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Abstract: To leverage the enormous amount of unlabeled data on distributed edge devices, we formulate a new
problem in federated learning called federated unsupervised representation learning (FURL) to learn a common
representation model without supervision while preserving data privacy. FURL poses two new challenges: (1) data
distribution shift (non-independent and identically distributed, non-IID) among clients would make local models
focus on different categories, leading to the inconsistency of representation spaces; (2) without unified information
among the clients in FURL, the representations across clients would be misaligned. To address these challenges, we
propose the federated contrastive averaging with dictionary and alignment (FedCA) algorithm. FedCA is composed
of two key modules: a dictionary module to aggregate the representations of samples from each client which can be
shared with all clients for consistency of representation space and an alignment module to align the representation
of each client on a base model trained on public data. We adopt the contrastive approach for local model training.
Through extensive experiments with three evaluation protocols in IID and non-IID settings, we demonstrate that
FedCA outperforms all baselines with significant margins.
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1 Introduction

Federated learning (FL) is proposed as a
paradigm that enables distributed clients to collab-
oratively train a shared model while preserving data
privacy (McMahan et al., 2017). Specifically, in each
round of FL, clients obtain the global model and up-
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date it on their own private data to generate the local
models, and then the central server aggregates these
local models into a new global model. Most of ex-
isting works focus on supervised FL, in which clients
train their local models with supervision. However,
the data generated in edge devices are typically unla-
beled. Therefore, learning a common representation
model for various downstream tasks from decentral-
ized and unlabeled data while keeping private data
on devices, i.e., federated unsupervised representa-
tion learning (FURL), remains still an open problem.

It is a natural idea that we can combine FL with
unsupervised approaches, which means that clients
can train their local models via unsupervised meth-
ods. There are a lot of highly successful works on
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unsupervised representation learning. Particularly,
contrastive learning methods train models by reduc-
ing the distance between representations of positive
pairs (e.g., different augmented views of the same
image) and increasing the distance between negative
pairs (e.g., augmented views from different images),
which have been outstandingly successful in prac-
tice (van den Oord et al., 2019; Chen T et al., 2020;
Chen XL et al., 2020; He KM et al., 2020). How-
ever, their successes highly rely on their abundant
data for representation training; for example, con-
trastive learning methods need a large number of
negative samples for training (Sohn, 2016; Chen T
et al., 2020). Moreover, few of these unsupervised
methods take the problem of data distribution shift
into account, which is a common practical problem
in FL. Hence, it is difficult to combine FL with un-
supervised approaches for FURL.

In FL applications, however, the data collected
by each client are limited and the data distribution of
the client might be different from each other (Jeong
et al., 2018; Yang Q et al., 2019; Sattler et al., 2020;
Kairouz et al., 2021; Zhao et al., 2022). Hence, we
face the following challenges in combining FL with
unsupervised approaches for FURL:

1. Inconsistency of representation spaces
In FL, the limited data of each client would lead

to variation of data distribution from client to client,
resulting in inconsistency of representation spaces
encoded by different local models (Kuang et al.,
2020). For example, as shown in Fig. 1a, client 1 has
only images of cats and dogs, and client 2 is with only
images of cars and planes. Then, the locally trained
model on client 1 encodes only a feature space of
cats and dogs, failing to map cars or planes to the
appropriate representations, and the same goes for
the model trained on client 2. Intuitively, the perfor-
mance of the global model aggregated by these incon-
sistent local models may fall short of expectations.

2. Misalignment of representations
Even if the training data of the clients are

independent and identically distributed (IID) and
the representation spaces encoded by different local
models are consistent, there may be misalignment
between representations due to randomness in the
training process. For instance, for a given input set,
the representations generated by a model are equiv-
alent to the representations generated by another
model when rotated by a certain angle, as shown in

Cat

Dog

Car
Plane

(a)

(b)

Fig. 1 Illustration of challenges in federated unsu-
pervised representation learning (FURL): (a) incon-
sistency of representation spaces (data distribution
shift among clients causes local models to focus on
different categories); (b) misalignment of representa-
tions (without unified information, the representation
across clients would be misalignment, e.g., rotated by
a certain angle). The hyperspheres are representation
spaces encoded by different local models in federated
learning (FL)

Fig. 1b. It should be noted that the misalignment
between local models may have drastic detrimental
effects on the performance of the aggregated model.

To address these challenges, we propose a con-
trastive loss-based FURL algorithm called the feder-
ated contrastive averaging with dictionary and align-
ment (FedCA), which consists of two main novel
modules: a dictionary module for addressing the in-
consistency of representation spaces and an align-
ment module for aligning the representations across
clients. Specifically, the dictionary module, which is
maintained by the server, aggregates the abundant
representations of samples from clients and these can
be shared with each client for local model optimiza-
tion. In the alignment module, we first train a base
model based on small public data (e.g., a subset of
STL-10 dataset) (Coates et al., 2011) and then re-
quire all local models to mimic the base model such
that the representations generated by different lo-
cal models can be aligned. Overall, in each round,
FedCA involves two stages: (1) clients train local
representation models on their own unlabeled data
via contrastive learning with the two modules men-
tioned above, and then generate local dictionaries,
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and (2) the server aggregates the trained local mod-
els to obtain a shared global model and integrates
the local dictionaries into a global dictionary.

To the best of our knowledge, FedCA is the first
algorithm designed for the FURL problem. Our ex-
perimental results show that FedCA has better per-
formance than those naive methods that solely com-
bine FL with unsupervised approaches. We believe
that FedCA will serve as a critical foundation in this
novel and challenging problem.

2 Related works

2.1 Federated learning

FL enables distributed clients to train a shared
model collaboratively while keeping private data on
devices (McMahan et al., 2017). Li T et al. (2020)
added a proximal term to the loss function to keep
local models close to the global model. Wang HY
et al. (2020) proposed a layer-wise FL algorithm to
deal with the permutation invariance of neural net-
work parameters. However, existing works focus only
on the consistency of parameters, while we empha-
size the consistency of representations in this study.
Some works also focus on reducing the communica-
tion of FL (Konečný et al., 2017). To further protect
the data privacy of clients, cryptography technolo-
gies have been applied to FL (Bonawitz et al., 2017).

2.2 Unsupervised representation learning

Learning high-quality representations is impor-
tant and essential for various downstream tasks
(Zhou et al., 2017; Duan et al., 2018). There are two
main types of unsupervised representation learning
methods: generative and discriminative (Zhuang YT
et al., 2017; Lei et al., 2020; Zhu et al., 2020). Gener-
ative approaches learn representations by generating
pixels in the input space (Hinton and Salakhutdi-
nov, 2006; Kingma and Welling, 2014; Radford et al.,
2016). Discriminative approaches train a representa-
tion model by performing pretext tasks, where labels
are generated for free from unlabeled data (Pathak
et al., 2017; Gidaris et al., 2018). Among them,
contrastive learning methods achieve excellent per-
formance (van den Oord et al., 2019; Chen T et al.,
2020; Chen XL et al., 2020; He KM et al., 2020).
The contrastive loss was proposed by Hadsell et al.
(2006). Wu ZR et al. (2018) proposed an unsu-

pervised contrastive learning approach based on a
memory bank to learn visual representations. Wang
TZ and Isola (2020) pointed out two key properties,
namely, closeness and uniformity, related to the con-
trastive loss. Other works also applied contrastive
learning to videos (Sermanet et al., 2018; Tian et al.,
2020), natural language processing (NLP) (Mikolov
et al., 2013; Logeswaran and Lee, 2018; Yang ZL
et al., 2019), audios (Baevski et al., 2020), and graphs
(Hassani and Ahmadi, 2020; Qiu et al., 2020).

2.3 Federated unsupervised learning

Before the FL was proposed, there have been
some works on unsupervised representation learning
in the distributed/decentralized setting, which are
easily portable to the FL setting (Kempe and Mc-
Sherry, 2008; Liang et al., 2014; Shakeri et al., 2014;
Raja and Bajwa, 2016; Wu SX et al., 2018). How-
ever, different from the deep learning method, the
convergence of these methods is limited by the size
of the data, and it is difficult to achieve good perfor-
mance on downstream tasks (Lyu, 2020; Pan, 2020;
Zhuang YT et al., 2020).

Some concurrent works (van Berlo et al., 2020;
Jin et al., 2020) also focus on FL from unlabeled
data with the deep learning method. Different from
these works which simply combine FL with unsuper-
vised approaches, we explore and identify the main
challenges in FURL and design an algorithm to deal
with these challenges. There are some later works
aiming to solve our proposed problem (Zhuang WM
et al., 2021b). For example, Sattler et al. (2021) pro-
posed to use the unlabeled auxiliary data in FL by
federated distillation techniques.

2.4 Contrastive learning for FL

To our best knowledge, our work is the first one
to combine contrastive learning with FL, which has
inspired some later works (He CY et al., 2021; Ji
et al., 2021; Shi et al., 2022). Li QB et al. (2021)
conducted contrastive learning at the model level to
correct local training. Wu YW et al. (2021) proposed
to exchange the features of clients to provide diverse
contrastive data to each client. Zhuang WM et al.
(2021a) focused on unsupervised setting in FL by
designing a dynamically contrastive module with an
effective communication protocol. Zhuang WM et al.
(2022) proposed a new method to tackle the non-IID
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data problem in FL and filled in the gap between
FL and self-supervised approaches based on Siamese
networks.

3 Preliminaries

In this section, we discuss the primitives needed
for our approach. The symbols and the correspond-
ing meanings are given in Table 1.

3.1 Federated learning

In FL, each client u ∈ U has a private dataset
Du of training samples, and our aim is to train a
shared model while keeping private data on devices.
There are a lot of algorithms designed for aggregation
in FL (Li T et al., 2020; Wang HY et al., 2020), and
we point out that our approach does not depend on
the way of aggregation. Here, for simplicity, we in-
troduce a standard and popular aggregation method
named FedAvg (McMahan et al., 2017). In round
t of FedAvg, the server randomly selects a subset of
clients Ut ⊆ U and each client u ∈ Ut locally updates
the global model with parameters θt on dataset Du

via the stochastic gradient descent rule to generate

Table 1 Symbols and the corresponding meanings

Symbol Meaning

U Set of client indexes {1, 2, ..., n}
Du Local dataset of client u
Dalign Additional dataset for alignment
Ut Set of selected client indexes in round t

C Proportion of selected clients per round
θt Global model parameters in round t

θut Local model parameters of client u in round t

θalign Alignment model parameters
η Learning rate for model update
E Number of local epochs
dictt Global dictionary in round t

dictut Local dictionary of client u in round t

β Weight of alignment loss
x Input sample
v View augmented from a sample
f(·) Encoder
h Representation for downstream tasks
g(·) Projection head
z Latent projections for contrastive loss
α Momentum parameter for dictionary update
z̃ Normalized projections
dict Global dictionary
Z Projection in local ensemble dictionary
dictu Local dictionary of client u

the local model:

θut+1 ← θt − η�L(Du, θt), (1)

where η is the stepsize and L(Du, θt) is the loss func-
tion of client u in round t. Then the server gathers
the parameters of the local models {θut+1|u ∈ Ut} and
aggregates these local models via weighted average
to generate a new global model:

θt+1 ←
∑

u∈Ut

|Du|∑
i∈Ut
|Di|θ

u
t+1. (2)

The training process above is repeated until the
global model converges.

3.2 Unsupervised contrastive learning

Unsupervised contrastive representation learn-
ing methods learn representations from unlabeled
data by reducing the distance between representa-
tions of positive samples and increasing the distance
between representations of negative samples. Among
them, SimCLR achieves outstanding performance
and can be applied to FL easily (Chen T et al., 2020).
SimCLR randomly samples a minibatch of N sam-
ples and executes twice random data augmentations
for each sample to obtain 2N views. Typically, the
views augmented from the same image are treated as
positive samples and the views augmented from dif-
ferent images are treated as negative samples (Doso-
vitskiy et al., 2014). The loss function for a positive
pair of samples (i, j) is defined as follows:

li,j = −ln exp(sim(zi, zj)/τ)∑2N
k=1 �[k �=i]exp(sim(zi, zk)/τ)

, (3)

where τ is the temperature and �[k �=i] = 1 if and
only if k �= i. sim(·, ·) measures the similarity of two
representations of samples (e.g., cosine similarity).
The model (consisting of a base encoder network f

to extract representation h from augmented views
and a projection head g to map representation h to
z) is trained by minimizing the loss function above.
Finally, we use representation h to perform down-
stream tasks.

4 Method

In this section, we analyze the two challenges
mentioned above and detail the dictionary module
and alignment module designed for these challenges.
Then we introduce the FedCA algorithm for FURL.
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4.1 Dictionary module for inconsistency
challenge

FURL aims to learn a shared model that maps
data to representation vectors such that similar sam-
ples are mapped to nearby points in the represen-
tation space so that the features are well clustered
by classes. However, the presence of non-IID data
presents a great challenge to FURL. Since the local
dataset Du of a given client u likely contains samples
of only a few classes, the local models may encode
inconsistent spaces, causing bad effects on the per-
formance of the aggregated model.

To empirically verify this, we visualize the rep-
resentations of images from CIFAR-10 via the t -
distributed stochastic neighbor embedding (T-SNE)
method. To be specific, we split the training data
of CIFAR-10 into five non-IID sets, and each set
consists of 10 000 samples from two classes. Then,
the FedAvg algorithm is combined solely with the
unsupervised approach (SimCLR) to learn represen-
tations from these sets. We use the local model in
the 20th round of the client who has only samples of
class 0 and class 1 to extract features from the test
set of CIFAR-10 and visualize the representations
after dimensionality reduction by T-SNE (Fig. 2a).
We find that the scattered representations of samples
from class 0 and class 1 are spread over a very large
area of representation space, and it is difficult to dis-
tinguish samples of class 0 and class 1 from others.
It suggests that the local model encodes a represen-
tation space of samples of class 0 and class 1, and it
cannot map samples of other classes to the suitable
positions. The visualization results support our hy-
pothesis that the representation spaces encoded by
different local models are inconsistent in a non-IID
setting.

We argue that the cause of inconsistency is that
the clients can use only their own data to train the
local models but the distribution of data varies from
client to client. To address this issue, we design a
dictionary module (Fig. 3b). Specifically, in each
communication round, clients use the global model
(including the encoder and the projection head) to
obtain the normalized projections {z̃i} of their own
samples and send the normalized projections to the
server along with the trained local models. Then,
the server gathers the normalized projections into a
shared dictionary. For each client, the global dic-

A C

B

A C

B

(a)

(b)

Fig. 2 t-distributed stochastic neighbor embedding
(T-SNE) visualization results of representations on
CIFAR-10. In federated learning (FL) with a non-
independent and identically distributed (non-IID)
setting, we use the local model of the client who has
only samples of class 0 and class 1 to generate repre-
sentations. We compare two methods: (a) vanilla fed-
erated unsupervised approach FedSimCLR (SimCLR
is combined with FedAvg directly) and (b) FedCA
(ours). A and B are the regions where representations
of samples of class 0 and class 1 cluster, respectively,
and C is the remaining region

tionary dict with K projections is treated as a nor-
malized projection set of negative samples for local
contrastive learning. Specifically, in the local train-
ing process, for a given minibatch xbatch with N

samples, we randomly augment them to obtain xi

and xj , and generate normalized projections z̃i and
z̃j . Then we calculate the following:

logitsbatch = z̃i · z̃T
j , (4)

logitsdict = z̃i · dictT, (5)

logits = concat
(
[logitsbatch, logitsdict], dim = 1

)
,

(6)

where concat() denotes concatenation, the size of
logits is N × (N +K), and dim=1 means that they
are concatenated in the 1st dimension. Now, we
turn the unsupervised problem into an (N + K)-
classification problem and define

label = [0, 1, ..., N − 1] (7)
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Maximize distance
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Minimize distance

zdict_global zother zi zj zlocal zalign

glocal(·) galign(·)

flocal(·) falign(·)

hother hi hj hlocal halign

vother vi vj

xother xalignx
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dict local
t

z local
1 z local

2 z local
t
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1 hlocal

2 hlocal
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f 1(g1(·)) f 2(g2(·)) f t(gt(·))
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Fig. 3 Illustration of FedCA: (a) overview of FedCA (in each round, clients generate local models and
dictionaries, and then the server gathers them to obtain the global model and dictionary); (b) local update
of model (clients update local models by contrastive leaning with the dictionary and alignment modules); (c)
local update of dictionary (clients generate local dictionaries via temporal ensembling). In (b), xother is a
sample different from sample x, xalign is a sample from the additional public dataset for alignment, f is the
encoder, and g is the projection head

as a class indicator. Then the loss function is given
as follows:

losscontrastive = CE(logits/τ, label), (8)

where CE denotes the cross-entropy loss and τ is the
temperature term.

Note that in each round, the shared dictionary
is generated by the global model from the previous
round, but the projections of local samples are en-
coded by current local models. The inconsisten-
cies in representations may affect the function of
the dictionary module, especially in a non-IID set-
ting. We use temporal ensembling to alleviate this
problem (Fig. 3c). To be specific, each client main-
tains a local ensemble dictionary consisting of pro-
jection set {Zi

t−1|xi ∈ Du}. In each round, client u

uses the trained local model to obtain projections
{zi

t|xi ∈ Du} and accumulates them into ensemble
dictionary by updating

Zi
t ← αZi

t−1 + (1− α)zi
t , (9)

and then the normalized ensemble projection is given
as

z̃i
t =

Zi
t/(1− αt)

||Zi
t/(1− αt)||2 =

Zi
t

||Zi
t ||2

, (10)

where α ∈ [0, 1) is a momentum parameter and Zi
0 =

0.
We visualize the representations encoded by the

local models trained via federated contrastive learn-
ing with the dictionary module in the same setting

as the vanilla federated unsupervised approach. As
shown in Fig. 2b, we find that the points of class 0
and class 1 are clustered in a small subspace of the
representation space, which means that the dictio-
nary module works well as we expected.

4.2 Alignment module for misalignment
challenge

Due to the randomness in the training process,
there might be differences between the representa-
tions generated by the two models trained on the
same dataset, although these two models encode con-
sistent spaces. The misalignment of representations
may have an adverse effect on model aggregation.

To verify this, we use the angle between two
representation vectors of the same image encoded
by different models to measure the degree of differ-
ence in representations. Then we record the angles
between representations generated by different local
models in FL on CIFAR-10. We split the training
data of CIFAR-10 into five IID sets randomly, and
each set consists of 10 000 samples from all 10 classes.
We randomly select two local models trained by the
vanilla federated unsupervised approach (FedSim-
CLR is used as an example) and use them to ob-
tain normalized representations on the test set of
CIFAR-10. As shown in Fig. 4a, there is always a
large difference in the angle (beyond 20◦) between
the representations encoded by the local models in
the learning process.
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We introduce an alignment module to tackle this
challenge. As shown in Fig. 3b, we prepare an ad-
ditional public dataset with a small size and train a
model galign(falign()) (called the alignment model) on
it. The local models are then trained via contrastive
loss with a regularization term that replicates out-
puts of the alignment model on an alignment dataset.
For a given client u, the loss functions are defined as
follows:

losshalign =

|Dalign|∑

i=1

||halign
i − hu

i ||22, (11)

losszalign =

|Dalign|∑

i=1

||zalign
i − zu

i ||22, (12)

lossalign = losshalign + losszalign, (13)

where halign
i = falign(xi), zalign

i = galign(h
align
i ),

hu
i = fu(xi), zu

i = gu(h
u
i ), and xi ∈ Dalign.
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Fig. 4 Box plots of the angles between the repre-
sentations encoded by local models on the CIFAR-10
dataset in FL with an IID setting: (a) FedSimCLR;
(b) FedCA. FL: federated learning; IID: independent
and identically distributed

We also calculate the angles between the rep-
resentations of the local models trained via feder-
ated contrastive learning with the alignment module
(3200 images sampled from the STL-10 dataset ran-
domly are used for alignment) in the same setting
as the vanilla federated unsupervised approach. As
shown in Fig. 4b, the angles can be controlled within
10◦ after 10 training rounds, suggesting that the
alignment module can help align the local models.

4.3 FedCA algorithm

From the above, the total loss function of the
local model update is given as follows:

loss = losscontrastive + βlossalign, (14)

where β is a scale factor controlling the influence
of the alignment module. Now we have a complete
algorithm named FedCA, which can handle the chal-
lenges of FURL well, as shown in Fig. 3.

Algorithm 1 summarizes the proposed ap-
proach. In each round, clients update the local mod-
els with the contrastive loss and the alignment loss,
and then generate local dictionaries. The server ag-
gregates the local models into a global model and
updates the global dictionary.

5 Experiments

FURL aims to learn a representation model
from decentralized and unlabeled data. In this sec-
tion, we present an empirical study of FedCA.

5.1 Experimental setup

5.1.1 Baselines

AutoEncoder is a generative method to learn
representations in an unsupervised manner by gen-
erating a representation from the reduced encoding
as close as possible to its original input (Hinton and
Salakhutdinov, 2006). Predicting rotation is one of
the proxy tasks of self-supervised learning by rotat-
ing samples by random multiples of 90◦ and predict-
ing the degrees of rotations (Gidaris et al., 2018). We
solely combine FedAvg with AutoEncoder (named
FedAE), predicting rotation (named FedPR), and
SimCLR (named FedSimCLR), separately, and use
them as baselines for FURL.
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Algorithm 1 Federated contrastive averaging with
dictionary and alignment (FedCA)
Input: Client index u (u = 1, 2, . . . , n), parameters
of the global model (encoder and projection head) θt,
parameters of the local model θut , global dictionary dictt,
local dictionary dictut , proportion of selected clients C,
number of local epochs E, local dataset Du, and learning
rate η

Server execution
1: Initialize θ0
2: Prepare a public dataset Dalign and an alignment

model with parameters θalign
3: for each round t = 0, 1, ..., do
4: m← max(C · n, 1)
5: Ut ← random set of m clients
6: for each client u ∈ Ut in parallel do
7: θut+1,dict

u
t+1 ← ClientUpdate(u, θt, dictt)

8: end for
9: θt+1 ←∑

u∈Ut

|Du|
∑

i∈Ut
|Di|θ

u
t+1

10: dictt+1 ← concat
(
[{dictut+1|u ∈ Ut}], dim = 1

)

11: end for
ClientUpdate(u, θ, dict) // Run on client u

1: for each local epoch i from 1 to E do
2: for batch b ∈ Du do
3: θu ← θ − η�L(θ; b,dict, Dalign, θalign)

// Update θ with Eq. (14)
4: end for
5: end for
6: Generate dictu by Eqs. (9) and (10)
7: Return θu and dictu

5.1.2 Datasets

The CIFAR-10/CIFAR-100 dataset
(Krizhevsky, 2009) consists of 60 000 32×32 color
images in 10/100 classes, with 6000/600 images
per class, and there are 50 000 training images and
10 000 test images in CIFAR-10 and CIFAR-100.
The MiniImageNet dataset (Deng et al., 2009;
Vinyals et al., 2016) is extracted from the ImageNet
dataset and consists of 60 000 84×84 color images
in 100 classes. We split it into a training dataset
with 50 000 samples and a test dataset with 10 000
samples. We implement FedCA and the baseline
methods on the three datasets above in PyTorch
(Paszke et al., 2019).

5.1.3 Federated setting

We deploy our experiments under a simulated
FL environment, where we set a centralized node as
the server and five distributed nodes as the clients.

The number of local epochs (E) is five, and in each
round, all of the clients obtain the global model
and execute local training, i.e., the proportion of
the selected clients C = 1. For each dataset, we
consider two federated settings: IID and non-IID.
Each client randomly samples 10 000 images from
the entire training dataset in an IID setting, while
in the non-IID setting, samples are split to clients
by class, which means that each client has 10 000
samples of 2/20/20 classes of CIFAR-10/CIFAR-
100/MiniImageNet.

5.1.4 Training details

We compare our approach with baseline meth-
ods on different encoders, including five-layer con-
volutional neural network (CNN) (Krizhevsky et al.,
2012) and ResNet-50 (He KM et al., 2016). The
encoder maps input samples to representations with
2048 dimensions, and then a multilayer perceptron
(MLP) translates the representations to a vector
with 128 dimensions used to calculate the contrastive
loss. Adam is used as the optimizer, and the initial
learning rate is 1× 10−3 with 1× 10−6 weight decay.
We train models for 100 epochs with a minibatch size
of 128. We set the dictionary size K = 1024, the mo-
mentum term of temporal ensembling α = 0.5, and
the scale factor β = 0.01. Furthermore, 3200 im-
ages randomly sampled from the STL-10 dataset are
used for the alignment module. Data augmentation
for contrastive representation learning includes ran-
dom cropping and resizing, random color distortion,
random flipping, and Gaussian blurring.

5.2 Evaluation protocols and results

5.2.1 Linear evaluation

We first study our method by linear classifica-
tion on a fixed encoder to verify the representations
learned in FURL. We perform FedCA and base-
line methods to learn representations on CIFAR-10,
CIFAR-100, and MiniImageNet without labels sep-
arately in a federated setting. Then, we fix the en-
coder and train a linear classifier with supervision
on the entire dataset. We train this classifier with
Adam as the optimizer for 100 epochs and report the
top-1 classification accuracy on the test datasets of
CIFAR-10, CIFAR-100, and MiniImageNet.

As shown in Table 2, federated averaging
with contrastive learning works better than other
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Table 2 Top-1 accuracies of algorithms for FURL on linear evaluation

Setting Method
Accuracy (%)

CIFAR-10 CIFAR-100 MiniImageNet

Five-layer CNN ResNet-50 Five-layer CNN ResNet-50 Five-layer CNN ResNet-50

IID

FedAE 61.23 65.47 34.07 36.56 28.21 31.97
FedPR 55.75 63.52 29.74 30.89 24.76 26.63

FedSimCLR 61.62 68.10 34.18 39.75 29.84 32.18
FedCA (ours) 64.87 71.25 39.47 43.30 35.27 37.12

Non-IID

FedAE 60.14 63.74 33.94 37.27 29.00 30.44
FedPR 54.94 60.31 30.70 32.39 24.74 25.91

FedSimCLR 59.21 64.06 33.63 38.70 29.24 30.47
FedCA (ours) 63.02 68.01 38.94 42.34 34.95 35.01

Values in bold are the best performance. FedAvg is combined with AutoEncoder (named FedAE), predicting rotation (named
FedPR), and SimCLR (named FedSimCLR). CNN: convolutional neural network; FURL: federated unsupervised representation
learning; IID: independent and identically distributed

unsupervised approaches. Moreover, our method
outperforms all of the baseline methods due to the
modules designed for FURL as we expected.

5.2.2 Semi-supervised learning

In federated scenarios, the private data at the
clients may be only partly labeled, so we can learn a
representation model without supervision and fine-
tune it on labeled data. We assume that the ratios
of labeled data of each client are 1% and 10%, sep-
arately. First, we train a representation model in
FURL setting. Then, we fine-tune it (followed by
an MLP consisting of a hidden layer and a rectified
linear unit (ReLU) activation function) on labeled
data for 100 epochs with Adam as the optimizer and
a learning rate of 1× 10−3.

Table 3 reports the top-1 accuracy of various
methods on CIFAR-10, CIFAR-100, and MiniIma-
geNet. We observe that the accuracy of the global
model trained by federated supervised learning on
limited labeled data is significantly bad, and the
use of the representation model trained in FURL as
the initial model can improve performance relatively.
Our method outperforms other approaches, suggest-
ing that FURL benefits from the designed modules
of FedCA, especially in a non-IID setting.

5.2.3 Transfer learning

A main goal of FURL is to learn a representation
model from decentralized and unlabeled data for per-
sonalized downstream tasks. To verify whether the
features learned in FURL are transferable, we set the

models trained in FURL as the initial models, and
then an MLP is used to be trained along with the
encoder on other datasets. The image size of CIFAR
(32×32×3) is resized to be the same as that in Mini-
ImageNet (84×84×3) when we fine-tune the model
learned from MiniImageNet on CIFAR. We train it
for 100 epochs with Adam as the optimizer and set
the learning rate to be 1× 10−3.

Table 4 shows that the model trained by FedCA
achieves an excellent performance and outperforms
all of the baseline methods in the non-IID setting.

5.3 Ablation study

5.3.1 Alignment and dictionary modules

We perform the ablation study analysis on
CIFAR-10 in IID and non-IID settings to demon-
strate the effectiveness of the alignment and dictio-
nary modules (with temporal ensembling). We im-
plement (1) FedSimCLR, (2) federated contrastive
learning with only alignment module, (3) federated
contrastive learning with only dictionary module,
(4) federated contrastive learning with only dictio-
nary module based on temporal ensembling, and (5)
FedCA, and then a linear classifier is used to evaluate
the performance of the frozen representation model
with supervision. Fig. 5 shows the results.

We observe that the alignment module improves
the performance by 1.4% in both IID and non-IID
settings. With the help of the dictionary module
(without temporal ensembling), there are 2.5% and
2.7% increases in the accuracy under the IID and
non-IID settings, respectively. Moreover, we note
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Table 3 Top-1 accuracies of algorithms for FURL on semi-supervised learning

Ratio of
Setting Method

Accuracy (%)

labeled CIFAR-10 CIFAR-100 MiniImageNet

data Five-layer CNN ResNet-50 Five-layer CNN ResNet-50 Five-layer CNN ResNet-50

1%

IID

FedAvg 31.84 26.68 9.35 8.09 5.83 5.42
FedAE 35.98 36.86 13.36 14.53 11.71 12.84
FedPR 34.51 36.47 13.15 14.20 11.52 12.34

FedSimCLR 43.95 50.00 22.16 23.01 19.14 19.67
FedCA (ours) 45.05 50.67 22.37 23.32 19.20 20.22

Non-IID

FedAvg 20.99 17.72 6.22 5.37 3.92 3.03
FedAE 23.08 23.43 9.96 9.63 8.45 8.43
FedPR 22.83 23.17 9.83 9.38 8.30 8.58

FedSimCLR 26.08 26.03 14.30 14.02 11.02 10.89
FedCA (ours) 28.96 28.50 17.02 16.48 13.39 13.03

10%

IID

FedAvg 50.87 40.44 16.18 14.47 13.46 12.76
FedAE 51.88 53.64 21.77 22.45 21.73 21.96
FedPR 51.38 53.32 21.30 21.21 21.67 21.58

FedSimCLR 59.27 60.67 31.11 31.56 28.45 28.79
FedCA (ours) 59.91 61.02 31.37 32.09 28.93 29.44

Non-IID

FedAvg 30.62 21.69 14.90 13.98 11.88 10.13
FedAE 32.07 32.19 18.77 18.98 13.48 13.65
FedPR 31.04 31.78 18.39 18.34 13.30 13.24

FedSimCLR 32.52 33.83 19.91 20.01 15.90 16.03
FedCA (ours) 35.78 36.28 21.98 22.46 18.67 18.89

Values in bold are the best performance. FedAvg is combined with AutoEncoder (named FedAE), predicting rotation (named
FedPR), and SimCLR (named FedSimCLR). CNN: convolutional neural network; FURL: federated unsupervised representation
learning; IID: independent and identically distributed

Table 4 Top-1 accuracies of algorithms for FURL on transfer learning

Setting Method
Accuracy (%)

CIFAR-100 → CIFAR-10 MiniImageNet→CIFAR-10 MiniImageNet→CIFAR-100

Five-layer CNN ResNet-50 Five-layer CNN ResNet-50 Five-layer CNN ResNet-50

Random init 86.70 93.79 86.60 93.05 58.05 70.52

IID

FedAE 87.33 94.23 86.74 94.23 58.82 71.36
FedPR 87.22 93.89 87.33 93.55 58.23 70.78

FedSimCLR 87.80 94.88 88.03 94.87 59.08 71.85
FedCA (ours) 88.04 95.03 87.91 94.94 58.91 71.98

Non-IID

FedAE 87.37 94.35 87.00 94.06 58.56 71.17
FedPR 86.97 93.91 86.92 93.55 58.39 70.25

FedSimCLR 87.04 94.02 86.81 93.97 58.11 70.91
FedCA (ours) 87.75 94.69 87.66 94.16 58.93 71.32

Values in bold are the best performance. Random init means using the model with random initialization instead of pre-trained
models. FedAvg is combined with AutoEncoder (named FedAE), predicting rotation (named FedPR), and SimCLR (named
FedSimCLR). CNN: convolutional neural network; FURL: federated unsupervised representation learning; IID: independent and
identically distributed

that the representation model learned in FURL ben-
efits more from the temporal ensembling technique
in the non-IID setting than in the IID setting, prob-
ably because the features learned in the IID setting
are stable enough so that temporal ensembling plays

a far less important role in the IID setting than in
the non-IID setting. Fortunately, the model achieves
excellent performance when we combine federated
contrastive learning with the alignment and dictio-
nary modules based on temporal ensembling, which



Zhang et al. / Front Inform Technol Electron Eng 2023 24(8):1181-1193 1191

FedSimCLR Alignment
module

Dictionary
module

Temporal
ensembling

FedCA

74

72

70

68

66

64

62

Ac
cu

ra
cy

 (%
)

IID (avg) Non-IID (avg)

IID (max/min) Non-IID (max/min)

Method

Fig. 5 Ablation study of modules designed for FURL
by linear classification on CIFAR-10 (ResNet-50).
FURL: federated unsupervised representation learn-
ing; IID: independent and identically distributed

suggests that both of these two modules can work col-
laboratively and help tackle the challenges in FURL.

5.3.2 Coefficient of alignment loss

To explore the effectiveness of the coefficient
of alignment loss β, we run our algorithm on the
CIFAR-10 dataset (IID setting, five-layer CNN) with
different values of the hyper-parameter β.

The results are shown in Table 5. We can find
that the values of β have a slight effect on the perfor-
mance of the federated representation model. The
reason for the performance differences may be that
a small value of β cannot make the local models
become aligned, so that the performance of the ag-
gregated model will be degraded. A large value of
β limits the function of the contrastive loss, so that
the model ability cannot be guaranteed. We suggest
that, in practice, people should select an appropri-
ate value for β on a subset of data with a small size
before the formal federated training.

6 Conclusions

We formulate a significant and challenging prob-
lem, termed federated unsupervised representation
learning (FURL), and show the two main chal-
lenges (inconsistency of representation spaces and
misalignment of representations). In this paper,
we propose a contrastive learning based FL algo-
rithm named FedCA, composed of the dictionary
module and alignment module, to tackle the above
challenges. Owing to these two modules, FedCA
enables distributed local models to learn consis-
tent and aligned representations while protecting

Table 5 Ablation study for coefficient of alignment
loss β

β 0.005 0.01 0.05 0.1

Top-1 accuracy (%) 64.16 64.87 64.34 63.93

data privacy. Our experimental results demonstrate
that FedCA outperforms those algorithms that solely
combine FL with unsupervised approaches and pro-
vides a stronger baseline for FURL.

In future work, we plan to extend FedCA to
cross-modal scenarios where different clients may
have data in different modes such as images, videos,
texts, and audios.
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