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Abstract: Federated learning (FL) is a novel technique in deep learning that enables clients to collaboratively
train a shared model while retaining their decentralized data. However, researchers working on FL face several
unique challenges, especially in the context of heterogeneity. Heterogeneity in data distributions, computational
capabilities, and scenarios among clients necessitates the development of customized models and objectives in FL.
Unfortunately, existing works such as FedAvg may not effectively accommodate the specific needs of each client.
To address the challenges arising from heterogeneity in FL, we provide an overview of the heterogeneities in data,
model, and objective (DMO). Furthermore, we propose a novel framework called federated mutual learning (FML),
which enables each client to train a personalized model that accounts for the data heterogeneity (DH). A “meme
model” serves as an intermediary between the personalized and global models to address model heterogeneity (MH).
We introduce a knowledge distillation technique called deep mutual learning (DML) to transfer knowledge between
these two models on local data. To overcome objective heterogeneity (OH), we design a shared global model that
includes only certain parts, and the personalized model is task-specific and enhanced through mutual learning with
the meme model. We evaluate the performance of FML in addressing DMO heterogeneities through experiments
and compare it with other commonly used FL methods in similar scenarios. The results demonstrate that FML
outperforms other methods and effectively addresses the DMO challenges encountered in the FL setting.
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1 Introduction

In the era of big data (Pan, 2017, 2018), the pro-
tection of data privacy is becoming increasingly im-
portant. This is not just a matter of public concern,
but also a legal requirement enforced by laws such
as the General Data Protection Regulation (GDPR)
in the European Union. As a result, the massive
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amounts of data generated by devices (e.g., mobile
phones, wearables, and Internet of Things) (Liu PX
et al., 2022) or organizations (e.g., hospitals, compa-
nies, and courts) (Padhya and Jinwala, 2019) cannot
be collected in a central server, presenting a ma-
jor challenge for deep learning (Li JH, 2018; Wu
JX et al., 2018; Wang J et al., 2020). To address
this challenge, federated learning (FL) has emerged
as a novel deep learning setting (McMahan et al.,
2017). FL enables clients to collaboratively train a
shared model under the orchestration of a central
server, while keeping the data decentralized (Cor-
chado et al., 2016; Yang et al., 2019; Lim et al., 2020;
Kairouz et al., 2021). This technique helps overcome
the “data island” problem and has extensive appli-
cations, including mobile apps, autopilots, health-
care, and financial services. However, researchers
face distinctive challenges when working on FL, par-
ticularly concerning heterogeneity. In this study, we
focus on the heterogeneity problem and summarize
it from three perspectives: data, model, and objec-
tive (DMO), as shown in Fig. 1. These challenges
are distinct from those encountered in traditional
distributed machine learning.

1. Data heterogeneity (DH). In FL, the data
collected from multiple clients are non-independent
and identically distributed (non-IID) as opposed to
centralized deep learning, where data are indepen-
dent and identically distributed (IID). This implies
that the patterns of data generated by different
clients (X1,Y1), (X2,Y2), · · · , (Xk,Yk) have diverse
distribution with (x, y) ∼ Pi(x, y) �= Pj for any
i, j = 1, 2, · · · , k. The statistical heterogeneity of
data can contribute to significant accuracy reduc-
tion, especially during the model weight averaging
phase. As pointed out in Zhao et al. (2022), this
occurs when the averaged model weights diverge due
to the underlying differences in data distributions.

2. Model heterogeneity (MH). In FL, the global
model obtained through FedAvg by aggregating the
weights of local models cannot be customized for
various scenarios and tasks. Clients vary in their
hardware capabilities, the way they represent their
local data, and the tasks they perform. Due to these
differences, each client requires a personalized model
that is specifically designed for their unique needs. A
variety of studies, such as Wu BC et al. (2019) and He
et al. (2021), have highlighted this concern. Also, due
to privacy issues, local models need to be protected

from theft, because they are considered the private
property of clients. Local models may contain sensi-
tive information, and thus their privacy preservation
is an important aspect of FL. Gao DS et al. (2020)
and Liang et al. (2020) further discussed the chal-
lenges of developing local models with varying data
representations. Smith et al. (2017) suggested that
different clients may have distinct and diverse goals,
which necessitates designing individualized models
adapted to those specific objectives.

3. Objective heterogeneity (OH). In FL, OH has
two aspects, referring to the existence of different ob-
jectives between the global model and local models in
FL, as well as across different clients. In one aspect,
the server aims to train a generalized model that can
fit the joint distribution Pjoint(x, y) for all clients,
while each client intends to train personalized mod-
els that can fit their own distribution Pk(x, y). How-
ever, reconciling these distinct goals may sacrifice the
personalization of clients, particularly when non-IID
data are involved. On the other aspect, some clients
may share similar features, but have varying tasks
such as 10- or 100-class classification, limiting the
effectiveness of FL approaches like FedAvg. It is es-
sential to address these objective heterogeneities to
improve the performance of FL.

In this study, we propose a novel paradigm,
entitled federated mutual learning (FML), which
aims to address the challenges posed by the three
sources of heterogeneity encountered in the FL con-
text, namely, data, model, and objective. To tackle
the issue of DH, we allow each client being able to
train a personalized model, tailored to their specific
data. This deviates from the conventional methodol-
ogy of training a generalized global model, and allows
for a more individualized service for each client. To
address the issue of MH, we deploy a “meme model”
on each client, which is a copy of the global model.
The purpose of this model is to serve as an interme-
diary between the generalized global model and the
personalized model. To enable the transfer of knowl-
edge between these two models on local data, we
introduce a knowledge distillation technique known
as deep mutual learning (DML) (Zhang Y et al.,
2018), which can be implemented during local up-
dates. To overcome the issue of OH, the shared
global (meme) model is no longer a complete model
but includes only certain parts (such as convolution
layers). The personalized model, on the other hand,
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Fig. 1 The heterogeneities in FL can be divided into three types: DH, MH, and OH. DH refers to the fact
that data generated by different clients are non-independent and identically distributed like in centralized
deep learning. This statistical heterogeneity of data can result in significant accuracy reduction when model
weights are averaged due to weight divergence. MH refers to the fact that clients may have different hardware
capabilities, different representations of local data, or different tasks, and they need to design their own
models. However, FedAvg cannot provide customized models for various scenarios and tasks, because it needs
to aggregate the weights of local models with the same architecture. OH arises from the inconsistent objectives
of the server and clients in FL. The server aims to construct a single generalized model from data contributed
by all clients, while clients aim to train a personalized model for themselves. As a result, this trade-off between
these two objectives can lead to the loss of both generalization and personalization. Additionally, clients may
have data of similar features but different tasks, thereby complicating the model aggregation process. DH:
data heterogeneity; FL: federated learning; MH: model heterogeneity; OH: objective heterogeneity

is designed to be task-specific and can be enhanced
through mutual learning with the meme model. We
conduct experiments to evaluate the performance of
FML in addressing the challenges posed by DMO
heterogeneities, as compared with other FL meth-
ods commonly used in similar scenarios. Our results
demonstrate that FML outperforms the other meth-
ods and is highly effective in addressing the DMO
challenges encountered in the FL setting.

2 Related works

2.1 Data heterogeneity

The key difference between FL and distributed
learning, which typically refers to distributed train-
ing within data centers, lies in whether client data are
locally fixed and inaccessible to others. This feature
provides a safeguard for data privacy, but it results
in non-IID and unbalanced data distribution, which
complicates the training process. Non-IID data are
difficult to train and can lead to reduced accuracy
due to weight divergence, causing a considerable de-
viation from the correct weight updates during the

averaging stage. Zhao et al. (2022) offered a data-
sharing strategy to address this issue by creating a
small, globally shared subset of data. This approach
has proven effective in improving accuracy, and for
privacy preservation, shared data can be extracted
using distillation (Wang TZ et al., 2020) or be gener-
ated using a generative adversarial network (GAN)
(Chen HT et al., 2019). Numerous theoretical works
have focused on FedAvg, with a specific emphasis on
convergence analysis and relaxing assumptions in the
non-IID setting (Lian et al., 2017; Li X et al., 2019,
2021). However, it is essential to note that all these
works concentrate on training a single global model.
Zhang X et al. (2022) proposed a novel personal-
ized FL method called pFedBayes that addresses the
challenges of model overfitting and lack of statis-
tical diversity among clients in FL. By introducing
weight uncertainty and personalization through local
distribution parameters, pFedBayes achieved better
generalization error and convergence rates.

2.2 Model heterogeneity

In the context of FL, Smith et al. (2017) intro-
duced the MOCHA framework, which addresses high
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communication costs, stragglers, and fault tolerance
in multi-task FL. Similarly, Khodak et al. (2019)
presented the average regret-upper-bound analysis
(ARUBA) theoretical framework, which is used to
analyze gradient-based meta-learning, and allows for
training of separate models while maintaining con-
trol over model architectures by the central server.
Li DL and Wang (2019) proposed a decentralized
framework for FL based on knowledge distillation.
This approach enables FL for independently de-
signed models, but requires access to a public dataset
and does not support a global model for future
use. Additionally, this method does not support
new participation since new participants may dis-
rupt established models. Alam et al. (2023) proposed
FedRolex, a model-heterogeneous FL approach that
enables partial training and allows for the training
of a global server model larger than the largest client
model. FedRolex employs a rolling sub-model ex-
traction scheme to mitigate client drift and outper-
forms state-of-the-art methods across models and
datasets.

2.3 Objective heterogeneity

In traditional FL, the goal is to train a global
model that is applicable to all clients. However,
in personalized situations, Yu et al. (2022) demon-
strated that some participants may not benefit from
the global model when it is less accurate than their
local model. The global model can become overfitted
to the small local dataset, which impacts its person-
alization ability. As noted by Jiang et al. (2023),
optimizing only for global accuracy can make the
model more difficult to personalize. To achieve effec-
tive personalization in FL, Jiang et al. (2023) pro-
posed three objectives: (1) developing improved per-
sonalized models that benefit most clients, (2) cre-
ating an accurate global model that benefits clients
with limited private data for personalization, and
(3) achieving rapid model convergence in a small
number of training rounds. In the context of im-
age representation in FL, Liu FL et al. (2020) pro-
posed a framework for obtaining various image repre-
sentations from different tasks and combining useful
features from different vision-and-language ground-
ing problems. Chen HY and Chao (2022) proposed
FedRod, which addresses the dilemma of prioritiz-
ing a model’s generic performance or personalized
performance. By decoupling a model’s dual duties

with two prediction tasks, this framework can ap-
proach both goals simultaneously. This paper also
demonstrated that the averaging over model weights
acts as a regularizer for local models to improve their
individual personalized performance.

3 Preliminaries

3.1 Typical federated learning setup

The main objective of typical FL, specifically
the FedAvg algorithm, is to train a single shared
model over decentralized data by minimizing the
global objective function, min f(w), in a distributed
manner. This function considers the entire dataset,
which is the union of all decentralized data, and
the loss function is over all private data, f(w) =
1
n

∑n
i=1 fi(w). Each client generates private data,

denoted as (Xk,Yk), through a distinct distribution
Pk(x, y) from K clients. To begin the FL process
on each client, the weight vector wk ∈ R

d is copied
from the global model. Each client then conducts a
local update by optimizing the local objective using
a gradient descent method for several epochs:

Fk(w
k) = 1

nk

∑
i∈Pk

fi(w
k),

wk ← wk − η∇Fk

(
wk

)
,

(1)

where Fk(w
k) represents the loss function of the kth

client, nk represents the number of local samples,
η is the learning rate, and ∇Fk

(
wk

) ∈ R
d is the

gradient of Fk

(
wk

)
. It is important to note that

the expectation EPk
[Fk(w)] = f(w) may not hold

because Pk �= Pjoint in the non-IID setting. Follow-
ing a period of local updates, clients transmit local
model weights, wk, to the parameter server, which
then aggregates these weights by weighted averaging:

wglobal ←
K∑

k=1

nk

n
wk, (2)

where the aggregated weights, denoted as wglobal,
represent the weights of the global model, and n de-
notes the number of samples over all clients. The
entire training process is repeated until the global
model achieves convergence. Through collaborative
training, the shared global model can learn without
the sharing of private local data. However, as pre-
viously mentioned, training local models directly on
a copy of the global model presents challenges. To
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address these challenges, it is natural to train distinct
models for clients.

3.2 Knowledge distillation

In the context of machine learning, knowledge
distillation, as described by Hinton et al. (2015), is
a process of transferring “dark knowledge” from a
powerful, large teacher model to a lighter, easier-to-
deploy student model, with minimal loss in perfor-
mance. The loss function for a student model can be
expressed in a simplified form as follows:
{

Lstudent = LCE +DKL (pteacher‖pstudent) ,
pteacher =

exp(z/T )∑
i exp(zi/T ) ,

(3)

where the loss function for a student model can
be expressed as a combination of the cross entropy
and Kullback Leibler (KL) divergence, denoted as
LCE and DKL, respectively. The predictions of the
teacher and student models are denoted as pteacher
and pstudent respectively, parameter T represents the
temperature hyperparameter, zi represents the score
of the ith class, and z refers to the logits of the teacher
model. By using the prediction of the teacher model,
this method can improve the performance of the stu-
dent model as it provides more useful information
(soft targets) than the traditional one-hot label (hard
targets), which can serve as a regularizer.

In this work, we incorporate knowledge distil-
lation into the FL process during the local update
stage. There are two main reasons for this approach:
first, FL can be considered as a type of transfer
learning between global and local models; second,
the two models that transfer knowledge can have
different architectures. However, as a well-trained
teacher model is not readily available in the FL set-
ting, we adopt DML, which is a deep learning strat-
egy derived from knowledge distillation, for the local
update process. Unlike the traditional teacher-to-
student knowledge transfer pattern, DML is a two-
way knowledge transfer, where both models can learn
from each other throughout the training process.
The loss function for the two models is expressed
as follows:

{
Lw1 = LC1 +DKL (p2‖p1) ,
Lw2 = LC2 +DKL (p1‖p2) , (4)

where the loss function for the two models in the
DML strategy is expressed as a combination of the

predictions p1 and p2 from the respective networks.
The objective of DML is for the two models to train
themselves over the dataset while achieving a consen-
sus on predictions (i.e., distillation). This approach
can result in better performance than independent
training, and importantly, the two models can have
different architectures, with the direction of knowl-
edge transfer being two-way. Therefore, DML can be
used to train distinct models during the local update
stage of FL.

4 Methodology

4.1 Rethinking federated learning

FL faces three heterogeneities: data, model, and
objective. To address these challenges, we propose
rethinking two fundamental questions in FL: what
is the product of FL and what should be shared in
FL? In typical FL, the objective is to train a single
model that fits a joint distribution Pjoint(x, y) and
can be used by all clients. However, in the context
of OH, the server and clients have different objec-
tives, with the server aiming to train a generalized
model that fits Pjoint(x, y) and clients seeking a per-
sonalized model that fits Pk(x, y). The non-IIDness
of data (DH) presents challenges to training, but it
can be beneficial for clients if it is possible to train
a personalized model in FL. Hence, the non-IIDness
of data should no longer be viewed as a bug but as a
feature that enables clients to be served better per-
sonally. The model shared in FL does not necessarily
have to be a complete, end-to-end (E2E) model. In-
stead, the model trained by FL can be split into
two parts: a partial model that is shared globally
and a partial model that is owned by clients locally,
depending on what clients want to learn and share
in FL. The shared objective can be an encoder for
learning representations, a decoder for classification,
or an integrated module for multi-task learning. Dif-
ferent local objectives (OH) of clients can lead to the
need for MH, as clients may have similar but differ-
ent tasks, such as visual question answering (VQA)
and image captioning. Inspired by prior works (Gao
DS et al., 2020; Li WH and Bilen, 2020; Liu FL
et al., 2020; Gao JQ et al., 2023), we introduce DML
as a way to address MH in FL. In DML, two mod-
els can learn from each other throughout the train-
ing process, which can result in better performance
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than independent training. Moreover, the two mod-
els can have different architectures, and the direction
of knowledge transfer is two-way. Therefore, DML
can be used to train distinct models during the local
update stage of FL.

4.2 Federated mutual learning

To address the challenges presented by the three
heterogeneities (DMO) in FL, it is necessary to train
generalized and personalized models with different
architectures. To this end, we introduce a more flex-
ible FL method, named FML, in this subsection.

FL is a method that involves learning and trans-
ferring data knowledge between global and local
models. To achieve this, we introduce a knowledge
distillation approach known as DML, which is used
as the local update method for clients to train a per-
sonalized model for their own data and task. Each
client in FML has two models: the meme model that
serves as the medium of knowledge transfer between
global and local models, and the personalized model
that is designed by clients for their specific data and
task (Fig. 2). This allows clients to train their local
model mutually with the global model rather than
directly on it, thus making the process more flexible.

During the training process of FML, the global
model is initialized and controlled by the central
server, while each client initializes an initial personal-
ized model customized for its own data and task. All
clients then fork the global model as the meme model
and conduct local updates, with the meme model
constructed by splicing the forked global model with
an adaptor layer if the global model is not a com-
plete model. Rather than training directly on the
copy of the global model, each client’s local update
involves DML between the meme model and person-
alized model for several epochs. The loss function of
the two models can be rewritten as

Llocal = αLClocal
+ (1 − α)DKL (pmeme‖plocal) , (5)

Lmeme=βLCmeme+(1− β)DKL (plocal‖pmeme) , (6)

where α and β are hyperparameters that control the
relative importance of the cross-entropy loss LC and
the KL divergence term between the probability dis-
tributions of the local and meme models. α controls
the weight given to the local model’s cross-entropy
loss LClocal

versus the KL divergence term DKL be-
tween the probability distributions of the meme and
local models. A higher value of α puts more empha-
sis on the local model’s accuracy in predicting labels,
whereas a lower value of α places more emphasis on

Meme
model

DML

DML

...
... ...

... ...

Personalized
model

Private
data

Client 1 Client 2 Client K

Local
update

Personalized model

Meme model Logits Predicts Labels

0 t 1 t t+1 T

DKL(p2||p1) DKL(p1||p2)

Communication
rounds

Fig. 2 In the FML method, each client trains two models over its private data during local update: the meme
model and the personalized model. At each communication round, the clients fork the new generation of the
global model as their meme model, while the personalized model is trained privately and continuously. During
each local update, the two models in the clients engage in DML for several epochs, learning mutually. FML:
federated mutual learning; DML: deep mutual learning
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aligning the probability distributions of the meme
and local models to improve the model’s generaliza-
tion ability. Similarly, β controls the weight given to
the meme model’s cross-entropy loss LCmeme versus
the KL divergence termDKL between the probability
distributions of the local and meme models. A higher
value of β puts more emphasis on the meme model’s
accuracy in predicting labels, whereas a lower value
of β places more emphasis on aligning the probabil-
ity distributions of the local and meme models to
improve the model’s generalization ability. The val-
ues of α and β need to be tuned carefully to balance
the trade-off between the accuracy of the local and
meme models and the alignment of their probabil-
ity distributions. The mutual learning of the meme
model and personalized model can be accomplished
through DML. In this approach, the meme model
transfers its knowledge to the personalized model by
measuring the KL divergence of their outputs us-
ing the same input, denoted as Eq. (5). Likewise,
the personalized model can convey feedback to the
meme model to enhance its generalization, repre-
sented as Eq. (6). In addition, both models can be
trained concurrently to facilitate mutual improve-
ment. The direction of knowledge transfer is bidi-
rectional, wherein the meme model shares its global
knowledge with the personalized model and receives
feedback from it, both of which are trained on pri-
vate data. The trained meme models of individual
clients are subsequently transmitted to the server,
which averages them to obtain the new generation of
global models. The entire process is reiterated until
convergence is achieved, as outlined in Algorithm 1.

The global model (global), the meme model
(meme), and the personalized model (local), along

Algorithm 1 Federated mutual learning
Server execution:
1: for each round t = 1, 2, · · · , T do
2: for each client k in parallel do
3: memekt+1 ← ClientUpdate(memekt )
4: end for
5: Merge: globalt+1 ← 1

K

∑K
k=1 memekt+1

6: end for
ClientUpdate:
7: for each client k do
8: Fork: memek0 ← global0
9: for each epoch e = 1, 2, · · · , E do

10: Conduct DML between memekt and localkt over pri-
vate data (Xk,Yk)

11: end for
12: end for

with private data (X ,Y), are involved in execut-
ing the FML algorithm. In Algorithm 1, the sub-
scripts and superscripts denote the tth communica-
tion round and the kth client, respectively. The max-
imum values of t, k, and e are represented by the
upper case letters T , K, and E, respectively. It is
important to note that our approach is distinct from
typical FedAvg, because we abandon the weighted
average item nk/n and allow FML to degrade into
FedAvg if β = 1. Specifically, from the perspec-
tive of the server, the global model is learned us-
ing FedAvg with the meme models of clients. This
global model represents a generalized model that fits
the joint distribution Pjoint(x, y) over all data. Con-
versely, from the perspective of clients, the personal-
ized models are continuously trained on private data,
while distilling knowledge from meme models at each
communication round, as shown in Fig. 2. Impor-
tantly, throughout the entire process, the personal-
ized models remain with the clients and are never
replaced, thereby fitting the personalized distribu-
tion Pk(x, y) over private data. Further discussion
of this approach is presented in Section 6.

In our FML framework, when participating
clients require a service, they rely on their lo-
cally stored personalized model to make predictions.
This personalized model is constructed based on the
client’s distinct distribution, which captures distinct
features of each individual user. In contrast, when
novel clients request a service, we deploy a global
model. Although adopting a model from similar
clients may appear attractive, it remains challeng-
ing to determine the similarity of two clients’ data
before accessing it. Thus, we opt for a more cautious
approach by employing the global model to ensure
optimal performance and preserve the privacy of all
our clients’ data.

5 Experiments

This section presents a comprehensive evalua-
tion of the efficacy of FML over three frequently uti-
lized image classification datasets, under both IID
and non-IID conditions, using PyTorch. The experi-
mental design comprises two main parts: the perfor-
mance of FML is validated under typical FL settings,
followed by an assessment of its performance under
DMO settings.
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5.1 Experimental settings

1. Datasets. In this study, three popu-
lar datasets, namely MNIST, and CIFAR-10, and
CIFAR-100, are used to evaluate the effectiveness of
FL. The MNIST dataset (LeCun et al., 1998) com-
prises 10 classes of handwritten digits ranging from 0
to 9, and it includes a total of 60 000 training images
and 10 000 test images. Specifically, each digit has
6000 and 1000 images with a resolution of 28 × 28

pixels, allocated for training and test, respectively.
The CIFAR-10/100 datasets (Krizhevsky, 2009) are
10- and 100-class classification datasets, respectively.
The CIFAR-10 dataset contains 50 000 training im-
ages and 10 000 test images in 10 different classes,
with 5000 and 1000 images per class, respectively.
In contrast, the CIFAR-100 dataset has the same to-
tal number of images as CIFAR-10, but comprises
100 classes, with 500 training images and 100 test
images per class. All images in CIFAR-10/100 are
three-channel color images with a size of 32×32 pix-
els. These three datasets are commonly adopted in
FL experiments.

2. Federated settings. In this study, we conduct
experiments using a simulated cross-silo FL environ-
ment, in which a central server orchestrates the ac-
tivities of five clients (K = 5). For the experiments
of DH and MH, the total number of communication
rounds on MNIST and CIFAR-100 datasets is set
to T = 200, and T is set to 400 on the CIFAR-10
dataset. For the experiments of OH, the total num-
ber of communication rounds is set to T = 250. All
the local epochs are set to E = 5. To ensure that the
clients have equal amounts of training data in both
IID and non-IID settings, the dataset is partitioned
into five parts, with each client receiving 1/5 of the
training data and 1/5 of the test data allocated as
private validation data (for instance, CIFAR-10 com-
prises 50 000 training images and 10 000 test images,
and hence, each client is assigned 10 000 images as
private training data and 2000 images as private vali-
dation data in the IID setting without replacement).
The overall test set, which includes 10 000 test im-
ages in CIFAR-10, is used to test the global model.
In the IID setting, each client receives a set of shuf-
fled data such that Pk(x, y) = Pjoint(x, y). However,
in the non-IID setting, the dataset is divided into Kp

shards of size n
Kp (where K = 5 and n = 50 000),

and p shards are assigned to each client. We consider

three levels of non-IID difficulty, where p is set to
{6, 4, 2} for MNIST and CIFAR-10, and {60, 40, 20}
for CIFAR-100, which means that each client has a
maximum of p classes of data. We denote these set-
tings as non-IID (1, 2, 3), where non-IID (3) is an
extreme setting with no overlap of classes.

3. Training settings. In our experimental setup,
we evaluate the performance of four different mod-
els: multi-layer perceptron (MLP) (McMahan et al.,
2017), LeNet5 (LeCun et al., 1989), a convolutional
neural network (CNN1) that contains two 3× 3 con-
volution layers (the first with six channels and the
second with 16 channels), each followed by a 2 × 2

max pooling layer and rectified linear unit (ReLU)
activation, and two fully connected (FC) layers, and
a convolutional neural network (CNN2) that includes
three 3 × 3 convolution layers, each with 128 chan-
nels, followed by a 2×2 max pooling layer and ReLU
activation, and one FC layer. We use MLP and
LeNet5 models for the MNIST dataset, and CNN1
and CNN2 models for CIFAR-10/100 datasets. The
optimizer we select for all models is the stochastic
gradient descent (SGD) algorithm, with a momen-
tum of 0.9, weight decay of 5× 10−4, and batch size
of 128.

5.2 FML in typical FL settings

Initially, we investigate the efficacy of FML in
conventional FL settings, where all clients collab-
orate to train a common global model. To begin
the experiments, we design and implement identi-
cal architectures for all models, including the global
model, meme model, and personalized model for each
client. We compare FML with two baselines, FedAvg
(McMahan et al., 2017) and FedProx (Li T et al.,
2020), in both IID and non-IID settings. FedProx is
a typical FL method that aims to address the issue
of heterogeneity in the devices’ data distributions. It
includes a regularization term called “proximal term”
that is added to the loss function to encourage the
model to be closer to a weighted average of the lo-
cal models trained on each device. This helps mit-
igate the impact of the devices’ different data dis-
tributions on the shared model’s performance. We
evaluate the accuracy of four different types of mod-
els (MLP, LeNet5, CNN1, and CNN2) over three
datasets (MNIST, CIFAR-10, and CIFAR-100) in
four data settings (IID, non-IID (1, 2, 3)), and re-
port the accuracy of the global model in Table 1. We
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observe a decrease in the global model accuracy with
the increasing level of difficulty in data setting from
the top to the bottom of the table when comparing
IID with non-IID (1, 2, 3). Additionally, comparing
FML with baselines, we find that FML outperforms
FedAvg and FedProx in most settings. We demon-
strate the training process in Fig. 3.

5.3 FML in DMO

1. DH. Because the data in non-IID settings may
be distributed differently across clients, the global
shared model may not perform as well as local models
trained solely on private data. Therefore, we address
the challenge of DH by training a personalized model
for each client. Personalized models allow each client

Table 1 Top-1 accuracies of global models in typical FL settings

Setting Method
Accuracy (%)

MNIST CIFAR-10 CIFAR-100

MLP LeNet5 CNN1 CNN2 CNN1 CNN2

IID FedAvg 98.44 99.29 85.90 87.49 56.11 60.88
FedProx 98.14 99.13 83.91 86.15 32.41 59.23

FML (ours) 98.49 99.37 85.93 87.41 57.11 62.50
Non-IID (1) FedAvg 97.40 98.92 80.41 82.64 53.77 57.76

FedProx 97.35 98.75 77.46 80.88 47.83 55.60
FML (ours) 97.70 99.07 80.86 82.69 54.21 59.77

Non-IID (2) FedAvg 96.84 98.67 78.85 81.17 50.86 56.82
FedProx 96.98 98.50 76.53 78.87 45.46 55.34

FML (ours) 97.00 98.71 78.64 80.85 52.92 55.93
Non-IID (3) FedAvg 90.46 96.45 63.22 64.12 41.48 50.36

FedProx 80.03 87.55 58.07 62.01 41.29 49.51
FML (ours) 93.77 96.70 62.42 66.75 46.30 51.86

Best results are in bold. FL: federated learning; FML: federated mutual learning
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Fig. 3 Our findings indicate that FML offers better performance improvements than the FedAvg and FedProx
approaches across four different data settings. We simulate various levels of DH, where the difficulty level
gradually increases from left to right. With the aid of DML, the DKL loss component acts as a powerful
regularizer during the training process. In the non-IID setting, we observe that FML performs better with
a stable trajectory compared to FedProx and FedAvg, which exhibit severe oscillations. As noted in Zhang
Y et al. (2018), FML can identify a more stable and robust minimum. FML: federated mutual learning; DH:
data heterogeneity; DML: deep mutual learning; non-IID: non-independent and identically distributed
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to fit their own distribution Pk(x, y), rather than
relying on a single generalized model, as is typically
used in FL settings. We evaluate the efficacy of the
product of FL, i.e., the personalized model in FML
and the global model in FedAvg and FedProx, by
measuring the performance on the private validation
set. The results of this evaluation are presented in
Fig. 4.

2. MH. To address the challenge of MH, we em-
ploy a knowledge distillation technique, which al-
lows each client to design their personalized model
based on specific requirements. In our experimental
setup, we assign different models to each of the five
clients, including one client using MLP, one employ-
ing LeNet5, one leveraging CNN1, and two making
use of CNN2, and the global model is LeNet5. We
train these models over CIFAR-10 in an IID setting
and report the results in Fig. 5.

3. OH. We investigate multi-task FML, where
clients may engage in different tasks. To this end,
we initialize two clients to train 10-/100-class classi-

fication tasks over CIFAR-10/100 using LeNet5 and
CNN1, respectively. The global model comprises
only the convolution layers of CNN2, and it is not
a complete E2E model. Therefore, an adaptor layer
(an FC layer) must be appended to adapt to the
10-/100-class classification tasks of each client. The
results of this study are presented in Fig. 6.

6 Discussion

1. Catfish effect. The ability of FML to han-
dle MH allows clients to train models with varying
dimensions and architectures, which may result in
differences in model capabilities across clients. In
our experiments, we observed a novel phenomenon,
the catfish effect, which does not occur in FedAvg.
This effect describes a scenario in which models with
low capabilities (sardines) can be improved by a
high-capability model (catfish), compared to the per-
formance of only sardines in FML. Conversely, if a
poorly trained model exists in FML, it has little effect
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Fig. 4 The global model trained in an FL system functions as a generalized model, which exhibits poor
performance on private data in non-IID settings. Through our analysis of the three curves, we observe that
FedAvg exhibits more severe oscillations as the level of DH increases, particularly in non-IID (3). Although
FedProx adds a proximal term to alleviate the oscillation, it fails to achieve a high accuracy. In contrast,
FML rapidly improves and stabilizes at a high level, demonstrating superior performance in terms of both
stability and accuracy. FL: federated learning; non-IID: non-independent and identically distributed; DH:
data heterogeneity; FML: federated mutual learning
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ized models trained using FML (represented by the
solid curves) and compare it to the highest accuracy
achieved by the personalized models through inde-
pendent training (represented by the dashed lines),
using the private validation set. We show the first 100
rounds of the training process. Our results indicate
that the use of a shared model through FML leads to
improved accuracy for personalized models across all
clients, regardless of the specific model architecture
employed. FML: federated mutual learning
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Fig. 6 We illustrate the performance of LeNet5 and
CNN1 models, which were trained independently on
CIFAR-10 and CIFAR-100 datasets, using the green
and red curves, respectively. The blue and orange
curves represent the performances of the two models
trained using FML. We show the first 250 rounds of
the training process. Our results demonstrate that
the use of a shared representation through FML can
effectively improve the accuracy of all models, despite
the presence of different tasks assigned to each client.
References to color refer to the online version of this
figure

on the overall performance of other clients. This fea-
ture may inspire research on adversarial training in
FL in the future.

2. Dynamic α and β. In our experiments, we
fixed the proportions of cross-entropy loss and KL

loss for both the local (α) and meme (β) mod-
els. However, we observed that dynamic α and β

at different stages of training can significantly im-
prove both the global and local model performances.
Based on our experience, the improvement of the lo-
cal model can be attributed to a well-trained global
model at a later stage of training, while the improve-
ment of the global model can be attributed to well-
trained local models at an early stage of training.
Therefore, a larger α in the early stage and a larger
β in the later stage are preferred.

3. Privacy and fairness. In this study, we in-
troduce the concept of model privacy. Because FML
allows customized models which are the private prop-
erty of individuals, it is crucial to protect the local
customized models from theft. Furthermore, we have
abandoned the use of the average item nk/n in Sec-
tion 4.2 due to privacy and fairness considerations.
On one hand, the number of samples nk on each
client should not be exposed to the central server,
because it could be used by attackers to breach pri-
vacy. On the other hand, different nk values may lead
to fairness issues, since clients with a larger number
of samples would have a disproportionate influence
on model training, which is not appropriate in some
applications. Therefore, we have chosen to abandon
this item and treat each client as equal, rather than
each sample.

7 Conclusions

In this paper, we propose a novel federated mu-
tual learning (FML) framework that effectively ad-
dresses the challenges of data, model, and objective
(DMO) heterogeneities in federated learning (FL).
By leveraging personalized models, meme models,
and a deep mutual learning technique, FML pro-
vides a flexible approach for knowledge distillation
between global and local models. The experimental
results indicate that FML outperforms alternatives
in different FL scenarios, thus establishing its ef-
fectiveness in dealing with DMO challenges. This
study paves the way for more efficient and person-
alized learning strategies in the federated learning
landscape.
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