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ABSTRACT

Infectious keratitis is a major cause of visual impairment
and a common blinding eye disease. Deep learning based
prior researches mainly regard infectious keratitis diagnosis
as a classification task on the slit-lamp images of single-
visit. However, in real clinical applications, it is critical to
analyze the lesion evolution characteristics represented by
time-varying features over multiple-visits. To bridge this
gap, in this paper, we focus on the problem with sequential
clinical images of patients, and propose a novel disentangled
sequential auto-encoder (DSLC-VAE) algorithm to separate
the time-varying pathological features from the time-invariant
ones for infectious keratitis diagnosis. Specifically, a infer-
ence model is exploited to generate time series of the shape
and appearance of corneal lesions to represent keratitis pro-
gression, which are combined with location-related features
to identify keratitis pathogen. Moreover, we construct a local
consistent regularizer with a self-supervised task to enhance
the consistency of the time-varying features across differ-
ent infectious keratitis. Extensive experiments on real world
dataset demonstrate superiority of our DSLC-VAE on both
representation disentanglement and diagnosis accuracy.

Index Terms— Disentangled Representation Learning,
Sequential Learning, Variational Autoencoder, Local Consis-
tency Constraint, Infectious Keratitis

1. INTRODUCTION

Infectious keratitis [1, 2] is a common blinding eye disease
worldwide and a major cause of visual impairment. As shown
in Fig.1, Bacterial Keratitis (BK), [3], Fungal Keratitis (FK)
[4], Herpes Simplex Virus Stromal Keratitis (HSK) [5] and
Acanthamoeba Keratitis (AK) [6] are the most common ker-
atitis. Early detection and prompt medical intervention are
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Fig. 1. Examples of four categories of corneal diseases, in-
clude bacterial keratitis (BK), acanthamoeba keratitis (AK),
fungal keratitis (FK), and herpes simplex viral stromal ker-
atitis (HSK), among which the manifestations of the diseases
are subtle for identification.

required to halt the disease progression[3, 7]. Otherwise ker-
atitis can rapidly worsen over time, potentially leading to per-
manent vision loss or even corneal perforation [8, 9, 10]. In
current clinical applications, the average diagnosis accuracy
of keratitis is about 50% [11]. Therefore, It is vital to explore
further ways for higher diagnostic accuracy.

Recently, many deep learning solutions treating infectious
keratitis diagnosis as a image classification problem [11, 12]
have been proposed by inputting the slit-lamp image of pa-
tient’s single visit and predicting its category (e.g., BK, AK,
FK, HSK as shown in Fig.1). The SOS [11] method imi-
tated the way ophthalmologists making diagnosis intuitively,
they extracted the image features through a sequential learn-
ing mechanism from the center of the lesion to the surround-
ing area. Fang et al. proposed the VCEC [12] focus on the
interpretability of infectious keratitis diagnosis by mining the
interpretable visual concept of the clinical image. However,
these methods ignored the clinical practice of ophthalmol-
ogists: do detection and treatment on multiple-visit record.
[9, 13]. It would be more practical to develop a model to
analyze patient’s multiple-visit record(i.e., sequential clinical
images).
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Fig. 2. The framework of our proposed model. Feed the sequential images into the inference model to obtain the manifold
posterior of a time-varying latent variable {q (zt | x≤t)}Tt=1 and the posterior of a static latent variable q (zo | x1:T ). Then,
from the corresponding posteriors resample variables zo and z1:T and concatenate them to feed into the decoder to generate
reconstructed sequential images. Local consistency regularizer is imposed on time-varying latent variable to encourage the
representation disentanglement.

In this paper, we focus on the problem of infectious ker-
atitis diagnosis by inputting the sequential clinical images of
patients and predicting its category. From the experience of
ophthalmologists [8, 9, 10], we know the key to diagnose in-
fectious keratitis is the time-varying pathological character-
istics cross the sequential clinical images. Inspired by this,
we propose a disentangled sequential auto-encoder with local
consistency (DSLC-VAE) to learn the disentangled represen-
tations of time-varying and time-invariant pathological char-
acteristics for infectious keratitis diagnosis. Specifically, we
learn the time-varying and time-invariant features by combin-
ing the consensus pattern of sequential images and specific
texture of single frame, which leads to the generation of time
series of the shape and visual appearance of lesions to rep-
resent keratitis progression. Furthermore, they are combined
with location-related features to classify keratitis pathogen.

Considering the consistency of the time-varying features
across different infectious keratitis, we utilize local consis-
tency regularizer as a self-supervised task to further disentan-
gle stable pathological factors from the time-varying features.
Experimental results on real world dataset demonstrate supe-
riority on both representation disentanglement and diagnosis
accuracy.

The contributions of the paper include: 1) We study a
sequential disentangled representation problem on the real
medical multiple-visit application of infectious keratitis clas-
sification. 2) We propose a novel disentangled sequential
auto-encoder with local consistency (DSLC-VAE) on se-
quential clinical images. Our approach achieve state-of-the-
art diagnosis accuracy. 3) Extensive experiments demonstrate
that our extracted time-varying pathological characteristics
are practical and precise on keratitis diagnosis.

2. THE PROPOSED APPROACH

2.1. Notation Definition

Let D = {Xi}Ni=1 denotes the dataset ofN independent sam-
ples X , where X ≡ x1:T = (x1, x2, ..., xT ) indexes a se-
quence of clinical images collected from patient’ T follow-up
visits. A variational autoencoder is applied to extract the low-
dimensional latent variable Z from X . In order to remove
the confounding information irrelevant to diagnosis, the latent
variable Z can be further disentangled into a time-invariant
factor zo and a time-varying factor z1:T where zo refers to the
the ocular surface structure and the complications of keratitis
and z1:T refers to the pathological features varied over time.
pathological features at time t ∈ {1 : T} named zt helps to
improve the accuracy of downstream tasks such as classifica-
tion of infectious keratitis.

2.2. Disentangled Sequential Autoencoder

2.2.1. generative model

The generative model generates high-dimensional sequence
image data close to the original sequence data when the
two low-dimensional latent variables z1:T and zo are known.
According to whether the generated results are similar to
the original high-dimensional data, we can effectively test
whether the construction of the low-dimensional manifold
space is reasonable. To achieve this goal, we define the fol-
lowing probabilistic generative model by assuming that z1:T
and zo are independent:

p (X,Z) = p (zo)

T∏
t=1

p (xt | zo, zt) p (zt | z<t) (1)

3894

Authorized licensed use limited to: Zhejiang University. Downloaded on November 23,2022 at 01:45:43 UTC from IEEE Xplore.  Restrictions apply. 



For the prior distributions, we choose zo ∼ N (0, 1), and
zt | z<t ∼ N (µ (z<t) , σ

2 (z<t)) where µ(·) and σ(·) are
modeled by Bi-LSTM.

2.2.2. inference model

In order to obtain a low-dimensional manifold space by reduc-
ing the high-dimensional data space from the original sequen-
tial dataset, we build an inference model. To make full use of
the contextual information of sequential data, we choose se-
quential variational autoencoder for feature extractor model,
the posterior distribution inferred by the model is:

q (Z | X) = q (zo | x1:T )
T∏
t=1

q (zt | x≤t) (2)

zo ∼ N
(
µs(zo), σ

2
s (zo)

)
, zt ∼ N

(
µd(zt), σ

2
d (zt)

)
where

µs(·) and σs(·) are modeled by static variable encoder
ψEncoder
s take the whole sequence as input, µd(·) and σd(·)

are modeled by time-varying recursive encoder ψEncoder
d take

only the previous frame as input.
The variational inference method is applied to fit approxi-

mate posterior distribution q(z|x) from inference model with
our prior hypothesis. Since the q(z|x) is parameterized by
weight set θ in the network, it can be written as qθ(z|x). Simi-
larly, the likelihood distribution p(x|z) from generative model
is parameterized by weight set ψ, hence it can be written as
pψ(x|z). The Kullback-Leibler divergence (KL divergence)
between the approximate posterior distribution qθ and the real
posterior distribution is calculated by

DKL (qθ (z | xi) ∥p (z | xi))

=−
∫
qθ (z | xi) log

(
p (z | xi)
qθ (z | xi)

)
dz ≥ 0

(3)

Through mathematical recurrence, it can be transformed into

log p (xi) ≥−DKL (qθ (z | xi) | p(z))
+ E∼qθ (z | xi) [log pψ (xi | z)]

(4)

Therefore, objective function of sequential VAE is calculated
as the time-varying negative variaional lower bound by ac-
cepting the assumptions of the model, as shown in Eq 5.

LV AE =Eq(z1:T ,zo|x1:T )

[
−

T∑
t=1

log p (xt | zo, zt)

]
+KL (q (zo | x1:T ) | p (zo))

+

T∑
t=1

KL (q (zt | x≤t) | p (zt | z<t))

(5)

2.3. Local Consistency Constraint

Considering that Etiology remains unchanged on patients’
follow-up visits, the extent of the pathogen infiltration de-
termines the morphology and manifestation of lesions at

different progression. Therefore, the pathological factor
is the inherent part of the time-varying factors. Assum-
ing that the dimension of the pathological factor is k , the
time-varying factor z1:T can further be disentangled into in-
variant pathological factor zk1:T . By controlling the value of
low-dimensional pathological factors, we can generate corre-
sponding pathological characteristics and manifestations of
infectious keratitis at different stages of disease progression.
Therefore, we use weakly-supervised disentangled method
[14] to constrain z1:T for different disease stages.

We utilize different disease progression sequential data of
the same patient as a set of data pairs (Xm, Xn). The time-
varying factors extracted from this pair are (zm1:T , z

n
1:T ). Sup-

pose S is a set of low-dimensional variables that do not cause
changes in the pathological characteristics, and S̄ on the con-
trary. Therefore, the true posterior distribution of (Xm, Xn)
should satisfy the following constraints:

p (zi | Xm) = p (zi | Xn) ∀i ∈ S
p (zi | Xm) ̸= p (zi | Xn) ∀i ∈ S̄

(6)

The approximate posterior distribution qψ(ẑ | X) we gen-
erate should also satisfy this alignment relationship. Since the
factor set S is unknown, in order to obtain an estimate of S Ŝ,
We select d−k coordinates with the closest KL divergence in
the approximate posterior distribution produced by the infer-
ence network for (Xm, Xn), where KL divergence is defined
as DKL (qψ (ẑt | Xm) || qψ (ẑt | Xn)), d is the dimension of
(zmt , z

n
t ), and k is the dimension of factors that controls the

pathological characteristics.
To enforce the constraint, we replace each shared coordi-

nate with the mean value τ of the two posterior probabilities
(qψ (ẑt | Xm) , qψ(ẑt | Xn)):

q̃ψ (ẑt | Xm) =

{
τ for ∀i ∈ Ŝ
qψ (ẑt | Xm) otherwise

(7)

and q̃ψ (zt | Xn) is obtained in the same way.

3. EXPERIMENTATION AND RESULTS

3.1. Dataset

Our dataset contains 2284 images from 867 patients. We took
the patients’ images of three consecutive visits as a data sam-
ple. Specifically, the training set is consisted of 255 randomly
selected image sequences of AK, 222 image sequences of
BK, 439 image sequences of FK, and 429 image sequences
of HSK. The testing set is consisted of 64 randomly selected
image sequences of AK, 48 image sequences of BK, 103 im-
age sequences of FK, and 106 image sequences of HSK.

3.2. Implementation details

In the experiments, we set the input sequence length to 3
sheets, the size of image channels to 3×128×128, the batch-
size to 32. We use adaptive moment estimation (Adam) to
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Table 1. The Balanced Accuracy and Macro F1 Score com-
parison of the classification results

Method Balanced Acc Macro F1 Score

Resnet50 0.625 0.619
Resnet101 0.643 0.625
Resnet152 0.633 0.630

Densenet121 0.703 0.696
SOS [11] 0.663 0.659

DS-VAE [15] 0.642 0.623
R-WAE [16] 0.649 0.643

Ours without constraint 0.653 0.650
DSLC-VAE 0.727 0.718

Table 2. The ARI and AMI scores comparison of the cluster-
ing results

Method ARI AMI
zo z1:T zo z1:T

DS-VAE [15] 0.092 0.006 0.123 0.018
R-WAE [16] 0.097 0.011 0.133 0.058
DSLC-VAE 0.102 0.270 0.157 0.359

optimize the learning rate of the optimizer and set it as 0.001.
For the time-invariant latent variable zo, we set its dimension
to 512, and the time-varying latent variable z1:T dimension
to 256. Dimension size of inherent factor of the time-varying
latent variable zk1:T is 128.

3.3. Results and Discussions

3.3.1. Classification Analysis

We adopt Balanced Accuracy and Macro F1 Score as eval-
uating metrics. To validate the benefits of local consistency
constraint, we conduct ablation experiment. The compari-
son results are shown in table 1. We can observe that our
model outperforms baselines by at least 2% on balanced accu-
racy, showing the effectiveness and robustness of our method.
The performance of our model without local consistency con-
straint drops slightly, which means representation disentan-
glement can be encouraged through the self-supervised task
in our model.

3.3.2. Clustering Analysis

The self-supervised task constructed by local consistency
constraint is an important part in our model. To estimate
whether the time-varying features z1:T play a key role in
discriminating pathogenic characteristics of different types of
infectious keratitis, we utilize t-distributed stochastic neigh-
bor embedding (t-SNE) for visualizing the time-invariant
factors zo and the time-varying factors z1:T by giving each

Fig. 3. Clustering results of time-invariant factor zo and time-
varying factors z1:T

data point a location in a two or three-dimensional map.
According to the cluster visualization results shown as

Fig.3, we can find that the time-invariant factor zo, which rep-
resents the ocular surface structure and the complications of
keratitis, does not have clustering characteristics. zo tends to
be the same of one sequential data sample, and tends to be
different between different samples. For z1:T , it represents
the intrinsic pathogenic characteristics, the differences in the
pathogen of infectious keratitis lead to different manifesta-
tions. Thus, z1:T have clustering characteristics.

For a more precise elucidation, we utilize the adjusted
rand coefficient (ARI) [17] and adjusted mutual informa-
tion (AMI) [18] metrics to quantify the clustering results.
Compared with other sequential disentangled algorithms,
The observation as shown in table 2 agrees with our model
design that the representation disentanglement between time-
invariant factor zo and time-varying factors z1:T enables the
discriminator to distinguish between ocular surface structure
and the complications of keratitis with both lesion shape and
disease manifestations, thus in turn improving the classifica-
tion performance of infectious keratitis.

4. CONCLUSION

In this paper, we study the diagnosis of infectious keratitis
with inputting the sequential clinical images of patients and
predicting its category. We utilize the time-varying features
critical in clinical practice to eliminate the confusion leading
to misdiagnosis and propose a disentangled sequential auto-
encoder with local consistency to achieve a better perfor-
mance on the representation disentanglement. The proposed
method disentangles time-varying features (pathological fac-
tors) from time-invariant (confounding factors) in a joint
frame-work of image reconstruction and local consistency
constraint to intensify the learning of time-varying features.
Experiments have verified the superiority of our method and
provide a pathological characteristics disentangled represen-
tation results on the diagnosis of infectious keratitis for future
study.
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