classifier as a proxy for
representation quality. In this paper, we use Equal Odds (EO) (Hardt et al., 2016), one of the most
commonly used notion of group fairness (Dwork et al., 2012), as the fairness metric:∑

∀y,ŷ

∣∣∣Ps0(Ŷ = ŷ | Y = y)− Ps1(Ŷ = ŷ | Y = y)
∣∣∣ , (4)

where
∑

is the averaged sum, Y is target label, Ŷ is predictive label given by the classifier, and
s0, s1 ∈ S is the value of sensitive attributes. Following (Jung et al., 2022), we extend EO to
multi-sensitive attribute setting:

max
∀si,sj∈S

∑
∀y,ŷ

∣∣∣Psi(Ŷ = ŷ | Y = y)− Psj (Ŷ = ŷ | Y = y)
∣∣∣ , (5)

where si, sj ∈ S is the value of sensitive attributes. A smaller EO means a fairer model. Besides,
we use top-1 accuracy (%) to measure the effectiveness of learned representations.

Baselines. To our best knowledge, there is no existing work focusing on dealing with the problem
of FURL-PS. Therefore, we construct some powerful baselines by combining the SOTA methods
to solve partially annotated sensitive labels and the advanced methods designed for fair unsuper-
vised representation learning. Specifically, CGL (Jung et al., 2022) is the SOTA method to solve
the problem of partially annotated sensitive attribute labels by assigning pseudo sensitive labels
based on confidence. VFAE (Louizos et al., 2015) is a fair representation learning method based
on a variational autoencoding architecture with priors that encourage latent factors of variation
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Input

Male

Female

Figure 3: Illustration of contrastive samples generated by sensitive attribute editor.

Table 1: Unsupervised attribute classification results on CelebA. To evaluate the quality of rep-
resentation, we measure equalized odds (EO) and top-1 accuracy (Acc.) of trained linear classifier
on CelebA dataset with 5% annotated sensitive attributes. A smaller EO means a fairer model. T
and S represent target and sensitive attributes, respectively.

Method
T=a / S=m T=a / S=y T=b / S=m T=b / S=y T=e / S=m T=e / S=y T=b&e / S=y T=a / S=y&m
EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc.

CGL+VFAE 19.1 72.7 16.2 74.0 15.5 78.3 10.6 78.8 7.6 79.6 6.9 79.5 10.2 68.7 28.7 72.7
CGL+GRL 21.3 73.4 15.6 74.4 13.1 79.6 10.9 79.5 7.4 79.9 6.1 80.2 9.8 69.6 26.9 73.8

SimCLR 36.2 77.1 22.5 77.1 26.9 81.5 19.2 81.5 19.7 81.2 10.6 81.2 12.8 71.5 39.6 77.7
FairCL (Ours) 16.8 75.3 13.1 76.9 8.4 80.0 9.2 80.3 4.2 80.8 4.5 80.5 7.8 71.3 24.5 74.1

to be independent of sensitive attribute. We implement its unsupervised version and combine it
with CGL as a baseline (CGL+VFAE). We also compare our method with the combination of CGL
and GRL (Raff & Sylvester, 2018), which is an adversarial method used for fair representations
(CGL+GRL). Since there are few existing methods for fair unsupervised representation learning, we
also implement some fair supervised representation learning methods which rely on target labels.
Group DRO (G-DRO) (Sagawa et al., 2019) is a classical and powerful method for robust and fair
learning by learning a set of weights for different data subgroups. FSCL (Park et al., 2022) learns
fair representations based on supervised contrastive learning. For those 5% samples annotated with
sensitive attributes, their target labels are available for G-DRO and FSCL. The CGL strategy is also
used for them (CGL+G-DRO, CGL+FSCL).

4.2 CONTRASTIVE SAMPLE GENERATION EXPERIMENTS

We set Male as the sensitive attribute, and select some contrastive samples generated by the sensitive
attribute editor, which is trained on CelebA dataset with partially annotated sensitive attributes, as
shown in Figure 3. As can be seen, the generated contrastive samples remain most of the visual
details of the original images, but have different sensitive attributes.

We next discuss the issues of proxy variables. First, for those proxy variables which have the
causal/stable correlation with the sensitive attributes, e.g. Beard and Moustache, we note that the
sensitive attribute editor can learn the correlation between them as we expected. For example, the
output female does not have a beard, even if the input image is a male face with a beard. Unfortu-
nately, for those proxy variables having the extreme spurious correlation with the sensitive attributes,
e.g., Heavy Makeup and Lipstick, the sensitive attribute editor also learns it. Note that almost all male
images have no lipstick (less than 1%), while most female images have lipstick (more than 80%).
As a result, as shown in Figure 3, the generated female images sometimes have lipstick, even if the
original image is a male face without lipstick. This will result in the representation model not being
able to learn information about these proxy variables and thus unable to make accurate predictions
about these attributes. We would like to emphasize that this issues is an open problem and, to our
best knowledge, there is no existing method that can solve it without any prior. However, we find
that our method exhibits robustness to data bias caused by spurious correlations. Specifically, the
sensitive attribute editor would not change the attributes which have the high Pearson correlation
with the sensitive attributes, e.g., Big Nose, due to the reconstruction loss.
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Table 2: Comparison with the methods relying on target labels on CelebA. 5% samples are
annotated with sensitive attributes, and corresponding target labels are available for those target
label-dependent methods. Notably, our proposed FairCL does not rely on target labels.

Method
T=a / S=m T=a / S=y T=b / S=m T=b / S=y T=e / S=m T=e / S=y T=b&e / S=y T=a / S=y&m
EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc.

CE 27.8 77.9 19.2 77.9 20.3 82.1 14.2 82.1 16.4 82.0 11.7 82.0 9.6 71.9 36.2 77.9
CGL+G-DRO 14.2 73.8 11.3 75.3 7.9 77.1 6.2 76.3 4.5 76.9 5.1 76.7 5.3 67.2 21.9 71.4
CGL+FSCL 17.4 75.3 13.5 76.2 9.5 79.7 9.6 79.1 5.9 81.1 5.9 80.4 8.2 69.8 25.6 74.0

FairCL (Ours) 16.8 75.3 13.1 76.9 8.4 80.0 9.2 80.3 4.2 80.8 4.5 80.5 7.8 71.3 24.5 74.1

4.3 RESULTS OF FAIRNESS AND ACCURACY ON CELEBA DATASET

We report the classification results of unsupervised methods on CelebA dataset in Table 1. We use
equalized odds (EO) and top-1 accuracy (Acc.) of trained linear classifier to evaluate the fairness and
utility of learned representations, respectively. A smaller EO means a fairer model. We find that the
models trained via SimCLR achieves the best accuracy, but suffer from fairness issues. Our proposed
FairCL based on SimCLR improves the fairness of learned representations. FairCL outperforms
other unsupervised baselines (CGL+VFAE and CGL+GRL) in terms of EO and accuracy.

We also compare our FairCL with the methods relying on target labels, as shown in Table 2. Notably,
FairCL even outperforms semi-supervised methods in some cases. The reason may be that semi-
supervised methods suffers from the issues of pseudo-label noise. Besides, CGL+G-DRO achieves
excellent EO but has low accuracy due to the over pessimism problem (Hu et al., 2018).

4.4 T-SNE VISUALIZATION

Target: 𝒂 = 𝟎
Sensitive: 𝒎 = 𝟎

Target: 𝒂 = 𝟎
Sensitive: 𝒎 = 𝟏

Target: 𝒂 = 𝟏
Sensitive: 𝒎 = 𝟎

Target: 𝒂 = 𝟏
Sensitive: 𝒎 = 𝟏

(a) FairCL (Ours) (b) SimCLR

Figure 4: t-SNE visualization for the learned representations.

To further evaluate the quality of
our learned representations and ex-
plain how our method works, we
sample 1000 images from test
dataset and visualize the represen-
tations of them via t-SNE (Van der
Maaten & Hinton, 2008), as shown
in Figure 4. We find that both
FairCL and SimCLR can assign
similar features to the images with
same target labels. However, Sim-
CLR also learn information of sen-
sitive attributes, so that the rep-
resentations given by SimCLR can
also be divided by the sensitive at-
tributes. In contrast, our proposed
FairCL focuses on both utility and fairness by closing the distance between representations of con-
trastive samples, which have similar visual information but have different sensitive attributes.

4.5 EFFECTIVENESS OF FEATURE REWEIGHTING

We provide an unsupervised way to balance the fairness and utility of learned representation by
feature reweighting. To analyze the effectiveness of feature reweighting, we set the scaling param-
eter α as different values, and train the representation models. The performance of linear classifier
in terms of EO and accuracy is reported in Table 3. As can be seen, we find that a larger scaling
parameter α can yield a fairer model but with lower accuracy. This is in line with our expectations,
since the feature weights will be hard if the scaling parameter α is large, and then the sensitive
attribute-dependent features will have a greater impact on the similarity/distance calculation.

4.6 COMPATIBILITY WITH CONTRASTIVE LEARNING ALGORITHMS

Our proposed fairness-aware contrastive learning framework is general and flexible that can be used
for any contrastive learning algorithm. We have shown the effectiveness of SimCLR-based FairCL in
the previous subsection. To further illustrate the compatibility of FairCL, we apply it to BYOL (Grill
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Table 3: Effectiveness of feature reweighting on CelebA dataset. We train the representation
models with different scaling parameter α to analyze the effectiveness of feature reweighting.

α
T=a / S=m T=a / S=y T=b / S=m T=b / S=y T=e / S=m T=e / S=y T=b&e / S=y T=a / S=y&m
EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc.

α = 0.5 16.8 75.3 13.1 76.9 8.4 80.0 9.2 80.3 4.2 80.8 4.5 80.5 7.8 71.3 24.5 74.1
α = 2.0 14.6 74.2 11.5 76.3 6.2 79.1 6.9 79.3 3.6 80.5 2.8 80.1 5.9 70.4 22.3 72.9

Table 4: Compatibility with contrastive learning on CelebA dataset. We apply our general
framework to BYOL and denote it as FairCL*. The experimental setup is the same as before.

Method
T=a / S=m T=a / S=y T=b / S=m T=b / S=y T=e / S=m T=e / S=y T=b&e / S=y T=a / S=y&m
EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc. EO Acc.

BYOL 38.8 77.9 24.1 77.9 28.2 81.8 20.6 81.8 22.3 81.7 12.9 81.7 14.6 72.2 41.5 77.9
FairCL* 19.2 76.2 15.4 77.1 13.7 80.8 11.0 80.9 7.2 81.0 6.8 80.9 9.9 71.6 28.6 74.9

et al., 2020), a widely used contrastive learning method without negative samples. Due to the ab-
sence of target labels, negative sample-based methods (e.g., SimCLR) may incorrectly push the rep-
resentations of semantically similar samples farther away, which may lead to compromised accuracy
on downstream tasks. BYOL overcomes this problem by not using negative samples. Therefore, as
shown in Table 4, BYOL achieves excellent accuracy. However, it also suffers from fairness issues.
Notably, FairCL* improves EO over it while keeping comparable accuracy.

4.7 ROBUSTNESS TO RATIO OF ANNOTATED SENSITIVE LABELS AND DATA BIAS

CE

CGL+G-DRO

CGL+FSCL

CGL+VFAE

CGL+GRL

SimCLR

BYOL

FairCL (Ours)

FairCL* (Ours)

A
cc

u
ra

cy
 (

%
)

EO

Figure 5: Robustness to ratio of sensitive
labels and data bias on UTK-Face. △ rep-
resents methods relying on target labels.

To further validate the robustness of our proposed
method to ratio of annotated sensitive labels and un-
known data bias, we run different methods on UTK-
Face dataset. We set Y oung as the sensitive attribute,
and the target label is Male. Only 5% samples are an-
notated with sensitive attributes. Besides, the dataset
is unbalanced, where the Young group has 65% fe-
male data and 35% male, while another sensitive group
has the opposite gender ratio. As can be seen in Fig-
ure 5, our proposed FairCL/FairCL* improves fairness
compared with SimCLR/BYOL, while keeping high ac-
curacy. Our method outperforms other unsupervised
methods and even achieves comparable performance
with the target label-dependent methods (CGL+G-DRO
and CGL+FSCL), in terms of the trade-off between ac-
curacy and EO, which illustrates that our method is ro-
bust to annotation ratio and data bias. More experiments
with various settings are in Appendix E.

5 CONCLUSIONS

In this paper, we investigate a novel and practical problem of which the goal is to learn a fair
and powerful representation model with no target label and limited sensitive attributes. To solve
this problem, we develop a general contrastive learning-based framework FairCL consisting of two
stages: contrastive sample generation and fairness-aware contrastive learning with feature reweight-
ing. Extensive experiments show that our proposed method can yield a fair representation model
even with limited sensitive attributes and imbalanced data.

Limitations and Future Work. The main limitation is that our work relies on the quality of the
generated images. The effectiveness of our method on more challenging domains remains to be
explored due to the potential lower-quality generations. We leave it as an open problem for future
work. In practice, we suggest the users choose the appropriate generative methods according to
the datasets and tasks. Since our proposed fairness-aware framework is compatible with different
generative methods, as shown in Appendix E. Moreover, we believe that more effective generative
methods can further help improve the quality of representation model trained by our method.
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Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. Fair k-center clustering for data
summarization. In International Conference on Machine Learning, pp. 3448–3457. PMLR, 2019.

Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-supervised visual repre-
sentation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1920–1929, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Peizhao Li, Han Zhao, and Hongfu Liu. Deep fair clustering for visual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9070–9079, 2020.

An-An Liu, Yu-Ting Su, Wei-Zhi Nie, and Mohan Kankanhalli. Hierarchical clustering multi-task
learning for joint human action grouping and recognition. IEEE transactions on pattern analysis
and machine intelligence, 39(1):102–114, 2016.

An-An Liu, Chenyu Zhang, Wenhui Li, Xingyu Gao, Zhengya Sun, and Xuanya Li. Self-supervised
auxiliary domain alignment for unsupervised 2d image-based 3d shape retrieval. IEEE Transac-
tions on Circuits and Systems for Video Technology, 32(12):8809–8821, 2022.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pp. 6781–6792. PMLR,
2021.

11



Published as a conference paper at ICLR 2023

Ming Liu, Yukang Ding, Min Xia, Xiao Liu, Errui Ding, Wangmeng Zuo, and Shilei Wen. Stgan:
A unified selective transfer network for arbitrary image attribute editing. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 3673–3682, 2019.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba)
dataset. Retrieved August, 15(2018):11, 2018.

Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational fair
autoencoder. arXiv preprint arXiv:1511.00830, 2015.

Zheqi Lv, Wenqiao Zhang, Shengyu Zhang, Kun Kuang, Feng Wang, Yongwei Wang, Zhengyu
Chen, Tao Shen, Hongxia Yang, Beng Chin Ooi, and Fei Wu. Duet: A tuning-free device-cloud
collaborative parameters generation framework for efficient device model generalization. 2023.

David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair and
transferable representations. In International Conference on Machine Learning, pp. 3384–3393.
PMLR, 2018.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6):1–35, 2021.

Sungho Park, Sunhee Hwang, Dohyung Kim, and Hyeran Byun. Learning disentangled representa-
tion for fair facial attribute classification via fairness-aware information alignment. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 2403–2411, 2021.

Sungho Park, Jewook Lee, Pilhyeon Lee, Sunhee Hwang, Dohyung Kim, and Hyeran Byun. Fair
contrastive learning for facial attribute classification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10389–10398, 2022.

Edward Raff and Jared Sylvester. Gradient reversal against discrimination: A fair neural network
learning approach. In 2018 IEEE 5th International Conference on Data Science and Advanced
Analytics (DSAA), pp. 189–198. IEEE, 2018.

Vikram V Ramaswamy, Sunnie SY Kim, and Olga Russakovsky. Fair attribute classification through
latent space de-biasing. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 9301–9310, 2021.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion. arXiv preprint arXiv:1911.08731, 2019.

Feifei Shao, Yawei Luo, Li Zhang, Lu Ye, Siliang Tang, Yi Yang, and Jun Xiao. Improving weakly
supervised object localization via causal intervention. In Proceedings of the 29th ACM Interna-
tional Conference on Multimedia, pp. 3321–3329, 2021.

Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou. Interfacegan: Interpreting the disentan-
gled face representation learned by gans. IEEE transactions on pattern analysis and machine
intelligence, 2020.

Dan Song, Chu-Meng Zhang, Xiao-Qian Zhao, Teng Wang, Wei-Zhi Nie, Xuan-Ya Li, and An-
An Liu. Self-supervised image-based 3d model retrieval. ACM Transactions on Multimedia
Computing, Communications and Applications, 2023.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? Advances in Neural Information Processing
Systems, 33:6827–6839, 2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu,
Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learn-
ing for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 43
(10):3349–3364, 2020a.

12



Published as a conference paper at ICLR 2023

Tengfei Wang, Yong Zhang, Yanbo Fan, Jue Wang, and Qifeng Chen. High-fidelity gan inversion
for image attribute editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, Kyle Genova, Prem Nair, Kenji Hata, and
Olga Russakovsky. Towards fairness in visual recognition: Effective strategies for bias mitigation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
8919–8928, 2020b.

Anpeng Wu, Kun Kuang, Bo Li, and Fei Wu. Instrumental variable regression with confounder
balancing. In International Conference on Machine Learning, pp. 24056–24075. PMLR, 2022.

Tete Xiao, Xiaolong Wang, Alexei A Efros, and Trevor Darrell. What should not be contrastive in
contrastive learning. arXiv preprint arXiv:2008.05659, 2020.

Xiaoying Xing, Hongfu Liu, Chen Chen, and Jundong Li. Fairness-aware unsupervised feature
selection. In Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, pp. 3548–3552, 2021.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations.
In International conference on machine learning, pp. 325–333. PMLR, 2013.

Fengda Zhang, Kun Kuang, Zhaoyang You, Tao Shen, Jun Xiao, Yin Zhang, Chao Wu, Yuet-
ing Zhuang, and Xiaolin Li. Federated unsupervised representation learning. arXiv preprint
arXiv:2010.08982, 2020a.

Fengda Zhang, Kun Kuang, Yuxuan Liu, Long Chen, Chao Wu, Fei Wu, Jiaxun Lu, Yunfeng Shao,
and Jun Xiao. Unified group fairness on federated learning. arXiv preprint arXiv:2111.04986,
2021.

Fengda Zhang, Kun Kuang, Yuxuan Liu, Long Chen, Jiaxun Lu, Fei Wu, Chao Wu, Jun Xiao, et al.
Towards multi-level fairness and robustness on federated learning. In ICML 2022: Workshop on
Spurious Correlations, Invariance and Stability, 2022.

Tao Zhang, Jing Li, Mengde Han, Wanlei Zhou, Philip Yu, et al. Fairness in semi-supervised learn-
ing: Unlabeled data help to reduce discrimination. IEEE Transactions on Knowledge and Data
Engineering, 2020b.

Tao Zhang, Tianqing Zhu, Mengde Han, Jing Li, Wanlei Zhou, and Philip S Yu. Fairness constraints
in semi-supervised learning. arXiv preprint arXiv:2009.06190, 2020c.

Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adversarial
autoencoder. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 5810–5818, 2017.

Han Zhao and Geoff Gordon. Inherent tradeoffs in learning fair representations. Advances in neural
information processing systems, 32, 2019.

Jianggang Zhu, Zheng Wang, Jingjing Chen, Yi-Ping Phoebe Chen, and Yu-Gang Jiang. Balanced
contrastive learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 6908–6917, 2022.

13



Published as a conference paper at ICLR 2023

A SEMI-SUPERVISED ALGORITHM FOR LEARNING CLASSIFIER AND
GENERATOR

The detailed presentation of the method for training generator with limited sensitive attribute la-
bels is shown in Algorithm 1. The semi-supervised algorithm for learning classifier and generator
consists of three stages: warm-up training (line 1), dataset extension (lines 2 to 13), and follow-up
training (line 14).

Algorithm 1 Semi-supervised Algorithm for Learning Classifier and Generator
Input: Dataset with sensitive labels Dl, unlabeled dataset Du, threshold thr ∈ (0, 1), initialized
classifier C, and initialized generator G.

1: Train classifier C and generator G on labeled dataset Dl.
2: Initialize classifier’s training set DC

tr = Dl, generator’s training set DG
tr = Dl, and candidate

set Dcand = Du.
3: repeat
4: Assign pseudo-sensitive labels to samples in candidate set Dcand = Du using classifier C.
5: Construct a temporary dataset Dconf consisting of samples in Dcand whose confidences

(Softmax scores) are higher than threshold thr.
6: Update (extend) generator’s training set DG

tr = DG
tr ∪Dconf .

7: Update (reduce) candidate set Dcand = Dcand \Dconf .
8: Train generator G on dataset DG

tr.
9: Edit the sensitive attributes of the samples in dataset DG

tr using generator G to construct a
temporary dataset Dgen.

10: Construct a temporary dataset D′
conf consisting of samples in Dgen whose confidences (Soft-

max scores) are higher than threshold thr.
11: Update classifier’s training set DC

tr = DG
tr ∪D′

conf .
12: Train classifier C on dataset DC

tr.
13: until the temporary dataset Dconf = ∅.
14: Train classifier C and generator G on dataset DC

tr and DG
tr, respectively.

15: return classifier C and generator G.

B DISCUSSIONS OF HYPER-PARAMETERS

B.1 HYPER-PARAMETER thr

For classifier and generator. The pseudo-labels given by the classifier may be wrong and not all
of the generated samples are high-quality. As a result, there may be some label noises. When we
assign a pseudo-label to a sample, intuitively, a high Softmax score means less probability of being
classified incorrectly. Therefore, to mitigate the label noises, we introduce the hyper-parameter thr
to decide whether an image could be used as a training sample for classifier and generator.

For representation model. Before we perform fairness-aware contrastive learning, we first prepare
contrastive sample pairs using the trained generator. Then we remove some low-confidence gener-
ated samples, since there are a few low-quality generated samples with wrong sensitive attributes,
which may introduce bias in the training process of the representation model. Specifically, we com-
pute the average Softmax score for each pair of contrastive samples, and the sample pairs with low
average Softmax scores (less than thr) will be removed.

Effect of thr. To explore the effect of hyper-parameter thr, we do ablation studies by setting
thr to different values. As shown in Table 5, we can observe that the model’s Equal Odds (EO)
gradually decreases with the increase of thr. This experimental phenomenon is consistent with our
expectation, since large values of thr guarantee the correctness of the sensitive attributes of the
training samples. However, the increase of thr results in a slight decrease in accuracy, which may
be due to that the number and diversity of training samples is reduced.

How to choose thr? There is no criterion to choose thr, since the datasets, generative models,
training algorithms and requirements are not invariant. However, we can randomly sample from
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Table 5: Ablation studies of different values of hyper-parameter thr on CelebA dataset. We set Male
as sensitive attribute and Attractive as target label.

Method FairCL SimCLR
thr 0.99 0.90 0.80 0.00 /

Ratio of removed data (%) 28.4 20.0 11.6 0.0 0.0
Accuracy (%) (↑) 75.0 75.3 75.8 76.7 77.1

Equal Odds (EO) (↓) 15.8 16.8 18.0 20.2 36.2

the data at different thr to assess the quality of the data at different thr. In this paper, we set
thr = 0.9 to balance the fairness and accuracy. In practice, we recommend that the users who are
very concerned about fairness set the thr to a large value.

B.2 HYPER-PARAMETER α

We introduce the hyper-parameter α to control the trade-off between accuracy and fairness for our
proposed algorithms. As shown in Table 3, a larger scaling parameter α can yield a fairer model but
with lower accuracy.

B.3 HYPER-PARAMETER τ

Hyper-parameter τ is a temperature parameter, which is widely used in contrastive loss computation
for sharper distribution of the Softmax output. In this paper, we follow the setting in (Chen et al.,
2020a) and set τ = 0.5.

C EXPERIMENTS OF FAIRNESS-ACCURACY TRADE-OFFS

The classification results of our proposed method and the compared unsupervised baseline methods
are reported in Table 1. There are two main metrics we focus on: fairness (EO) and accuracy. From
the perspective of multi-objective optimization, we can observe that our FairCL strongly Pareto-
dominates CGL+VFAE and CGL+GRL, since FairCL outperforms them in terms of both fairness
(EO) and accuracy. However, we find that FairCL achieves the best performance in terms of fair-
ness, while SimCLR achieves the best accuracy. To further compare these two methods in terms of
the trade-off between fairness and accuracy, we plot the trade-off curves according to the EO and
accuracy during the training process of the linear classifier, as shown in Figure 6. Obviously, our
method has a lower EO value when the two achieve the same accuracy, which means that our FairCL
has a better trade-off between accuracy and fairness.

D BEYOND FAIRNESS: GENERAL BIAS MITIGATION ON NON-FACIAL
DATASET

To explore how our proposed framework performs on general bias mitigation, we run different un-
supervised algorithms on a non-facial dataset, Dogs and Cats (dog, 2013), which is commonly used
in the previous debiasing studies.

Dataset. Dogs and Cats dataset consists of dog and cat images. Kim et al. (2019) provide additional
annotations for partial images about whether the color of dog/cat is dark or not. We set color as the
sensitive attribute, and the task is to predict if the image is a cat or a dog. We construct a biased
training set consisting of 2,000 bright cat images, 4,000 bright dog images, 4,000 dark cat images,
and 2,000 dark cat images. The Pearson correlation coefficient between target label and sensitive
attribute is -0.33, so that the model may learn the spurious correlation between species and colors.
We assume that 10% of the samples are annotated with sensitive attributes. The test set is balanced
(unbiased) and consists of 2,400 images. We use the same experimental setups (training strategies,
models, and hyper-parameters) as before.

Experimental Results. We randomly select some generated contrastive sample pairs. as shown in
Figure 7. We can observe that the generated contrastive samples remain most of the visual details
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(a) T=Attractive, S=Male (b) T=Big Nose, S=Male (c) T=Bags Under Eyes, S=Male

(d) T=Attractive, S=Young (e) T=Big Nose, S=Young (f) T=Bags Under Eyes, S=Young

Figure 6: Fairness-accuracy trade-off curves on CelebA dataset. Our FairCL achieves a better trade-
off between accuracy and fairness.
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Figure 7: Illustration of contrastive samples generated by sensitive attribute editor.

of the original images, but have different sensitive attributes (colors). We report the classification
results in Table 6. Our proposed FairCL improves fairness compared to SimCLR with only a slight
drop in accuracy. Moreover, FairCL outperforms all baseline methods in terms of both fairness
and accuracy. The above experimental results illustrate that our FairCL can prevent representation
models from learning spurious correlations.

Table 6: Unsupervised classification results on Dogs and Cats dataset. To evaluate the quality
of representation, we measure equalized odds (EO) and top-1 accuracy (Acc.) of trained linear
classifier on Dogs and Cats dataset with 10% annotated sensitive attributes. A smaller EO means a
fairer model. T and S represent target and sensitive attributes, respectively.

T=species, S=color EO (↓) Acc. (↑)
CGL+VFAE 10.3 85.9
CGL+GRL 9.7 86.6

SimCLR 12.4 88.1
FairCL (Ours) 8.2 87.5
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Figure 8: Illustration of contrastive samples generated by sensitive attribute editor on UTK-Face
dataset. The generative model is trained by HFGI. (+)/(-) represents that the samples are generated
based on the input images plus/minus sensitive attribute-related (race-related) direction.

E COMPATIBILITY WITH GENERATIVE FRAMEWORKS

Our proposed fairness-aware contrastive learning is compatible with different generative meth-
ods. The descriptions of the contrastive sample generation in the previous section are based
on AttGAN (He et al., 2019). To verify the compatibility, we use another generative method,
HFGI (Wang et al., 2022), to generate contrastive sample pairs.

Contrastive Sample Generation based on HFGI. We design a simple pipeline of contrastive sam-
ple generation based on HFGI, which consists of three steps: generator training, classifier training,
and image editing. First, we train an inverse GAN using the same experimental settings as HFGI. In
this process, we do not need to use any data annotations. Secondly, we train a robust classifier using
JTT (Liu et al., 2021) as the training strategy with limited sensitive attributes. The trained classi-
fier is used to assign pseudo-sensitive labels to the unlabeled images. Finally, we get the editing
direction w.r.t. sensitive attribute based on InterFaceGAN (Shen et al., 2020). Then we can generate
contrastive sample pairs based on the editing direction. We recommend the readers to read the above
references for implementation details.

Experimental Setup. We use UTK-Face as the dataset. We set race as the sensitive attribute. For
convenience, we consider a binary setting, and put white people in one group and other races in
another. We would like to state that this grouping is only due to the large proportion of white people
in the dataset. The task is to predict the gender for a given image. We construct three unbalanced
settings where the Pearson correlation coefficients of race and gender in the training dataset are -0.2,
-0.4, and -0.6, respectively. The size of training set is 10,000 in each setting. We also construct
a balanced (unbiased) test set with 3,200 images for each setting. We assume that 10% of the
samples are annotated with sensitive attributes. To demonstrate the compatibility of our framework
to contrastive learning algorithms, we compare BYOL and FairCL* on this dataset, neither of which
requires negative samples. Other experimental setups are the same as before.

Experimental Results. We randomly select some generated contrastive sample pairs, as shown in
Figure 8. We report the classification results in Table 7. We observe that our proposed FairCL*
improves BYOL in terms of both fairness and accuracy in three settings, which illustrates that the
representation models trained by our framework is more effective and fairer. We also find that the
visual quality of the generated images is not as high as we would like, and the racial changes in
the edited images are not very obvious. However, the classification results of our method are still
greatly improved compared with the baseline, which means that a good representation model can be
learned by our proposed framework even the quality of the generated samples is not very high.

Discussion. Our proposed framework is based on the generation techniques to prepare contrastive
sample pairs for fairness-aware contrastive learning. The above experimental results demonstrate the
compatibility of our framework to different generative methods. Moreover, we would like to em-
phasize that the goal of our study is to learn fair and effective representations, and non-high-quality
generative samples do NOT mean bad representations. At last, we believe that the applicability of
our method will get stronger and stronger with the development of generation techniques.
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Table 7: Unsupervised classification results on UTK-Face dataset based on HFGI generative method.
The sensitive attribute is race, and the task is to predict the gender. We consider three settings with
different Pearson correlation coefficients of the training set. The test set is balanced w.r.t. both race
and gender. Our FairCL* improves BYOL in terms of fairness and accuracy in all settings.

T=gender, S=race Pearson=-0.2 Pearson=-0.4 Pearson=-0.6
Method EO (↓) Acc. (↑) EO (↓) Acc. (↑) EO (↓) Acc. (↑)
BYOL 2.1 89.4 8.7 87.5 13.1 86.4

FairCL* (Ours) 1.7 90.6 5.6 89.6 8.9 89.7
Improvement -0.4 1.2 -3.1 2.1 -4.2 3.3

Table 8: Overview of Experimental Settings. Pearson correlation coefficient measures the linear
correlation between target variables and sensitive attributes. For CelebA dataset, we do not use
Wearing Lipstick, Heavy Makeup, Mustache, or No Beard as the target variables, since their sample
sizes of minority groups are less than 50 (<0.25%) in test set.

Dataset Generative
method

Sensitive
attribute

Target
variable

Pearson
coefficient

Ratio of
labeled data

CelebA AttGAN

Male
Attractive -0.40

5%

Big Nose 0.37
Bags Under Eyes 0.30

Young
Attractive 0.39
Big Nose -0.29

Bags Under Eyes -0.23

CelebA \

Male

Wearing Lipstick -0.79

\

Heavy Makeup -0.67
Mustache 0.25
No Beard -0.52

Young

Wearing Lipstick 0.25
Heavy Makeup 0.25

Mustache -0.14
No Beard 0.12

UTK-Face

AttGAN Age Gender -0.30 5%

HFGI Race Gender
-0.20

10%-0.40
-0.60

Dogs and Cats AttGAN Color Species -0.33 10%

F DETAILS OF EXPERIMENTAL SETUP

Overview of Experimental Setup. The overview of our experimental settings is shown in Table 8.
For CelebA dataset, the sample sizes of Wearing Lipstick, Male, Heavy Makeup, Male, Mustache,
Female, and No Beard, Female in test set are 47, 22, 0, and 10, respectively. All of them have a
fraction less than 0.25% in the test set, so we do not use these attributes in experiments.

Implementation Details. We resize the images of CelebA and UTK-Face to 128×128, and use a
5-layer CNN (Krizhevsky et al., 2017) as the encoder of generative model. Besides, the decoder also
has 5 layers. Since the quality of some generated samples may not be good enough, we select images
based on confidence. Specifically, we use the trained classifier to predict the sensitive attributes
of the generated images, and then remove some low-confidence samples whose Softmax output
scores are lower than thr = 0.9. Besides, to further improve the quality of training data, we use
high-confidence of original images instead of corresponding generated samples. We use the same
random data augmentation strategies as (Chen et al., 2020a). The projection head P (·) is only used
in contrastive learning, and then we remove it. We use the ResNet-18 (He et al., 2016) as encoder
model and a MLP as projection head, and train them via weighted fairness-aware contrastive loss
for 100 epochs. Afterwards, we train a linear classifier on top of the frozen representation given by
encoder F (·) for 10 epochs on the training dataset.
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