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Machine knowledge refers to the knowledge contained in artifi-
cial intelligence. This article discusses how to acquire machine
knowledge, with a particular focus on the acquisition of causal
knowledge. The latter is the process of interpreting machine
knowledge. Through the analysis of certain research methods in
the fields of physics and artificial intelligence, we propose princi-
ples and models for interpreting machine knowledge, and discuss
specific methods including the automation of the interpretation
process and local linearization.

Human beings have now entered the four-dimensional society
that comprises the natural world, human world, information
world, and intelligent-agent world. The intelligent agenty has
become an objective existence of our world. An intelligent agent
can make predictions, make judgments, express emotions, and even
actively adjust its behaviors to adapt to changes in the environment
[1,2]. Hence, we can think of an intelligent agent as a knowledge sys-
tem with a knowledge structure and function, known as machine
knowledge.

To establish a generally accepted definition of knowledge, it is
still necessary to continuously study it in depth. In this article,
we first set forth the general definition that knowledge is the law
of phenomena change. An intelligent agent can change the output
from the input, or adjust the next output based on the previous
output. This kind of input and output—as well as the law of change
between output and output—is the law of change of the phe-
nomenon, so it belongs to knowledge. This kind of knowledge is
called primary knowledge. For example, placing all the changes in
the phenomena into a table is an expression of knowledge (i.e.,
exhaustive expression). However, the knowledge that people need
is often not this primary form of knowledge, but rather one that is
abstracted at a higher level—that is, the general and universal law
that reflects the change of phenomena. This kind of knowledge is
called advanced knowledge. Advanced knowledge can continue to
be layered according to the degree of abstraction. Taking the work
of Tycho Brahe and Johannes Kepler as an example, through
detailed observations, Tycho listed a large amount of trajectory
data of planetary operations, which only reflected the associations
of phenomena (i.e., planetary operations). Once Kepler successfully
summed up the three laws and revealed the causal relationship of
those phenomena, high-level knowledge of planetary operations
was developed. Moreover, Newton’s second law is a yet higher-
level expression of knowledge. Both association and causal rela-
tionships are knowledge, but they are at different levels. In the pro-
cess of humans acquiring knowledge, it is the most basic scientific
activity to determine the association between phenomena through
observation. To determine causality, it is necessary to analyze and
summarize the phenomena behind the observed data. Causality
plays an important role in the human science system, since
humans always want to know—and persistently pursue—the
‘‘why” behind a phenomenon change.

In this paper, we focus on the question of whether people can
obtain causal knowledge from intelligent agents, and how it may
be done. This process involves the interpretation of machine
knowledge. Through training, intelligent agents can complete very
complicated work, and some of their achievements have exceeded
humanity’s cultural accumulation over thousands of years. How-
ever, we still do not know how these agents are so successful.
For example, for an intelligent agent such as neural network,
excessive fitting training data does not make neural network more
generalizable. We do not know where the boundaries of its success
are. We do not know how to design the structure of a neural net-
work to accomplish an intended task. We do not know whether
it is possible to change the training set to make the neural network
perform better. We do not even know what the neural network is
based on for precise prediction—that is, whether it is based on data
or on features. In a word, we do not understand the knowledge of
an intelligent agent; hence, how can we trust it?

Thus far, causality remains the fundamental cornerstone of
human understanding of the natural world, and the association
described by probabilistic thinking is the surface phenomenon that
drives us to understand causal mechanisms in the world. As Pearl
[3] said,
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In retrospect, my greatest challenge was to break away from
probabilistic thinking and accept, first, that people are not prob-
ability thinkers but cause-effect thinkers and, second, that causal
thinking cannot be captured in the language of probability; it
requires a formal language of its own.

The first point is the fact that scientific knowledge is not

expressed in the form of probabilistic thinking, but is expressed
as causal thinking. The second point involves how to carry out cau-
sal thinking. Pearl believes that humans have not yet invented
mathematical tools that portray causal thinking. Unfortunately,
most currently favored agents are run in a probabilistic manner,
and the relationships between the expressed phenomena are all
associations. Can we interpret the causation contained in these
associations? It is still a very challenging problem. If humans and
agents cannot communicate and understand each other, or if
humans cannot translate the knowledge of agents into a causal
form, then the development of artificial intelligence will encounter
great obstacles and may even bring hide danger [4].

Physics is a typical science that interprets the natural world
with causality. The natural world can also be a huge intelligent
agent, with phenomena changing every moment. To recognize
the changes in the natural world and their laws, humans always
adopt a description form of causality. They hope to give clear and
accurate expressions of the laws behind the phenomenon transfor-
mation. This is mainly done by adopting regular expressions and
mathematical expressions, which not only make it possible for
humans to describe what has happened, but also make it possible
for them to predict what is likely to happen, where the latter is
especially important. However, the actual operating laws of the
natural world cannot be directly obtained: Humans can only
‘‘guess” the laws that are inherent in natural phenomena through
observations. It is very difficult to accurately and completely sum-
marize the corresponding law even with a large amount of data on
the phenomena. Therefore, humans use two principles (or beliefs)
to interpret the natural world, which are clearly stated in Newton’s
Mathematical Principles of Natural Philosophy, Volume III: On the Sys-
tem of the Universe [5]. These are the first two of the four ‘‘rules of
reasoning in philosophy”:

(1) The simplest description principle (i.e., Occam’s razor): We
are to admit no more causes of natural things than such as are both
true and sufficient to explain their appearances.

(2) The functional similarity principle: Therefore, to the same
natural effects we must, as far as possible, assign the same causes.

For physics, some fundamental laws and principles not only are
a high degree of abstraction and causal characterization of the laws
of phenomena of the natural world, but also follow the two basic
principles mentioned above, thus forming the current basics and
cognitions for the natural world and building the structure of
human natural science knowledge. For example, measurements
cannot be used to accurately verify Newton’s second law, so why
do we still accept it? We accept it because there is a well-estab-
lished principle hidden inside.

Let us return to the interpretation of the intelligent agent. In
most cases, we can know the structure of the agent, but we cannot
predict its behaviors, just as we cannot judge what our brain will
do based on its neural connection structure. We can only observe
the associations between its input and output—that is, the data.
For any agent, if there are sufficient observations and a large
amount of observational data, it is theoretically possible to obtain
the causal relationship through inductive calculation, without con-
sidering the internal structure and operation mode of the agent. It
is said that the causal relationship can be established if it is highly
consistent with the external performance (i.e., function) of the
agent. This is guaranteed by the functional similarity principle.
This method is fully embodied in physics. For example, the uni-
verse can be said to be like a huge clock, where we can only guess
its internal structure from the outside. With continuous observa-
tions that improve in accuracy, our guess will become increasingly
consistent with the observed phenomenon. Yet we may never
know the actual structure inside the cosmic ‘‘clock.” Despite this
incomplete knowledge, physics promotes human social develop-
ment and scientific progress.

Humans have been exploring causal relationships for thousands
of years, but the description of causality has remained at a qualita-
tive and empirical stage for a long time—until the 1970s, when C.
Granger, J. Pearl, and D. Rubin proposed a definition of causality
based on mathematical expressions. At that point, humans began
to establish quantitative research on causality. Pearl’s description
and method of causality are systematic and algorithmic, and can
therefore deal with confounding interference among variables, find
the existence of implicit variables, and solve the problems of attri-
bution such as counterfactuals. The research based on Pearl’s
causality achieved excellent performance in many real applications
and can be applied to address the causal paradox problem. There-
fore, Pearl’s causality has become an important method in the the-
ory and application of artificial intelligence. In principle, Pearl’s
causality has the same scientific assumptions and mathematical
foundations as Fisher’s experimental design; hence, Pearl’s causal-
ity has a solid mathematical foundation.

However, Pearl’s causality still has certain issues that make it
less than satisfactory for slightly more complicated problems. For
example, Pearl’s causal algorithm requires a high degree of data
distribution and quantity—requirements that cannot be met in
many real applications. Furthermore, Pearl’s causality is very sen-
sitive to hidden variables; hence, insufficient or inaccurate obser-
vational data will greatly affect the calculation results. There are
still many uncertainties in constructing the causal structural equa-
tion model or causal structure diagram model required by Pearl’s
causality and its algorithms.

Subsequently, Imbens and Rubin [6] proposed another causal
model, named the potential outcome model, to explore the under-
lying causal knowledge by studying the potential outcomes and
phenomena associations reflected in the data. Rubin’s causal model
has been widely used in practical problems, especially those that
require causal knowledge to assist in decision-making, such as
medical diagnosis and public policymaking. However, Rubin’s cau-
sal model also has some problems; for example, its assumptions on
data are too strong, and some of those assumptions are not testable
in practical problems.

Although the causal methods of Pearl and Rubin are still being
studied, other methods have also been developed. Even though
the causal relationship cannot be directly calculated, it can still
reveal profound relationships from the knowledge of the intelli-
gent agent. Those methods come from research in physics and arti-
ficial intelligence. Physicists also apply machine learning methods
in their research when it is difficult to draw a causal relationship to
understand the natural world. For example, machine learning
methods have been used to understand the Langevin equation
for multibody systems and the Boltzmann description of Liouville’s
equation (the Bogoliubov–Born–Green–Kirkwood–Yvon (BBKGY)
truncation). Interpretation algorithms are also used in artificial
intelligence to understand the intrinsic relationships among com-
plex data or features. Using an intelligent agent to interpret an
intelligent agent is a wonderful idea. In fact, the current variety
of intelligent agents (or learning models) are hierarchical in trans-
parency. That is, some agents are more transparent to humans,
such as linear models and decision tree models, while other agents
are more obscure to humans, such as neural networks and Monte
Carlo search tree models. It is regrettable (but very interesting)



220 F. Li et al. / Engineering 6 (2020) 218–220
that the more obscure an agent is, the stronger its learning ability
is, and the more knowledge it contains. If it is difficult to interpret
an agent directly, one can consider interpreting it through a more
transparent agent. This process can be recursive, making the con-
tent of the interpretation more and more easily understood by
humans [7].

By calculating the influence function, the importance of the data
or features in an intelligent agent can be analyzed, making it pos-
sible to analyze which factors (i.e., causes) cause the agent to have
such a performance. It is also possible to analyze the quality and
distribution of the data to find better observational data, which
is very meaningful in both medical diagnosis and physical
observation.

For a given input data, the intelligent agent will give the corre-
sponding output (or the next action). By calculating the Shapley
value of each input data feature, it is possible to estimate the contri-
bution of different features to the output. Featureswith large contri-
butions are likely to be causes for the behavior of the agent [8].

For complex agents, according to the universal mathematical
principle, the local behavior of the agent should be similar to a lin-
ear system. Hence, according to functional similarity, it is possible
to consider replacing the original agent with a linear model (e.g.,
linear regression) in a local range [9]. The linear model has good
transparency for causality, and its causal relationship can be
obtained by the appropriate processing of its regression coeffi-
cients. Simultaneously, through the analysis of residuals, the accu-
racy of this approximation can be determined, as well as the
sensitivity of other factors to the main variables.

Another straightforward approach is to use a more transparent
model T to learn the obscure model V, in order to obtain the data
labeled by (x, V(x)) by inputting the data x, where V(x) represents
the output of V with respect to x. Then T is relearned based on
those data. If T and V have basically the same behaviors, then,
according to the functional similarity principle, T and V can be con-
sidered to have the same causal knowledge. This method has
achieved good results in analyzing the internal defects of an agent
and in black-box attacks.

The emergence of artificial intelligence has opened more ways
for humans to discover new knowledge. By interpreting the knowl-
edge of intelligent agents, we can enrich our own knowledge
systems and better serve human development. At present, the
interpretation of the intelligent agent still requires further study.
As the theory and methods continue to improve, humans and
agents will achieve a higher level of harmony in their relationship
and will achieve better communication and cooperation with each
other. This will be a milestone in the history of human evolution.
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