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Abstract—Graph Neural Networks (GNNs) show promising
results for semi-supervised learning tasks on graphs, which
become favorable comparing with other approaches. However,
similar to other machine learning models, GNNs might suffer
from the bias issue because of the distribution shift between
training and testing node distributions. More importantly, the
test node distribution in the graph is generally unknown during
model training in practice. In this paper, we focus on how to
address the bias issue on graphs and learn a graph neural
network model that is robust to arbitrary unknown distribution
shifts. To address this problem, we propose a novel Bias-Aware
Graph Neural Network (BA-GNN) framework by learning node
representations that are invariant across different distributions
for invariant prediction. Specifically, our BA-GNN framework
contains two interactive parts, one for bias identification and the
other for invariant prediction. To learn invariant feature and
aggregated representation, our BA-GNN learns multiple biased
graph partitions and selects feature, neighbor, and propagation
steps for nodes under multiple biased graph partitions. Extensive
experiments show that our proposed BA-GNN framework can
significantly improve different GNNs backbones such as GCN,
GAT, APPNP and GraphSAGE on different datasets.

Index Terms—Graph Neural Network; Distribution Shift

I. INTRODUCTION

Recently, Graph Neural Networks have achieved state-of-

the-art performance across various tasks on graphs, such as

semi-supervised node classification [1]–[4], link prediction [5],

[6] and graph classification [7], [8]. Typically, GNNs ex-

ploit message propagation strategy to learn expressive node

representations by propagating and aggregating the messages

between neighboring nodes. Various message propagation

layers have been proposed, including graph convolutional

layers (GCN) [1], graph attention layers (GAT) [2] and many

others [4], [5], [9]–[12]. GNNs [1], [2], [9] have achieved

great success in many real world applications across different

domains, such as recommender system [13], molecule design

[14], financial fraud detection [15], and traffic prediction [16].

Despite the great performance of GNNs, the majority of

existing methods assume that the training and testing data

are independent and identically distributed (i.e., i.i.d assump-

tion), while for many real-world graphs and applications,

The first two authors contributed equally as joint first authorship.
Kun Kuang is the corresponding author, kunkuang@zju.edu.cn.

Fig. 1: Schematic diagram of the bias in node classification

problem. The shape denotes the label of each node. The shape

circle is labeled as “machine learning”, and the shape rectangle
is labeled as “computer architecture”. The node with high-

degree is more likely to be labeled and used as training nodes,

however, in the testing, the node with low-degree need to be

classified, leading to the distribution (of degrees and label)

shifts between training and testing.

the distributions between training and testing data could be

different. For instance, in the citation network, the papers

with high citations (i.e., high-degree nodes) will be more

likely to be labeled and used as training nodes. However, in

the testing, we generally have many low-degree nodes that

need to be classified. In addition, machine learning (ML)-

related papers are more likely to be labeled as training nodes

compared to Computer Architecture-related papers. However,

a GNN model trained in this citation network may see a

vastly different distribution of labels: we have many computer

architecture-related papers that need to be classified. Both

degree and label shifts between training and testing distri-

butions can significantly degrade model performance as we

show later. Figure 1 shows the illustration of degree and label

distribution shifts in graph. As shown in the Figure 1, A is the

high-degree node with higher influence, which can dominate

the training/learning of GNNs. However, the degree of test

nodes C and D differ from nodes in training, and most of

unlabeled nodes are at the fringes of the graph. The difference

of degree distribution can hurt the message-passing mechanism

3012

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00271

20
22

 IE
EE

 3
8t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 D
at

a 
En

gi
ne

er
in

g 
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
02

71

Authorized licensed use limited to: Zhejiang University. Downloaded on January 24,2024 at 14:02:08 UTC from IEEE Xplore.  Restrictions apply. 



1 500 1000 1500 2000 2500
Node rank by degree

0

50

100

150
N

od
e 

D
eg

re
e Cora

CiteSeer
PubMed

(a) Degree distribution.

2 4 8 16 32 64
Degree

0.55

0.70

0.85

1.00

Ac
cu

ra
cy

Cora
CiteSeer
PubMed

(b) Classification performance.

0 2 4 6 8
Label rank by nodes

0

110

220

330

N
od

es
 N

um
be

r

Cora
CiteSeer
Amazon

(c) Label distribution.

0 2 4 6 8
Label rank by nodes

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Cora
CiteSeer
Amazon

(d) Classification performance.

Fig. 2: Empirical investigation of bias in graphs. (a) shows the degree distribution of the Cora, CiteSeer and PubMed datasets.

The node degrees are characterized by a long-tailed distribution, where the performance of nodes with different degree varies

considerably. (c) shows the label distributions, and the performance of nodes with different labels is shown in (d).

of GNNs. Obviously, GNNs which train on high-degree nodes

results in unsatisfying or even poor prediction performance on

low-degree nodes. Moreover, as shown in Figure 1 the label

of most labeled nodes in training graph is circle, which may

warp GNNs biased towards circle nodes. However, the label

of test nodes C and D is rectangle rather than circle. Such

label-related distribution shift may also degrade the prediction

performance on test environments.

Empirical investigation of bias in graph. To further verify

and study the distribution shift caused by the bias, we conduct

empirical investigation of two common distribution shifts:

label-related distribution shift and degree-related distribution

shift. Figure 2 (a) shows the degree distribution of the Cora,

CiteSeer and PubMed datasets. The node degrees are char-

acterized by a long-tailed distribution, where a significant

fraction of the nodes belong to the tail with very low de-

grees. Generally, the node degrees varies considerably across

the graph and are not uniformly distributed, which leads to

degree-related distribution shift between training and testing.

In addition, Figure 2 (b) shows that the performance of nodes

with different degree vary considerably across the graph. The

label distributions of datasets are shown in Figure 2 (c), which

are not uniformly distributed. GNNs rely on message-passing

mechanism, and aggregate the information from neighbors to

learn representations. Thus, the nodes where their label has

fewer nodes receive less information during the aggregation,

which leads to poor performance as shown in Figure 2 (d).

More importantly, the test distribution is always unknown

during GNNs optimizing on training graph data, where the

unknown distribution shift might be caused by node labels,

node degrees, or both. Generally, the unknown distribution

shift between training and testing would render traditional

GNNs over-optimized on the labeled training samples and ren-

der their predictions error prone on test samples, resulting in

variant predictions. Therefore, learning GNNs that are resilient

to distribution shifts and able to make invariant predictions on

graphs will be important for real-world applications.

In this paper, we focus on the bias issue on graph and study

a novel problem of learning de-biased graph neural networks

for unknown testing distributions. To address this problem, we

are still facing the following challenges: 1) How to address
bias problem in graph tasks. Previous methods [17]–[36] are

for bias problem with independent and identically distributed

(i.i.d) data. [26], [37] propose bias aware learning method via

heterogeneous risk minimization. However, graph-structured

data is non i.i.d, and the properties of graph-structured data

are not explicitly utilized in these methods. Some works [38]–

[44] focus on graph-level task or one specific bias in node-

level task, which could not address agnostic bias where biases

may be label-related bias, degree-related bias or both in node-

level task. 2) How to overcome bias problem in unknown
test environment. The testing distribution is always unknown

during GNNs optimizing on training graph data, previous

works [38]–[44] ignore the bias in unknown test environments.

In an attempt to address these challenges, in this work,

we propose a novel Bias-Aware Graph Neural Network (BA-

GNN) framework that aims to learn invariant graph repre-

sentations for robust prediction across unknown testing dis-

tributions. Our BA-GNN framework contains two interactive

parts, the frontend MB for bias identification and the backend

MI for invariant prediction. To learn invariant feature and

aggregated representation, MB learns multiple biased graph

partitions, and MI selects feature, neighbor and propagation

step for nodes under multiple biased graph partitions.

We compare our BA-GNN framework with a bunch of

generic SOTA GNNs and methods that are specifically de-

signed for mitigating selection biases on various public graph

benchmarks. We concern both traditional task-specific evalu-

ation metrics and protocols that are especially designed for

invariant learning. Extensive experimental results demonstrate

the capability of our framework on learning GNNs that makes

invariant predictions on graphs with unknown testing distribu-

tion. In summary, the contributions of this paper are:

• We study the problem of learning GCNs with bias for

invariant prediction across unknown test environments,

which is less explored in the literature.

• We propose a novel framework Bias-Aware Graph Neural
Network (BA-GNN) for GNNs, which learns invariant

aggregated presentation for each node, and make invariant

prediction on various unknown test environments.

• Extensive experiments show that our proposed BA-GNN

framework can significantly improve different GNNs

backbones such as GCN, GAT, APPNP and GraphSAGE

on different datasets and settings.

The remainder of this paper is organized as follows. We
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review about the related work in Section 2. We present

problem formulation for the node classification problem with

bias on unknown test environments in Section 3. It is followed

by the elaboration of the proposed BA-GNN approach in

Section 4. In Section 5, we theoretically analyze our BA-GNN.

In Section 6, we present extensive experimental studies on

various graph datasets. Finally, the conclusion of this paper

and discussion of future works are presented in Section 7.

II. RELATED WORKS

A. Graph Neural Networks

GNNs have achieved great success for modeling graph

structured data. Generally, GNNs can be categorized into

two categories, i.e., spectral-based and spatial-based. Spectral-

based GNNs define graph convolution based on spectral graph

theory [3], [12], [45]. GCN [1] further simplifies graph con-

volutions by stacking layers of first-order Chebyshev poly-

nomial filters together with some approximations. Spatial-

based methods directly define updating rules in the spatial

space. For instance, GAT [2] introduces the self-attention

strategy into aggregation to assign different importance scores

of neighborhoods. With the similar intuition, GraphSAGE [5]

extends prior works in the inductive setting. There is a lot

of spatial-based methods [2], [43], [46]–[48] are proposed to

capture different neighborhood information.

The spectral based GNNs usually require to compute the

Laplacian eigenvectors or the approximated eigenvalues as

suggested by spectral theory, and these methods are ineffi-

cient on large scale graph. Different from the spectral based

ones, the spatial-based GNNs [49]–[51] attempt to directly

capture the spatial topological information and use the mini-

batch training schema. For example, DCNN [49] combines

graph convolutional operator with the diffusion process, and

Veličković et al. propose the graph attention network [50] with

the self-attention mechanism on the neighbors of nodes and

assign different weights during the aggregation process.

B. Bias in Machine Learning

Recently, many methods are proposed to address bias caused

by distribution shift for general machine learning problems

[17]–[20]. There are mainly three branches of methods for

the selection bias caused by distribution shift, namely do-

main adaptation [17]–[21], distributionally robust optimization

(DRO) [52] and invariant learning [22]–[25], [32]–[36], [53].

Domain adaptation aims to reduce bias by learning domain-

invariant representations, which is learned by minimizing a

certain discrepancy between distributions of source and target

features extracted by a shared representation learner [17]–

[20]. [18] put forward the domain adversarial neural network

(DANN). A domain discriminator is trained to distinguish

source features from target features and a feature extractor to

confuse the discriminator. Since then, a series of works have

appeared and achieved significantly better performance. [19]

proposed an architecture that employed asymmetric encodings

for target and source data. [54] presented a principled frame-

work that conducted the adversarial adaptation models using

conditional information. [20], [55] unified pixel-level and

feature-level adversarial learning for domain adaptation. [17]

presented a multi-modal domain adaptation framework that

conducted the adversarial adaptation for multi-modal tasks.

Distributionally robust optimization methods aim to mini-

mize the worst-case risk, where uncertainty set of the observed

training distribution and potential testing distribution [52],

[56]–[58]. However, the uncertainty set should be pretty large

to better capture the testing distribution, which is not realistic

in many real-world settings [52], [56].

Invariant learning methods presuppose the presence of

causally invariant correlations between some predictors and

the target value to overcome the selection bias caused by

distribution shift problems without any prior information. [24]

choose features that have a consistent predictive association

with the target across environments. [25] improves [22] by

reducing its numerous environment restrictions. [25] provides

a two-stage method, in which a pre-provided biased model is

used to infer the environment division, followed by invariant

learning on the inferred environments.

As summary, these methods mentioned above are generally

adopted from general machine learning tasks, where the data

is independent and identically distributed (i.i.d). However,

graph-structured data is non i.i.d, and the properties of graph-

structured data are not explicitly utilized in these methods.

Recent works explore GNN’s extrapolation ability to ad-

dress bias caused by distribution shift. [38] proposes to learn

a static adjacency matrix for a given graph and expects that the

learned adjacency matrix captures general relational patterns

that are free from selection biases. [39] suggests that encoding

appropriate non-linearity in architecture and features can help

extrapolation. [40] show how subgraph densities can be used to

build size-invariant graph representations. [41] propose a Self-

Supervised Learning (SSL) task aimed at learning represen-

tations of local structures to overcome the size-generalization

problem. However, they concentrate on graph-level tasks (e.g.,

graph classification), where each input instance is a graph

(usually with less than 100 nodes) and one dataset contains

massive graphs for training and testing.

Recent works study the degree bias in node-level task.

GNM [42] confronts a related problem named non-ignorable

nonresponse, which indicates that the unlabeled nodes are

missing not at random (MNAR). DEMO-Net [43] explicitly

capture the graph topology integrated with node attributes. SL-

DSGCN [44] mitigate the degree-related biases of GCNs from

model and data aspects. However, these works only focus on

degree bias, and ignore other bias. Moreover, these methods

could not address bias in unknown environments.

Imbalanced graph classification [59], [60] focuses to the

quantity or topology imbalance problems on graph [61]–

[63], where both quantity or topology imbalance problems

cause label-related bias. Different from them, our BA-GNN

studies the agnostic bias rather than specific bias in testing

environments and biases can be label-related or degree-related.
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III. PRELIMINARIES

Invariant Risk Minimization. [22] propose invariant risk

minimization (IRM), augmenting empirical risk minimization

to learn a data representation free of spurious correlations.

They assume there exists some partition of the training data X
into environments e ∈ E , and that the model’s predictions take

the form Y e = w�φ(Xe). IRM aims to learn a representation

φ for which the optimal linear classifier, w, is invariant across

e, where optimality is defined as minimizing the empirical risk

Re. We can then expect this representation and classifier to

have low risk in new environment e.

min
φ:X→R

d

w∈R
d

∑
e∈E

Re(w�φ(Xe))

s.t. w ∈ arg min
w̄∈Rd

Re(w̄�φ(Xe)) ∀e ∈ E .
(1)

Previous invariant learning methods [18]–[20], [22]–[26],

[52], [56] are for bias problem with independent and identi-

cally distributed (i.i.d) data, however, graph-structured data is

non i.i.d, and the properties of graph-structured data are not

explicitly utilized in these methods. In this paper, we aim to

learn invariant graph representations across unknown testing

environments.
Problem Formulation. An input graph G = (A,X, Y )

contains two-folds information: an adjacency matrix A and

node features X. A ∈ {0, 1}N×N is the adjacency matrix

of G. The (i, j)-th element Aij = 1 if there exists an edge

between node vi and vj , otherwise Aij = 0. Furthermore,

X = [x1,x2, . . . ,xN ] ∈ R
N×d denotes the features of nodes,

where xn is the d-dimensional feature vector of node vn.

Following the common semi-supervised node classification

setting [1], [2], only a small portion of nodes are associated

with observed labels Y o = {y1, y2, . . . , yo}, where yn denotes

the label of node vn. Following [22], we define a graph

environment as the joint distribution PXAY on X ∗A ∗Y and

use E denote the set of all environments. For each environment

e ∈ E , we have a graph dataset Ge = (Xe, Ae, Y e), where

Xe ∈ X are node features, Ae ∈ A is the adjacency matrix,

and Y e ∈ Y is the response variable (e.g., node labels

in the node classification problem). The joint distribution

P e
XAY of Xe, Ae and Y e can vary across environments, i.e.,

P e
XAY �= P e′

XAY for e, e′ ∈ E , and e �= e′. In this paper,

we aim to learn node representations based on which we can

make invariant predictions across environments with various

unknown biases.
Node classification problem with bias on unknown

test environments. Given a training graph Gtrain =
{Atrain , Xtrain , Ytrain }, the task is to learn a GNN gθ(·) with

parameter θ to precisely predict the label of nodes on differ-

ent unknown test environments {G1
test ,G2

test , · · · ,Ge
test }, where

Ge
test = {Ae

test , X
e
test , Y

e
test }.

IV. METHODS

A. Graph Neural Networks
It has been observed that a broad class of graph neu-

ral network (GNN) architectures followed the 1-dimensional

Weisfeiler-Lehman (WL) graph isomorphism test [64]. From

the perspective of WL isomorphism test, they mainly consist

of the following crucial steps at each iteration of feature

aggregation:

• Feature initialization (label initialization): The node fea-

tures are initialized by original attribute vectors.

• Neighborhood detection (multiset-label determination): It

decides the local neighborhood in which node gathers

the information from neighbors. More specifically, a seed

followed by its neighbors generates a subtree pattern.

• Neighbors sorting (multiset-label sorting): The neighbors

are sorted in the ascending or descending order of degree

values. The subtrees with permutation order of neighbors

are recognized as the same one.

• Feature aggregation (label compression): The node fea-

ture is updated by compressing the feature vectors of the

aggregated neighbors including itself.

• Graph-level pooling (graph representation): It summa-

rizes all the node features to form a global graph rep-

resentation.

We would like to point out that graph neural networks would

learn the node or graph representation using continuous node

attributes, whereas WL algorithms update the node attributes

by directly compressing the augmented discrete attributes.

Taking 1-hop neighborhood N(v) = {u|(v, u) ∈ E} into

consideration at each iteration, the following node-level graph

neural network variants have the same feature initialization and

neighborhood detection on learning node representation. And

when element-wise average or max operations are used for

feature aggregation, graph neural networks would be invariant

to the order of neighbors.

Graph Convolutional Network (GCN) [1]:

hk
v = σ

(∑
u∈{v}∪N(v)

âvuW
khk−1

u

)
(2)

where Â = (âvu) ∈ R
n×n is the re-normalization of the

adjacency matrix A with added self-loops, and W k is the

trainable matrix at kth layer. It is essentially a weighted feature

aggregation from node neighborhood.

B. Bias-Aware Graph Neural Network

Despite the great performance of GNNs, some distribution-

specific patterns might warp the GNN biased towards a

globally sub-optimal solution since mostly yield distribution

shift from the training graph distribution and the testing data

distribution in real-world applications.

However, it is impossible to figure out the node classifi-
cation problem with bias on unknown environments without

any prior knowledge or structural assumptions, since one

cannot characterize the unseen latent environments in provided

environments.

In graph data, due to the neighborhood aggregation pro-

cess, each neighbor node contributing to the final aggregated

representation can be viewed as a property of the root node.

Thus, we should consider all invariant properties of the target

node, such as feature, edge and propagation step. In invariant
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Fig. 3: The framework of BA-GNN. BA-GNN aims to learn invariant graph representations. It contains two parts: Bias-Aware
Environment Clustering for bias identification and Invariant Graph Learning for learning invariant aggregated representation.

graph learning, we have assumption based on a commonly

used assumption in invariant learning literature [22]–[26]:
Assumption 4.1: There exists random variable Φ∗(X,A)

such that the following properties hold:
a. Invariance property: for all e, e′ ∈ supp(E), we have

P e(Y |Φ∗(X,A)) = P e′(Y |Φ∗(X,A)) holds.
b. Sufficiency property: Y = f(Φ∗) + ε, ε ⊥ X .
However, as shown in the Figure 1, there are degree and

label biases between training and testing. The environments

need to be subtly uncovered, as indicated by Theorem 4.1,

not all environments are helpful to tighten the invariance set.
Theorem 4.1: For environments E and corresponding in-

variance set IE , if the maximal invariant model Φ in newly-

added environment enew with distribution Pnew(X,A, Y ) has

Pnew(Y |Φ) = P e(Y |Φ), the invariance set constrained by

E ∪ enew is equal to IE .
Besides Assumption 4.1, we make another assumption on

the existence of bias in training data as:
Assumption 4.2: Bias−Aware Assumption.

For random variable pair (X,A,Φ∗) and Φ∗ satisfying As-

sumption 4.1, using functional representation lemma [65],

there exists random variable Ψ∗ such that X = X(Φ∗,Ψ∗),
then we assume P e(Y |Ψ∗) can arbitrary change across envi-

ronments e ∈ supp(E).
With notions mentioned above, in this work, we propose a

novel Bias-Aware Graph Neural Network (BA-GNN) frame-

work that aims to learn a de-biased graph representation.

Our BA-GNN framework contains two interactive parts, the

frontend MB for bias identification and the backend MI

for invariant graph learning. BA-GNN leverages the mutual

promotion between the two steps via joint optimization. The

general framework is shown in Figure 3.
Given the graph data, it starts with the bias identification

module MB leveraging the learned variant representation

Ψ(X) and variant adjacency matrix Ψ(A) to generate bias

environments Elearn. Then the learned environments are used

by invariant graph learning module MI to learn the Φ(X,A)
as well as the invariant graph learning model GNN(Φ(X,A)).
After that, we derive the variant Ψ(X,A) to further boost

the module MB , which is supported by Theorem 4.1. The

boosting operation is that more variant representation can be

attained in bias-aware environment clustering module when

more invariant representation is learned in invariant graph

learning module. In addition, the more variant information is

learned, the more invariant information could be used. Specif-

ically, the invariant predictor of feature Φ(X) is generated as

Φ(X) = Mx�X , and the variant part Ψ(X) = (1−Mx)�X
correspondingly, where M ∈ {0, 1}d is the binary invariant

feature selection mask. The invariant predictor of adjacency

Φ(A) is similar to Φ(X), where Φ(A) = Ma � A, and the

variant part Ψ(A) = (1−Ma)�A.

Despite the surface similarity between Theorem 4.1 and

generative adversarial network, our method is significantly dif-

ferent from that of the generative adversarial network method

in the following terms: 1) Motivations of two methods are

different. Discriminator and generator models in GANs contest

with each other, where generator “fool” the discriminator

network by producing novel candidates that the discriminator

thinks are not synthesized. However, our clustering module

and invariant learning module promote each other, where they

have different objective function. 2) Goal of two methods

are different. GAN is generative model for unsupervised

learning. Our BA-GNN aims to learn invariant graph rep-

resentation across environments with different agnostic bias.

3) Core insights are different. Minimax GAN loss refer to

the minimization of the generator loss and the maximization

of the discriminator’s loss. For our BA-GNN, environment

clustering module assign nodes to environments with min-

imization loss, and invariant graph learning module learn

invariant representation cross environments with minimization

loss. 4) Optimization steps are different. Discriminator and

generator models in GANs are simultaneous optimization.

However, our clustering module and invariant learning module

are asynchronous optimization.

For instance, the feature information is more important

for final aggregated representation of node B compared with

node A, the reason is that node B is low-degree nodes, low-

degree nodes only have few neighbors, which receive very

limited information from neighborhoods. Thus, the aggregated

representation should have more information of feature for

the node B. Moreover, the edges that bring the noise to the

representation should be masked, as shown in Figure 4 (b),

the dash line are edges that are masked. In addition, the
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Fig. 4: Illustrations of our Invariant Graph Learning. (a) Learn most informative feature which is invariant across environments.

(b) Mask edges that bring variant and noise information to final aggregated representation. (c) Learn optimal propagation step

for nodes across different environments.

propagation step influences the features of nodes locally along

the edges of the graph. In Figure 4 (c), we can obviously

observe that the optimal propagation step for the node A is

2, however, the optimal step for the node B is 1 since more

steps will bring the noise to the representation of it. Thus, the

parameter of GCNs in higher layers should be masked for the

node B, and should not be masked for the node A.

C. Bias-Aware Environment Clustering

The bias-aware environment clustering module MB takes a

single graph as input, and outputs a multi-environment graph

partition for invariant graph learning. Thus, the nodes should

be clustered by the relation between variant information and

target label. And the variant information Ψ(X,A) is initialized

as Ψ(X,A) = (X,A) at the beginning of optimization.

To learn cluster centre P (Y |Ψ(X,A)), we assume the j-th

cluster centre Pθj (Y |Ψ(X,A)) parameterized by GCN fθj as:

hj(Ψ, Y ) = Pθj (Y | Ψ) =
∥∥Y − fθj (Ψ(Xj , A))

∥∥2
2
, (3)

where Ψ means the learned variant part Ψ(X,A).
For the given N =

∑
e∈Etr

ne nodes (X,A) ==
{ψi(xi, ai,:), yi}Ni=1, the empirical distribution is modeled as

P̂N = 1
N

∑N
i=1 δi(Ψ(X,A), Y ), where δi = 1 if Ψ(X,A) =

ψi(xi, ai,:)and Y = yi and 0, otherwise.

To fit the empirical distribution P̂N , we have Q = {Q|Q =∑
j∈[K] qjhj(Ψ(X,A), Y ),q ∈ ΔK} to fit the empirical

distribution best, where ΔK means K-dimension simplex.
Therefore, the objective function of our bias clustering is:

min
Q∈Q

DKL(P̂N‖Q) (4)

We further have:

min
Θ,q

{
Lc = − 1

N

N∑
i=1

log

[
K∑

j=1

qjhj(ψi(xi, ai,:), yi)

]}
(5)

For environments Etr, each node is assigned to environment
ej ∈ Etr by:

P (ej |Ψ(X,A), Y ) = qjhj(Ψ(X,A), Y )/

(
K∑
i=1

qihi(Ψ(X,A), Y )

)
(6)

D. Invariant Graph Learning
The invariant learning module takes multiple graph partition

G = {Ge}e∈supp(Etr)
as input, and learn invariant predictor

GNNθ, the invariant feature mask Mx, invariant adjacency

Ma and the propagation mask Mp. We combine feature selec-

tion, neighborhood selection and propagation selection with

invariant learning under bias environments, which can learned

invariant aggregated features with invariant correlations of the

label across Etr. Specifically, the former module can select

most informative features, neighbors and propagation step.
Given one graph partition Ge, the neighborhood aggregation

in most GNNs with our invariant mask (Mx,Ma,Mp) is:

h′i = Mp,iσ

⎛
⎝∑

j∈Ni

Ma,ij W(Mx,j � hj)

⎞
⎠ (7)

where hi denotes the updated representation of the target

node i , W denotes the weight matrix of the linear transforma-

tion, σ denotes the nonlinear activation function, Ni denotes

the indices set of node i ’s neighbors, and Mx,j ,Ma,ij are

invariant feature and neighbor selection mask, respectively.

Mp,i is the propagation mask, where Mp,i = 0 means exiting

the propagation process, and Mp,i = 1 means proceeding the

propagation process.
To learn invariant graph representation, we use the variance

penalty regularizer similar to [23], where the regularizer is
used in feature, neighbor and propagation step selection sce-
narios. The objective function of MI with (Mx,Ma,Mp) ∈
{0, 1}d is:

Le(M � (X,A), Y ; θ) = EPe [�(GNN(Xe, Ae,Mx,Ma,Mp; θ), Y
e)]

(8)

Lp(M � (X,A), Y ; θ) = EEtr [Le] + λtrace(VarEtr (∇θLe)) (9)

To learn invariant information, the hard mask suffers from
high variance. Following [66], we use soft mask with con-
tinuous value in [0, 1], and approximate mask to clipped
Gaussian random variable parameterized by μ = [μ1, . . . , μd]

T

as mi = max{0,min{1, μi + ε}} where ε is drawn from
N (0, σ2). The objective function can be reformulated as:

Le(θ, μ) = EPeEM [�(GNN(Xe, Ae,Mx,Ma,Mp; θ), Y
e) (10)

+α(‖Ma‖0 + ‖Mx‖0 + ‖Mp‖0)]
Thus,we have ‖Mx‖0 =

∑
i∈[d] CDF(μi,x/σ), where CDF

is the standard Gaussian CDF. Similarly, we have ‖Ma‖0 =
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Algorithm 1 Bias-Aware Graph Neural Network (BA-GNN)

1: Require: Require: Graph data G = (A,X) and label Y .

2: while Not converged or maximum epochs not reached do
3: Obtain multi-environment graph partition Gj =(

Aj , Xj
)

via bias-aware environment clustering module

MB .

4: for all e = 1 to |Etr| do
5: Computing loss as in Equation 12.

6: end for
7: Optimize θ, μ to minimize Lp as in Equation 11.

8: end while

∑
i∈[A] CDF(μi,a/σ) and ‖Mp‖0 =

∑
i∈[P ] CDF(μi,p/σ),

where P is the maximal propagation step given by layer
number of GNNs. μ = {μx, μa, μp}. We formulate our
objective as risk minimization problem:

min
θ,μ

Lp(θ;μ) = EEtr [Le(θ, μx, μa, μp)] + λtrace(VarEtr (∇θLe))

(11)
where

Le(θ, μ) = EPeEM [�(GNN(Xe, Ae,Mx,Ma,Mp; θ), Y
e)

(12)

+α
∑
i∈[P ]

CDF(μp/σ) + α
∑
i∈[A]

CDF(μaσ) + α
∑
i∈[d]

CDF(μi/σ)

⎤
⎦

The whole algorithm of our proposed BA-GNN framework

is detailed in Algorithm 1.

V. MORE ANALYSIS

In this section, we analyze our proposed Bias-Aware Graph

Neural Network (BA-GNN) method.

Proof of Theorem 4.1 We can simply prove that we

have S ∈ Inew, ∀S ∈ IÊ , where the invariance set is

supp(Ê ∪ {enew}), because the newly added environment

cannot exclude any variables from the old invariance set.

We prove that the invariant graph learning module can learn

the maximal invariant predictor Φ(X,A) with respect to the

corresponding invariance set IEtr
given training environments

Etr.

Theorem 5.1: Given Etr, the learned Φ(X,A) = M�(X,A)
is the maximal invariant predictor of IEtr , where M =
{Mx,Ma,Mp}.

Justification of the Promote Mechanism. The mecha-

nism for MB and MI to mutually promote each other is

the core of our BA-GNN framework. In Assumption 4.1, we

assume that the invariance and sufficiency properties of the

invariant information and the relationship between variance

part and target value can arbitrarily change.

As shown in Figure 3, with bias-aware environment cluster-

ing module, the nodes with higher degree will be assigned to

the environment where degree of nodes is higher and the nodes

with lower degree will be assigned to the environment where

degree of nodes is lower. With such different environments,

invariant graph learning could learn more invariant represen-

tation. The bias-aware environment clustering module and

invariant graph learning module are in the loop and promote

each other, where the boosting operation is that more variant

representation can be attained in bias-aware environment clus-

tering module when more invariant representation is learned

in invariant graph learning module.

Complexity Analysis. The training and inference time

complexity of a GCN with L layers can be bounded by

O(LmF ), where m is the number of edges and F is the

feature dimension. Our BA-GNN learns invariant represen-

tation which is in the feature transformation stage. Feature

transformation can be performed with significantly less cost

due to better parallelism of dense-dense matrix multiplication.

Consequently, the complexity of our BA-GCN is O(LmF )
and has the same level complexity as the GCN backbone.

VI. EXPERIMENTS

In this section, we conduct experiments on graph bench-

marks to evaluate the effectiveness of the proposed frameworks

with comparison to state-of-the-art GNNs. Specifically, we aim

to answer the following questions:

• (RQ 1) How effective is the proposed BA-GNN frame-

work for the node classification task on different graphs

and different backbones?

• (RQ 2) Could the proposed BA-GNN alleviate bias issue?

• (RQ 3) Could the proposed framework learn to identify

different biases?

• (RQ 4) How efficiency is the proposed BA-GNN frame-

work with comparison to state-of-the-art GNNs?

A. Datasets

We conduct experiments on 11 datasets based on ci-

tation, co-authorship, co-purchase graphs and heterophily

graphs for semi-supervised node classification tasks; those are

Cora [67], CiteSeer [67], PubMed [67], Coauthor CS [68],

Coauthor Physics [68], Amazon Computers [68], and Amazon

Photo [68], Actor [46], Cornell [46], Texas [46], and Wiscon-

sin [46]. We follow the widely used training/validation/testing

split in [10], [46], [68] The statistics of datasets are summa-

rized in the Table I.

Citation datasets. Cora, CiteSeer and PubMed [67] are

representative citation network datasets where nodes and edges

denote documents and their citation relationships, respectively.

Node features are formed by bay-of-words representations for

documents. Each node has a label indicating what field the

corresponding document belongs to.

Co-authorship datasets. Coauthor CS and Coauthor

Physics [68] are co-authorship graphs datasets. Nodes denote

authors, which are connected by an edge if they co-authored

a paper. Node features represent paper keywords for each

author’s papers. Each node has a label denoting the most active

fields of study for the corresponding author.

Co-purchase datasets. Amazon Computers and Ama-

zon Photo [68] are segments of the Amazon co-purchase

graph [69] where nodes are goods and edges denote that

two goods are frequently bought together. Node features are
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TABLE I: Statistics of datasets. The edge density is computed by 2m
n2 . The standard fixed training/validation/testing split is

widely used in [1]–[3], [46].

Dataset #Classes #Nodes #Edges Edge Density #Features #Training Nodes #Validation Nodes #Test Nodes

Cora 7 2708 5278 0.0014 1433 20 per class 500 1000
CiteSeer 6 3327 4552 0.0008 3703 20 per class 500 1000
PubMed 3 19717 44324 0.0002 500 20 per class 500 1000
Coauthor CS 15 18333 81894 0.0005 6805 20 per class 30 per class Rest nodes
Coauthor Physics 5 34493 247962 0.0004 8415 20 per class 30 per class Rest nodes
Amazon Computers 10 13381 245778 0.0027 767 20 per class 30 per class Rest nodes
Amazon Photo 8 7487 119043 0.0042 745 20 per class 30 per class Rest nodes
Actor 5 7600 26659 0.0009 932 48% of nodes per class 32% of nodes per class Rest nodes
Texas 5 183 309 0.0185 1703 48% of nodes per class 32% of nodes per class Rest nodes
Cornell 5 183 295 0.0176 1703 48% of nodes per class 32% of nodes per class Rest nodes
Wisconsin 5 251 499 0.0158 1703 48% of nodes per class 32% of nodes per class Rest nodes

Fig. 5: Results of GCN backbone under label-related distribution shift for the task of semi-supervised node classification.

Comparing with GCN method, our BA-GCN method (by applying our BA-GNN framework on GCN backbone) improves the

accuracy of node classification across different label biased environments.

Fig. 6: Results of GAT backbone under label-related distribution shift for the task of semi-supervised node classification.

Comparing with GAT method, our BA-GAT method (by applying our BA-GNN framework on GAT backbone) improves the

accuracy of node classification across different label biased environments.

derived from bag-of-words representations for product reviews

and class labels are given by the product category.

Heterophily graph datasets. Recent studies [10], [46], [70]

show that the performance of GNNs can significantly drop on

heterophily graphs, we also include heterophily benchmark

in our experiments, including Actor, Cornell, Texas, and

Wisconsin [10], [46].

B. Baselines

Note that the proposed framework BA-GNN is generic

and can be utilized to improve arbitrary GNN backbones. To

evaluate the effectiveness of BA-GNN framework, we consider

three popular GNN architectures, including GCN [1], GAT

[2] and APPNP [9]. We implemented our proposed BA-GNN

and some necessary baselines using Pytorch [71] and Pytorch

Geometric [72], a library for deep learning on irregularly

structured data built upon Pytorch.

Moreover, we further consider the methods that are designed

for reducing the degree bias, including GNM [42], DEMO-Net

[43], SL-DSGCN [44]. We compare our BA-GNN with studies

on imbalance graph such as DR-GCN [59], ImGAGN [63].

We aim to provide a rigorous and fair comparison between

different models on each dataset by using the same dataset

splits and training procedure. We tune hyperparameters for all

models individually and some baselines even achieve better

results than their original reports.

C. RQ1. Overall performance in Graph Benchmark

To show the effectivess of our proposed BA-GNN, we

follow the widely used semi-supervised setting in [1]–[3],
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TABLE II: Classification accuracy (%) results of semi-supervised node classification experiments. We follow the widely used

semi-supervised setting in [1]–[3], and apply the standard fixed training/validation/testing split as shown in Table I.

Method Cora CiteSeer PubMed Coauthor-CS Coauthor-Physics Amazon-Computers Amazon-Photo
GCN 81.3±0.8 71.1±0.7 78.8±0.6 91.08±0.6 93.03±0.8 81.17±1.8 90.25±1.6
GCN+Ours 82.1±0.5 72.4±0.6 79.8±0.4 92.73±0.6 94.94±0.1 84.94±2.4 91.39±1.1
GAT 83.0±0.7 72.5±0.7 79.0 ±0.4 90.28±0.7 91.92±0.9 80.38±1.5 90.41±1.8
GAT+Ours 83.5±0.7 73.4±0.5 80.3 ±0.3 91.34±0.5 92.39±0.8 81.29±2.2 91.53±1.4
APPNP 83.8±0.3 71.6±0.5 79.7±0.3 92.45±0.4 93.41±0.9 81.79±2.0 91.22±1.3
APPNP+Ours 84.2±0.3 72.0±0.5 79.9±0.3 92.94±0.5 94.36±1.1 82.64±1.9 91.81±1.3
GraphSAGE 80.7±0.8 70.7±0.6 78.9±0.7 91.38±2.8 93.03±0.8 82.46±1.8 91.31±1.3
GraphSAGE+Ours 81.6±0.7 71.4±0.8 79.2±0.5 91.50±1.4 93.87±0.8 83.15±1.7 91.90±1.2

Fig. 7: Results of GCN backbone under degree-related distribution shift for the task of semi-supervised node classification.

Comparing with GCN method, our BA-GCN method (by applying our BA-GNN framework on GCN backbone) improves the

accuracy of node classification across different degree biased environments.

Fig. 8: Results of GAT backbone under degree-related distribution shift for the task of semi-supervised node classification.

Comparing with GAT method, our BA-GAT method (by applying our BA-GNN framework on GAT backbone) improves the

accuracy of node classification across different degree biased environments.

TABLE III: Classification accuracy (%) results of semi-

supervised node classification experiments on heterophily

graphs [46].

Method Actor Cornell Texas Wisconsin
GCN 26.86 52.71 52.16 45.88
GCN+Ours 28.31 54.93 57.48 49.97
GAT 28.45 54.32 58.38 49.41
GAT+Ours 31.59 57.08 59.26 51.19
APPNP 28.65 58.43 60.68 54.24
APPNP+Ours 29.58 59.03 61.73 55.39
GraphSAGE 30.23 60.95 64.43 56.18
GraphSAGE+Ours 31.73 61.87 66.48 58.27

and apply the standard fixed training/validation/testing split as

shown in Table I. We conduct node classification on 7 graph

datasets as introduced in Table I with different backbones such

as GCN, GAT and APPNP. For each graph dataset, we report

the mean accuracy with standard deviaton on the test nodes in

Table II and III with 10 runs experiments. As shown in Table

II and III, we have the following findings:

• Our BA-GNN improves the performance of all GNN

backbones consistently and significantly in all settings.

• GNN backbones have worse performance due to ignoring

of biases.

• The reason why our BA-GNNs outperform is that our

method alleviates different biases, thus our method out-

perform in different bias environments, and the overall

classification accuracy increases.

• We can observe that our BA-GNN outperform all back-

bones on four heterophily graphs, which indicates our

framework can still work well on the heterophily graphs.

• In summary, our BA-GNN achieves superior performance

on all these seven datasets, which significantly demon-

strates the effectiveness of our proposed framework and
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our motivation.

D. RQ2. Performance in unknown bias environments.

To further validate the effectiveness of our framework,

besides the widely used semi-supervised setting in [1]–[3], we

evaluate our framework in different biased unknown test envi-

ronments. Specifically, for degree biased test environments, we

group the testing nodes of each graph according to their de-

grees. Similarly, for label biased test environments, we group

the testing nodes of each graph according to their labels. The

distribution shifts between training and testing environments

are various in this setting, where we evaluate methods in dif-

ferent environments rather than average accuracy of all testing

nodes in a single environment. The training/validation/testing

split in this experiment is the standard fixed split as shown in

Table I, which is widely used in [1]–[3].
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Fig. 9: Semi-supervised node classification accuracy compared

with other GNN baselines for addressing the bias issue. We

test all methods on (a) unknown degree bias environments on

Cora (b) unknown label bias environments on Cora.
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Fig. 10: Semi-supervised node classification accuracy com-

pared with other GNN baselines for addressing the bias issue.

We test all methods on (a) unknown degree bias environments

on PubMed (b) unknown label bias environments on CiteSeer.

Compare with base backbone. The testing results in

unknown environments are shown in Figure 5 - 8. Specifically,

each figure in Figure 5 - 8 plot the evaluation results across

different testing environments. From the results, we have

the following observations and conclusions: Our BA-GNN

outperforms all backbones such as GCN, GAT, APPNP in

all bias cases. GNN backbones have worse performance due

to ignoring of biases. Results illustrate the effectiveness of

our BA-GNN. The reason why BA-GNN outperform in all

cases is that our method could alleviate different unknown

Cora PubMed Cornell0.7

0.8

0.9

Ac
cu

ra
cy

GCN
BA-GCN w K
BA-GCN w I
BA-GCN

(a)

Cora PubMed Cornell0.7

0.8

0.9

Ac
cu

ra
cy

GCN
BA-GCN w/o F
BA-GCN w/o A
BA-GCN w/o P
BA-GCN

(b)

Fig. 11: Ablation study of (a) the bias-aware environment

clustering and the invariant graph learning; and (b) invariant

feature mask, invariant adjacency, and propagation selection.

biases with invariant representation. In summary, our BA-

GNN outperforms the baselines with different backbones and

different graphs, which suggests that our framework is agnostic

to backbones and graphs.

Compare with previous methods designed for reducing
biases. To further show the effectiveness of our framework, we

compare our BA-GNN with the following baselines designed

for reducing biases: GNM [42], DEMO-Net [43], SL-DSGCN

[44]. Figure 9 shows the performance of different methods

designed for reducing biases in unknown test environments.

Specifically, Figure 9 (a) plots the evaluation results across

different unknown testing environments with degree bias,

and Figure 9 (b) plots the evaluation results across different

unknown testing environments with label bias. From these

figures, we have the following observations and findings:

• Our BA-GNN outperforms all methods in all bias cases,

including methods are designed for reducing degree bias.

• Although the degree-related method DEMO-Net and SL-

DSGCN can also alleviate the degree bias, they still do

not outperform APPNP on label bias environments.

• Results illustrate the effectiveness of our BA-GNN. The

reason why BA-GNN outperform in all cases is that our

method could alleviate different biases, GNM, DEMO-

Net and SL-DSGCN only focus on degree bias.

• Compared with methods focused on imbalance graph

such as DR-GCN, ImGAGN, BA-GNN outperform in

both degree-related and label-related bias environments.

• Our BA-GCN is the only method that performs better

than all baselines across all the environments. These find-

ings show that our BA-GCN framework can effectively

adapt to different graph and alleviate different bias.

• In summary, our BA-GNN could alleviate different biases

such as degree bias and label bias. Thus our method

outperforms the methods designed for reducing biases.

E. RQ.3 Effectiveness of Bias-Aware Environment Clustering

Effectiveness of proposed two modules. The bias-aware

environment clustering module and the invariant graph learn-

ing module in BA-GNN are not individual, they are in the loop,

and promote each other. To further illustrate the effectiveness

of two modules in BA-GNNs, we design experiments to

compare our BA-GCN with BA-GCNwK, BA-GCNwI.
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(a) (b)

Fig. 12: Illustration of the inferred environments for the degree

bias by our BA-GNN. The node assigned to environment is

the bigger node in each sub-graph.(a) Node in Environment

6, where most of the nodes are high-degree. (b) Node in

Environment 1, where most of the nodes are low-degree.

BA-GCNwK replace bias-aware environment clustering

module with K-means method in BA-GCN, where the input of

K-means is the node feature, and output is environment label

of nodes. BA-GCNwI replace invariant graph learning module

with IRM in BA-GCN, where the environment label is given

by our proposed bias-aware environment clustering module.

As shown in Figure 11 (a), a couple of observations are

worth being highlighted as: BA-GCNwI has a significant

drop, the reason is that BA-GCNwI focuses on the node

feature and ignore the structure information of graph. BA-

GCNwK outperform GCN, which validate the effectiveness of

our proposed invariant learning module, BA-GCN outperform

BA-GCNwK, which demonstrate the effectiveness of promote

mechanism between our proposed two modules: the better

invariant representation is learned, the better variant represen-

tation can be obtained for bias identification.

Effectiveness of proposed three selection strategy. To

further validate the effectiveness of the proposed three se-

lection strategy of BA-GNN, we design experiments to show

the effectiveness of invariant feature mask strategy, invariant

adjacency selection strategy, and optimal propagation selection

strategy. We evaluate BA-GCN with: BA-GCNw/oF is BA-

GCN without invariant feature mask strategy. BA-GCNw/oA
is BA-GCN without invariant adjacency selection strategy. BA-
GCNw/oP is BA-GCN without optimal propagation selection

strategy. Figure 11 (b) shows the result. The best performance

is obtained by BA-GCN for all cases, indicating that each of

components does contribute to the effectiveness and robustness

of the whole model.

Case study. To evaluate if our BA-GNN can learn good bias

identification, we study the bias identification for individual

nodes. Figures 12 and 13 show the case studies of bias

identification on both label bias and degree bias. In Figures 12

and 13, we plot the 3-hop neighborhood of each test node and

use different colors to indicate different labels. The node with

higher degree is assigned to the environment where degree of

nodes is higher, as shown in Figure 12 (a), and the node with

lower degree is assigned to the environment where degree of

nodes is lower, as shown in Figure 12 (b). Similarly, As shown

in Figure 13, we find that the node with more same class

(a) (b)

Fig. 13: Illustration of the inferred environments for the label

bias by our BA-GNN. The node assigned to environment is

the bigger node in each sub-graph. (a) Node in Environment 6,

where node’s label has more nodes. (b) Node in Environment

1, where node’s label has fewer nodes.

neighbors tends to be assigned to environment where label

has more nodes. In contrast, the node with fewer same class

nodes will probably be assigned to environment where label

has fewer nodes. Additionally, we can find that our framework

successfully identifies the bias.

More details of Experiment Setup. The hyper-parameters

for model architectures are set as default values in dif-

ferent cases. Other hyperparameters are searched with

grid search on validation dataset. The searching space

are as follows: learning rate for GNN backbone α ∈
{0.0001, 0.0002, 0.001, 0.005, 0.01}, weight decay ∈ {0, 2e-2,

5e-3, 5e-4, 5e-5}, and dropout rate ∈ {0.5, 0.8}.

VII. CONCLUSION

In this paper, we argue that GNNs might suffer from the

bias issue because of the distribution shift between training

and testing node distributions. More importantly, the test node

distribution in the graph is generally unknown during model

training in real-world applications. To address this problem,

we propose a novel Bias-Aware Graph Neural Network (BA-

GNN) framework that aims to learn node representations

that are invariant across different distributions for invariant

prediction. Our BA-GNN framework contains two interactive

parts, one for bias identification and the other for invariant

prediction. To learn invariant feature and aggregated repre-

sentation, our BA-GNN learns multiple biased graph parti-

tions and selects feature, neighbor, and propagation steps for

nodes under multiple biased graph partitions. With extensive

empirical experiments on different graphs and different GNN

backbones, we demonstrate the effectiveness of our proposed

framework, which leads to the state-of-the-art performance on

several benchmark datasets.
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