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Abstract

The performance of computer vision models significantly
improves with more labeled data. However, the acquisition
of labeled data is limited by the high cost. To mitigate the
reliance on large labeled datasets, active learning (AL) and
semi-supervised learning (SSL) are frequently adopted. Al-
though current mainstream methods begin to combine SSL
and AL (SSL-AL) to excavate the diverse expressions of un-
labeled samples, these methods’ fully supervised task mod-
els are still trained only with labeled data. Besides, these
method’s SSL-AL frameworks suffer from mismatch prob-
lems. Here, we propose a graph-based SSL-AL framework
to unleash the SSL task models’ power and make an effec-
tive SSL-AL interaction. In the framework, SSL leverages
graph-based label propagation to deliver virtual labels to
unlabeled samples, rendering AL samples’ structural distri-
bution and boosting AL. AL finds samples near the clusters’
boundary to help SSL perform better label propagation by
exploiting adversarial examples. The information exchange
in the closed-loop realizes mutual enhancement of SSL and
AL. Experimental results show that our method outperforms
the state-of-the-art methods against classification and seg-
mentation benchmarks.

1. Introduction
The development of deep learning brings prosperity to

the field of computer vision [23, 39, 3, 5, 57, 53, 54, 55, 56,
26, 25, 27]. However, these data-hungry models still need
to be fed with a large amount of labeled data, the acquisition
of which is limited by the expensive cost of annotation [58].
This dilemma between performance and cost brings mas-
sive research and practical value to achieve a higher perfor-
mance of the task models with limited labeled data.

*Equal contribution.
†Corresponding author.

With awareness of this problem, active learning
(AL) [52, 50, 29, 34] is introduced to unleash the poten-
tial of labeling procedures for budget-limited annotation.
Despite the progress achieved, most AL algorithms suf-
fer from data wasting problems as they ignore that utiliz-
ing AL in real-world scenarios means that the majority of
data remains unlabeled, which could further empower AL
with semi-supervised learning (SSL) in the following three
ways: 1) (SSL Task Model) When numerous unlabeled data
are used in conjunction with a bunch of labeled data, it
is very natural and practical to further improve the per-
formance of the task models by SSL without introducing
any further annotation cost. 2) (SSL→AL) The success of
SSL [20, 41, 4, 42, 46] proves that it is feasible to improve
performance by modeling the relation (intra-class similar-
ity and inter-class distinguishability) among samples with
SSL. Thus AL could assess samples’ annotation value more
accurately, being guided by the prior knowledge of SSL-
modeled relation. 3) (AL→SSL) Since the initial samples’
relations modeled by SSL can hardly be completely cor-
rect. AL could confirm precise relations and rectify wrong
relations by labeling specific samples. Finally, the mutual
enhancement of AL and SSL is achieved in such a loop.

Although several works combine SSL and AL (SSL-
AL) [52, 19, 40], these methods suffer from the two prob-
lems: 1) Their fully supervised task models are subjected
to data-wasting problems. 2) These works [40, 19, 52] are
based on the VAE-GAN structure and conduct AL on the
latent representation of samples, which is learned through a
mini-max game on samples’ labeling states. As is illustrated
in Figure 1, this kind of method suffers from the mismatch
problem, which decreases AL’s efficiency.

Based on the above insights, we propose a novel gRaph-
basEd VIrtual adVersarial Active Learning (REVIVAL)
framework for semi-supervised models. The REVIVAL is
free of the above two deficiencies and realizes the mutual
enhancement of AL and SSL. This framework mainly con-
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Figure 1: Since samples’ labeling states and class labels are uncor-
related, these methods tend to project the representation of sam-
ples with different class labels (e.g., cat and fish) to the same class
(e.g., labeled or unlabeled), and vice versa.

sists of three components: 1) the label propagator. To ex-
plicitly model the SSL-inferred samples’ relations without
losing generality, we adopt the well-explored graph-based
label propagation to conduct SSL and boost AL. Specifi-
cally, the label propagator first explicitly models the clus-
ters formed by samples with their relations as a graph,
then propagates label information on the graph. Finally,
the passed messages merge into graph-based virtual labels.
Consequently, SSL enhances AL by rendering samples’
structural distribution and reducing unlabeled pool’s uncer-
tainty with the virtual labels. 2) the virtual adversarial
generator. To boost SSL by refining the graph, we intro-
duce the adversarial generator to select samples lying on
the clusters’ boundaries as annotation candidates. Specif-
ically, since the label propagator’s message passing would
be weaker or even inconsistent on clusters’ boundaries, the
virtual adversarial generator could identify samples near the
boundaries by measuring the inconsistency between sam-
ples and the corresponding generated adversarial examples.
3) the boundary limitator. To identify the hard cases in
the unlabeled pool, we further propose a boundary limitator
to re-rank the annotation candidates based on the entropy of
the graph-based virtual labels.

We conduct experiments on classification and segmenta-
tion benchmarks. The experimental results demonstrate that
REVIVAL leads to consistent improvement over the previ-
ous state-of-the-art (SOTA) methods. The major contribu-
tions of this paper are summarized as follows:

1. We propose a novel graph-based SSL-AL framework
for SSL task models. This framework achieves closed-
loop mutual enhancement between SSL and AL, which
further unleashes the power of SSL task models.

2. We propose the AL enhanced with the virtual adversar-
ial generator, which cooperates with SSL effectively
by exploiting the SSL boosted adversarial examples.

3. Extensive experiments on standard benchmarks
demonstrate the effectiveness of the proposed method,

with significant improvement over several SOTA
methods (up to 10% labeling demand reduced).

2. Related Work
Pool-based active learning In practice, it is easy to

acquire abundant unlabeled samples. Thus AL in the pool-
based [24, 52, 50, 36, 40, 9] scenario is more popular than
the other two scenarios: steam-based [7] and membership
query synthesis [2, 49, 44, 59, 29].

Uncertainty-based sampling [17, 13, 8, 10, 21] and
distribution-based sampling [18, 32, 47, 33] are common
methods in the pool-based scenario. Our method consid-
ers both uncertainty and distribution. For uncertainty-based
frameworks, some past heuristic algorithms [35, 38, 16, 28,
37] have built the foundation for the field of AL. In the era
of deep-learning-based active learning, [50] predicts each
sample’s training loss to measure uncertainty and selects
samples with the biggest predicted loss. Nevertheless, the
selected samples’ quality highly relies on the task model’s
loss information, which is unstable in the early selection
stage. In distribution-based methods [36, 48], the relation
between the subset and the whole set is shown intuitively
from the perspective of geometry. When scaling to large
scale datasets or high-dimension input data, greedy proce-
dures become computationally infeasible. Thus these algo-
rithms will suffer from inefficient computing.

Semi-supervised active learning Recently, [40, 19,
52] leverage the VAE-GAN structure to learn the represen-
tation of labeled and unlabeled samples in latent space to-
gether with the discriminator. The discriminator aims to dis-
criminate samples belonging to the unlabeled pool through
a mini-max game with VAE-GAN. However, these methods
have a concern that they do not take class labels into ac-
count. Specifically, some samples with the different true la-
bels (e.g. fish and cat) are classified into the same class (la-
beled or unlabeled), and samples with the same true labels
may fall into opposite classes. As a consequence, the learn-
ing process may harm the semantic distribution of samples
in latent space. In fact, the annotation state and the fea-
ture representation are orthogonal, while the feature repre-
sentation is highly correlated with class labels of different
classes. Compared to these VAE-GAN based methods, our
method considers the relation between class labels and fea-
ture representation to combine AL and SSL smoothly. The
latest works [43, 11] combine AL and SSL based on predic-
tion consistency given a set of data augmentations. How-
ever, these methods only use a limited number of ways of
data augmentation to estimate inconsistency. In contrast,
our method can explore the continuous local distribution of
unlabeled samples in feature space and obtain more seman-
tic distribution information. Furthermore, we consider the
uncertainty of samples and the feature distribution in the la-
tent space simultaneously.
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3. Method
In this section, we formulate the proposed gRaph-basEd

VIrtual adVersarial Active Learning (REVIVAL) algo-
rithm. We first provide an overview of the whole AL sys-
tem in Section 3.1, then introduce three main components
of REVIVAL: a label propagator in Section 3.2, a virtual ad-
versarial generator in Section 3.3 and a boundary limitator
in Section 3.4.

3.1. Overview

In this subsection, we formally define the pool-based
AL loop with the proposed REVIVAL. As is demon-
strated in Figure 2, the initial labeled pool Dl ={

(xl1, y
l
1), . . . , (xlNl

, ylNl
)
}

and the unlabeled pool Du ={
xu1 , . . . , x

u
Nu

}
(where Nl and Nu are the numbers of

labeled samples and unlabeled samples respectively) are
given. The algorithm feeds them into the task model to ob-
tain corresponding representations Rl =

{
rl1, . . . , r

l
Nl

}
and

Ru =
{
ru1 , . . . , r

u
Nu

}
. Based on extracted representations,

the graph structure and an adjacency matrix are constructed.
Then a graph convolutional network (GCN) [20] based la-
bel propagator is trained using the constructed graph struc-
ture and the adjacency matrix to propagate label informa-
tion. Once the training is finished, we will feed unlabeled
samples’ virtual labels Ȳu = {ȳu1 , . . . , ȳuNu

} inferred by the
label propagator to the virtual adversarial generator to gen-
erate adversarial samples. After that, we select out top-M
samples based on the divergence between unlabeled sam-
ples and their adversarial samples. Furthermore, we apply
the boundary limitator to these candidates to select top-K
candidates with the largest uncertainty and provide them to
the human oracle for annotation. Consequently, the sizes
of the labeled pool and unlabeled pool will be updated to
Nl +K and Nu−K respectively. The loop will be repeated
until the performance of the task model meets requirements
or the budget for annotation is run out.

3.2. Label Propagator

We propose a semi-supervised label propagator to exca-
vate class labels information from unlabeled samples and
assist AL algorithms to evaluate correlative metrics of unla-
beled samples. Specifically, We construct the pre-extracted
feature representation set R =

{
rl1, . . . , r

l
Nl
, ru1 , . . . , r

u
Nu

}
,

where ri is the hidden state from task model’s feature ex-
tractor. A sparse cosine similarity distance matrix S ∈
Rn×n with elements

sij =

{
1− ri

T ·rj
||ri||×||rj || , if i 6= j ∧ ri ∈ NNk(rj)

0, otherwise
(1)

is constructed using R, where NNk(rj) denotes the set of k
nearest neighbors of rj , and n = Nl + Nu. Note that con-

structing the distance matrix of the nearest neighbor graph
can be efficient even for a large n [14]. Based on S, we
get adjacency matrix A to explore class labels of unlabeled
samples via their feature representation in the latent space.
In fact, samples with their neighbors naturally form clus-
ters in feature space, and samples belonging to the same
cluster are more likely to share the same true labels. Given
this structural prior, we further utilize a multi-layer GCN to
propagate intra-cluster samples’ feature and label informa-
tion to unlabeled samples under the guidance of the adja-
cency matrix A, which can be formulated:

H(l+1) = g(l)(D̃
− 1

2 ÃD̃
− 1

2 H(l)W(l)) (2)

where l = 0, . . . , L − 1 is the index of current GCN layer,
g(l) is the activation function for layer l, W (l) is the train-
able weight matrix for lth layer, Ã = A + I is the adjacency
matrix normalized by adding self-loop, I is the identity ma-
trix, D̃ii = ΣjÃij is the degree matrix of Ã. In this pa-
per, we set the number of layers L = 2, g(0) = ReLU(•),
g(1) = softmax(•), H(0) = R, and take the output of the
last layer as the semi-supervised posterior probability in-
ferred by the label propagator: Ȳ = H(2). Ȳ can serve as
the graph-based virtual label, which will further boost the
AL algorithm in following sections.

Unlabeled samples acquire propagated label information
by aggregating their neighbor nodes’ features. Since the
feature matrix should multiply the adjacency matrix Ã dur-
ing the inferring process of GCN, label and feature flow into
unlabeled samples through the adjacency matrix Ã. GCN
will output smoothed predictions with the impact of neigh-
bors’ features for unlabeled samples. These ’virtual’ pre-
dictions can provide more supervised information for AL.

Finally, we train this label propagator in each AL cy-
cle to assimilate the adjacency relation and perform correct
message passing using the following cross-entropy loss:

Lsemi = −
∑
x∈Dl

C∑
c=1

Ylc lnȲlc (3)

where l indicates labeled samples, C is the number of
classes, Ylc denotes the sample has ground-truth label c.

3.3. Virtual Adversarial Generator

Since the constructed SSL graph can hardly be perfect,
we introduce the virtual adversarial generator to refine the
graph (i.e., confirm precise relations and correct wrong re-
lations in the SSL graph) and further improve the perfor-
mance of the SSL models. Specifically, the model pre-
dicts more sharply on the clusters’ boundaries, as the label
propagator’s message passing would be more consistent and
stronger within clusters but weaker or even contradictory on
clusters’ boundaries and inter-clusters, which is caused by
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Figure 2: Overview of our method. It consists of three modules: (a) Label Propagator constructs the adjacent matrix using extracted
feature embedding from the task model and propagates virtual labels to unlabeled samples. (Section 3.2); (b) Virtual Adversarial Generator
produces adversarial examples for unlabeled samples and measures the difference of posterior probability between unlabeled samples and
their adversarial examples (Section 3.3); (c) Boundary limitator further imposes uncertainty restrictions on samples (Section 3.4).

the unconfidently and improperly modeled relations. There-
fore, labeling these samples could improve SSL models’
ability to distinguish different classes and boost SSL by re-
fining the graph.

To find samples near the boundary, the virtual adversarial
generator estimates the smoothness of the model’s predic-
tion on samples by calculating the inconsistency between
prediction on samples and on corresponding adversarial ex-
amples. Specifically, given the extracted representation rui
of unlabeled sample xui , we first feed rui into the propagator
to get its prediction ȳui . Then we feed rui and ȳui simultane-
ously into the generator to get adversarial perturbation riadv .
After that, we feed perturbed representation r̂ui = rui +riadv
into the label propagator again to get its perturbed predic-
tion ŷui . Finally, the generator calculates the KL-divergence
KLDu

i = KL(ŷui , ȳ
u
i ) between ȳui and ŷui . Samples with

larger KLDu
i are closer to corresponding clusters’ bound-

aries. Here, the adversarial perturbation is formulated as:

radv = arg max
∆r,||∆r||≤ε

KL(p(ȳu|ru, θ), p(ŷu|ru + ∆r, θ)) (4)

where p(y|x, θ) represents the posterior probability dis-
tribution of the propagator. Under perturbation of the same
norm ε, there is a higher probability for adversarial sam-
ples of unlabeled samples near the boundary to change their

original class label and fall into the other cluster. There-
fore, the generator computes the KL-divergence of the pos-
terior probability of samples and their adversarial examples
to measure unlabeled samples’ distance to the boundary.

Since the computation of radv is intractable for many
neural networks, [30] proposed to approximate radv using
the second-order Taylor approximation and solved the radv
via the power iteration method. Specifically, we can ap-
proximate radv by applying the following update:

radv ← ε∇∆rKL(p(ȳu|ru), p(ŷu|ru + ∆r)) (5)

where ∆r is a randomly sampled unit vector, p(ȳu|ru) is
the graph-based virtual label, p(ŷu|ru+∆r) is the perturbed
prediction, and the sign v means the unit vector of v. The
computation of ∇∆rKL can be performed with one set of
backpropagation for NNs. Once the radv is solved, we can
estimate the distance of unlabeled samples to the clusters’
boundary by computing KLDu

i (i = 1, . . . , Nu) and select
top-M samples with the largest KLDu as the annotation
candidates.

3.4. Boundary Limitator

Although the generator selects annotation candidates
near the clusters’ boundary, the task model still holds differ-
ent prediction confidence for these annotation candidates.
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To further maximize the effect of the limited annotation
budget, we introduce the boundary limitator, which limits
the finally selected samples with high uncertainty. These
finally selected samples can bring significant model uncer-
tainty reduction and model information gain indeed. In
practice, we use the graph-based virtual labels’ entropy to
estimate the uncertainty of samples and select top-K sam-
ples with the largest entropy for human annotation. The
entropy for the unlabeled sample xui can be calculated with
the following formulation:

Eui = −
C∑
c

P (ȳuic|rui ) logP (ȳuic|rui ) (6)

where P (ȳuic|rui ) is the probability of the unlabeled sample
xui belonging to the c-th class.

Above all, on the one hand, the SSL label propaga-
tor could exploit labeled samples’ feature and provide AL
with graph-based virtual labels that integrate labeled sam-
ples’ supervised information. On the other hand, the vir-
tual adversarial generator and the boundary limitator will
let the oracle annotate samples near the cluster’s boundary
and with the largest uncertainty. These samples could as-
sist the semi-supervised label propagator in distilling cor-
rect boundary information for better label propagation and
decreasing the unlabeled pool’s uncertainty. Consequently,
the information exchange in the closed-loop realizes the
mutual enhancement between SSL and AL. Furthermore,
SSL task models also benefit from label propagation to im-
prove the performance by using unlabeled data, which is
why our SSL-AL framework can unleash the power of SSL
task models.

4. Experiments
In this section, we first conduct experiments for different

tasks (image classification and semantic segmentation) on
several benchmarks under different settings (supervised and
semi-supervised task models), and then discuss REVIVAL’s
property with controlled experiments.

Dataset For image classification, we use CIFAR-
10 [22] and CIFAR-100 [22] as our benchmarks. They
both contain 60,000 images, of which 50,000 images are
for training. The CIFAR-10 has ten categories with 6000
images per category, while the CIFAR-100 has 100 classes
with 600 images per class. In the segmentation task, meth-
ods are evaluated on the Cityscapes dataset [6] for pixel-
level segmentation annotation. The dataset collects 3475
pixel-level labeled urban street scene pictures, 2975 for
training, and 500 for testing.

Baseline In the comparison of classification under
SSL, we consider four baselines. ICAL [11] selects sam-
ples with the high inconsistency of predictions over a set
of data augmentations. Core-set [36] is a distribution-based

sampling algorithm that selects a subset to cover the whole
set’s distribution. Entropy [37] is commonly used as an
uncertainty-based baseline. It selects samples with the max-
imum entropy of its prediction probabilities. Random sam-
pling often serves as the lower bound of AL algorithms. In
the supervised comparison of classification, we also con-
sider three other baselines. SRAAL [52] and VAAL [40]
leverage the VAE-GAN structure to learning embedding in
latent space and find out samples that are more likely to fall
into the unlabeled pool. LLAL [50] selects samples with the
biggest training loss. Besides we adopt the current state-of-
the-art method CDAL [1] as one of our baselines for the
segmentation task. The method considers spatial neighbor-
hoods of instances. It selects samples by modeling spatial
co-occurrence and spatial context of instances.

Implementation details In the classification under
SSL, we adopt Mixmatch [4] as our SSL task model, where
Wide ResNet-28 [31] is the backbone of the task model.
We keep the default hyper-parameters for different datasets
following [4]. The initial training set is uniformly dis-
tributed over classes, and we set up the initial set by ran-
domly sampling. We follow [11] for the setting of initial
training set size and AL budget. In supervised classifica-
tion tasks and the segmentation task, we follow [52] for AL
settings. We use ResNet-18 [12] and DRN [51] as back-
bones of task models for classification and segmentation re-
spectively. Different baselines are trained with the same
initial training set and model parameters for a fair compar-
ison. We plot the charts with the experiments conducted
five times: solid lines indicate the results averaged over five
trials, and shadows represent the standard deviation. We
adopt a billion-scale similarity search tool called faiss [15]
to build the KNN graph structure at a low cost and use Deep
Graph Library1 to conduct fast GCN computation.

4.1. Comparison under Supervised Learning

In this section, we conduct experiments to verify the pro-
posed semi-supervised AL framework’s effectiveness under
supervised learning, where the contribution to the perfor-
mance of the task model mainly comes from AL modules.

4.1.1 REVIVAL Performance on CIFAR-10

Figure 3 shows the performance of our method under su-
pervised learning on CIFAR-10. We can observe that our
method outperforms state-of-the-art methods in all selec-
tion cycles. Using the entire datasets, Resnet-18 can yield
the highest accuracy of 93.5%, while our method outper-
forms the performance of fully supervised training only us-
ing 35% data. It can be explained that our method can select
the most informative samples, and these samples’ feature
distribution benefits the task model’s training the most.

1https://www.dgl.ai/
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Figure 3: Performance comparison under supervised learning on
the CIFAR-10. The dotted line (p100) at the top represents the
performance with the entire training set labeled.
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Figure 4: Performance comparison under supervised learning on
the CIFAR-100.

4.1.2 REVIVAL Performance on CIFAR-100

Figure 4 shows the supervised performance of REVIVAL
on the dataset CIFAR-100. In the figure, our method beats
all other baselines in all selection cycles with a margin up
to 2.38%. Without a SSL module, ICAL is equivalent to
measuring samples’ prediction stabilities. LLAL only uses
predicted loss to estimate uncertainty. Similarly, core-set
only considers distribution diversity to select samples. The
incomplete consideration of sample information limits the
performance of the LLAL, core-set and ICAL. Differently,
our SSL-AL framework takes both uncertainty and distri-
bution into account in SSL and AL’s effective interaction.
VAAL leverages VAE-GAN to build feature embedding in
latent space and discriminate unlabeled data by its label
state. The estimation of whether the sample is labeled is
not equal to informativeness. Thus the method can not se-
lect the most informative samples. Compared to VAAL, our
method considers the relation between class labels of sam-
ples and their representation similarity.

4.2. Comparison under Semi-supervised Learning

Most previous AL approaches focus on the setting where
the task model is trained in a fully supervised manner, leav-
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Figure 5: Performance comparison under semi-supervised learn-
ing on the CIFAR-10. The dotted line (SL-REVIVAL) at the bot-
tom represents the performance of REVIVAL under supervised
learning with 8% data labeled.

ing massive unlabeled data wasted. To verify our intuition
and illustrate the effectiveness of REVIVAL, we compare
REVIVAL with other AL algorithms and demonstrate the
performance gap between the SSL task model and the SL
task model (up to 12.1%).

4.2.1 REVIVAL Performance on CIFAR-10

In Figure 5, all semi-supervised baselines that use only
0.3% labeled data outperform supervised REVIVAL, which
uses 8% labeled data. Our method under semi-supervised
learning consistently outperforms other baselines as the
sample selection cycle progresses. It is worth noting that a
fully entropy-based method’s performance is even inferior
to that of random sampling, which may be caused by the
problem of overconfident mis-classification [11]. However,
under the guide of graph-based SSL and the virtual adver-
sarial generator, the boundary limitator in REVIVAL could
use entropy to estimate the uncertainty effectively. Consid-
ering the samples’ cluster structure in latent space, the core-
set tends to select samples at centers of clusters to represent
each cluster’s feature, which may be limited by over-exploit
and under-exploration. In contrast, REVIVAL selects sam-
ples near the clusters’ boundary to accelerate structural in-
formation exploration.

4.2.2 REVIVAL Performance on CIFAR-100

Figure 6 demonstrates the results of REVIVAL’s perfor-
mance on CIFAR-100 under semi-supervised learning. We
can see that semi-supervised REVIVAL outperforms all
previous baselines throughout the whole sample selection
stage. When using 25% labeled data, semi-supervised RE-
VIVAL achieves 9.33% more accuracy than supervised RE-
VIVAL. Core-set performs ineffectively when the number
of categories gets bigger, compared to the performance on
CIFAR-10. ICAL takes several data augmentation methods
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Figure 6: Performance comparison under semi-supervised learn-
ing on the CIFAR-100. The dotted line (SL-REVIVAL) at the
bottom represents the performance of REVIVAL under supervised
learning with 25% data labeled.

Accuracy % on % Labeled data
Method 15 25

REVIVAL 67.91±0.16 71.63±0.20
LP+VAG 67.71±0.18 71.28±0.20
VAG+BL 67.27±0.18 70.73±0.19
LP+BL 67.38±0.16 70.85±0.17
Random 66.61±0.22 69.82±0.22

Table 1: Ablation study under semi-supervised learning over
CIFAR-100

to measure inconsistency loss and obtain an average accu-
racy of 70.98% in the last cycle. In contrast, REVIVAL
reaches the accuracy of 71.63%, benefiting from the ex-
ploration of continuous local distribution around unlabeled
samples and the consideration of the feature distribution in
the latent space.

5. Model Analysis

5.1. Ablation Study

Table 1 demonstrates the ablation study to evaluate
the contribution of critical modules of REVIVAL on the
CIFAR-100 dataset under semi-supervised learning.

Effect of the label propagator (LP) The label propa-
gator aggregates supervised information for unlabeled sam-
ples, and outputs smoothed prediction probabilities of unla-
beled samples. Without smoothed signals from the propa-
gator, the performance of REVIVAL degrades from 71.63%
to VAG+BL’s 70.73% with 25% labeled data. The Stan-
dalone boundary limitator is even inferior to random selec-
tion without smoothed signals in Figures 5 and 6. The label
propagator can fully excavate the AL algorithm’s great per-
formance potential by utilizing abundant unlabeled data.

Effect of the virtual adversarial generator (VAG)
Compared to all ablation results, the adversarial genera-
tor makes a significant contribution to the algorithm. The
generator can work closely with the propagator exploring

structural information and finding samples near the clus-
ters’ boundary. The generator improves the performance
from 70.85% to 71.63% in the last selection stage.

Effect of the boundary limitator (BL) Although the
semi-supervised AL structure, LP+VAG, can achieve an
excellent performance ( 67.71% and 71.28%), ensuring
high uncertainty of selected samples can still improve the
model’s performance (67.91% and 71.63%) further. The
ablation results show that our complete method has the best
performance.

5.2. Effect of HyperparameterM on REVIVAL

Figure 7(a) illustrates the effect of parameterM on RE-
VIVAL against the CIFAR-10 dataset. Besides, Top-K is
not a hyperparameter as it is equal to the budget size of
sample selection (5% of the whole set) at each stage. We
can observe that when M=2500 (budget size), the algo-
rithm will degenerate into selecting samples only based on
the generator. As the number of samples initially screened
by the generator increases, the contribution of the bound-
ary limitator to the performance becomes greater. Between
the interval from 5500 to 14500, the performance is stable
and nonsensitive to M. After M exceeds 14500, the al-
gorithm prefers to select samples with larger entropy and
gradually ignores feature distribution of samples until the
algorithm degenerates into selecting samples only based on
the boundary limitator. In this phase, the algorithm only
considers the uncertainty of samples.

5.3. Effect of Neighbor Number k for KNN Graph

The effect of the nearest neighbors’ number in the KNN
graph is shown in Figure 7(b). When k=1, the SSL-AL al-
gorithm degenerates into supervised AL as no edge will be
constructed in the graph, so that label information cannot
flow among samples and no structural information will be
provided to AL modules. As the number of k increases, the
SSL-rendered structural and label information increases,
and therefore the performance improves and reaches the
peak when k=20. As the k continues to increase, the per-
formance demonstrates a downward trend. This is because
too much noise is introduced into a too-dense graph.

5.4. Analysis of Adjacency Graph Improvement

In order to demonstrate the enhancement effect of AL on
SSL, we conduct experiments comparing the accuracy of
the constructed graph for SSL on the CIFAR-100 bench-
mark. As illustrated in Figure 7(c), the accuracy of the
adjacency graph constructed by REVIVAL outperforms all
other methods consistently and significantly, demonstrat-
ing that the AL modules effectively accelerate the graph’s
evolutionary rate to boost SSL. Results in this subsection
and 5.1 demonstrate that the mutual enhancement of AL
and SSL is achieved within REVIVAL.
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Figure 7: (a)Performance under different hyper-parameters M. (b)Performance under different hyper-parameters k. (c)Results for analyses
of adjacency graph construction.

Selected samples

Figure 8: The tSNE embeddings of the CIFAR10 dataset and the
selection behavior of our method. Selected samples are shown in
black and remaining unlabeled samples in colored.

5.5. Visualization Analysis

In Figure 8, we visualize our method’s sample selection
behavior via tSNE embedding [45]. We compute embed-
dings for all samples using extracted features learned by
labeled samples and visualize the samples selected by our
method. This visualization suggests that REVIVAL can se-
lect samples, which are near the boundary of clusters and
also have the largest uncertainty (overlapping regions of two
clusters).

5.6. Analysis of Algorithm Generality

To verify the generality of our algorithm, we also con-
duct experiments on the semantic segmentation task. For
semantic segmentation, we consider pixel-level annotation
for AL, and the image-level uncertainty is defined as the
sum of the uncertainty of all the pixels in the image. Be-
sides, the task model adopted here is a supervised model.
Figure 9 demonstrates the performance. We can observe
that REVIVAL significantly outperforms current state-of-
the-art methods across different labeled data ratios. In terms
of required annotations for each approach, REVIVAL needs
25% training data to assist the task model to reach the mIoU
of 58.9%, while the other methods need 10% more labeled
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Figure 9: Performances for segmentation on the Cityscapes.

data. The results show that our algorithm has good general-
ity and can be extended to another task.

6. Conclusion

This paper proposed a SSL-AL framework (REVIVAL)
where AL and SSL achieve mutual enhancement. The
SSL-AL framework unleashes the power of SSL task mod-
els. In the algorithm, we converted the relation between
intra-class similarity and inter-class distinguishability into
a graph structure and performed label propagation based on
the graph. The propagated label information helped AL find
unlabeled samples near the boundary of clusters, which fur-
ther improved label propagation. The experiment results
showed that REVIVAL significantly beat the state-of-the-
art approaches on classification and segmentation tasks.
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