
Disentangled Graph Convolutional Networks

Jianxin Ma 1 Peng Cui 1 Kun Kuang 1 Xin Wang 1 Wenwu Zhu 1

Abstract
The formation of a real-world graph typically
arises from the highly complex interaction of
many latent factors. The existing deep learning
methods for graph-structured data neglect the en-
tanglement of the latent factors, rendering the
learned representations non-robust and hardly ex-
plainable. However, learning representations that
disentangle the latent factors poses great chal-
lenges and remains largely unexplored in the liter-
ature of graph neural networks. In this paper, we
introduce the disentangled graph convolutional
network (DisenGCN) to learn disentangled node
representations. In particular, we propose a novel
neighborhood routing mechanism, which is capa-
ble of dynamically identifying the latent factor
that may have caused the edge between a node
and one of its neighbors, and accordingly assign-
ing the neighbor to a channel that extracts and
convolutes features specific to that factor. We the-
oretically prove the convergence properties of the
routing mechanism. Empirical results show that
our proposed model can achieve significant per-
formance gains, especially when the data demon-
strate the existence of many entangled factors.

1. Introduction
Data with a graph structure, e.g., social networks, have
become increasingly prevalent. Recently, graph neural net-
works (Gori et al., 2005; Scarselli et al., 2009), particularly
graph convolutional networks (Bruna et al., 2014; Henaff
et al., 2015; Defferrard et al., 2016; Kipf & Welling, 2017),
have demonstrated their remarkable ability in learning repre-
sentations that are highly effective for prediction, thanks to

1Department of Computer Science and Technology,
Beijing National Research Center for Information Sci-
ence and Technology (BNRist), Tsinghua University,
Beijing, 100084, China. Correspondence to: Jianxin Ma
<majx13fromthu@gmail.com>, Peng Cui, Xin Wang, Wenwu
Zhu <{cuip,xin wang,wwzhu}@tsinghua.edu.cn>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

their end-to-end nature and adoption of deep architectures.

Despite their enormous success, the existing graph neural
networks generally take a holistic approach to representation
learning: the representation learned for a node describes the
node’s neighborhood as a perceptual whole, and the nuances
between the different parts of the neighborhood are ignored.
Yet the formation of a real-world graph typically follows a
complex and heterogeneous process, driven by the interac-
tion of many latent factors. For example, a person in a social
network usually connects with others for various reasons
(e.g., work, school), and therefore possesses a neighborhood
consisting of several different components. The existing
holistic approaches fail to recognize and disentangle the het-
erogeneous factors. As a result, the representations learned
by them could be non-robust (e.g., prone to overreact to an
irrelevant factor) and hardly explainable.

More recently, disentangled representation learning has
gained considerable attention, in particular in the field of
image representation learning (Higgins et al., 2016; Chen
et al., 2017; Alemi et al., 2017; Kim & Mnih, 2018). It
aims to learn representations that separate the explanatory
factors of variations behind the data. Such representations
are demonstrated to be more resilient to the complex vari-
ants (Bengio et al., 2013), and able to bring enhanced gener-
alization ability as well as improved robustness to adversar-
ial attack (Alemi et al., 2017). Moreover, the disentangled
representations are inherently more interpretable, and thus
can potentially facilitate debugging and auditing (Doshi-
Velez & Kim, 2017; Lipton, 2018). However, how to learn
representations that disentangle the latent factors behind a
graph remains largely unexplored in the literature of graph
neural networks.

The characteristics of graphs pose great challenges to dis-
entangled representation learning. The complex formation
process of graphs requires the graph neural networks to have
a sophisticated mechanism for inferring the latent factor that
may have caused an edge, based on the limited information
available, such as node attributes or graph structures. In
addition, the mechanism needs to be differentiable so as to
support end-to-end training, and be capable of conducting
inductive learning in order to enable out-of-sample node
processing (Ma et al., 2018; Hamilton et al., 2017) in real
time for real-world deployment.

Disentangled Graph Convolutional Networks

𝑢

𝑣4

Neighborhood Routing Extract features specific to each factor. 𝑢

concatenate

Layer

Output

𝑣4 𝑣5

𝑾𝟐
𝑣4 𝑣5

𝑣1 𝑣2 𝑣3 𝑣1 𝑣2 𝑣3

𝑾𝟏

𝑾𝟑

Layer Input

𝑢

𝑣4

Feed back to improve neighborhood routing.

channel 1

channel 2

channel 3

Figure 1. The disentangled convolutional (DisenConv) layer. It takes in a node and its neighbors as well as their feature vectors, which
can be the output of the previous layer, and outputs a disentangled representation for the node. The neighborhood routing mechanism
iteratively segments the neighborhood according to the underlying factors. The outputs of the channels are fed back to improve routing at
the end of each iteration. This example assumes that there are three latent factors, hence the three channels.

In this paper, we present the disentangled graph convolu-
tional network (DisenGCN), an end-to-end deep model that
addresses the above challenges and learns disentangled node
representations. The key ingredient of DisenGCN is Dis-
enConv, a disentangled multichannel convolutional layer
(see Figure 1). We propose a novel neighborhood routing
mechanism, which is executed inside DisenConv, to identify
the factor that may have caused the link from a given node
to one of its neighbors, and accordingly send the neighbor
to the channel responsible for that factor. The mechanism
infers the latent factors by iteratively analyzing the poten-
tial subspace clusters formed by the node and its neighbors,
after projecting them into several subspaces. Each chan-
nel 1 of DisenConv then extracts features specific to one of
the disentangled factors from the neighbors it has received,
and performs a convolution operation independently. The
neighborhood routing mechanism is composed purely of
differentiable modules. In addition, it only requires informa-
tion from the local neighborhood, which allows us to express
DisenConv as a mapping from a neighborhood to a node
representation, and thus inductive learning can be supported.
By stacking multiple DisenConv layers, DisenGCN is able
to extract information beyond the local neighborhood.

We theoretically analyze the convergence properties of the
neighborhood routing mechanism, by establishing its con-
nection with probabilistic inference under a projected mix-
ture model. Extensive experiments on various real-world
graphs show that DisenGCN can achieve substantial perfor-
mance gains, around 20% in many cases.

Our main contributions are summarized as follows:

• We present DisenGCN, a novel graph neural network
that learns disentangled node representations.

1The output of each channel can be seen as a capsule (Hinton
et al., 2011). DisenGCN is a capsule neural network in this regard.

• We propose neighborhood routing to infer the factor
behind the formation of each edge, in a manner that is
differentiable and supports inductive learning.

• We theoretically analyze the convergence properties of
neighborhood routing, and empirically demonstrate the
advantages of learning disentangled representations.

2. DisenGCN: the Proposed Model
In this section, we first present the DisenConv layer, and
then describe the overall network architecture of DisenGCN.

2.1. Notations and Problem Formulation

We will focus primarily on undirected graphs, though it is
straightforward to extend our approach to directed graphs.
Let G = (V,E) be a graph, comprised of a set of nodes V
and a set of edges E. We use (u, v) ∈ G, or (u, v) ∈ E, to
indicate that there is an edge between node u and node v.
Each node u ∈ V has a feature vector xu ∈ Rdin .

The key element of most graph convolutional 2 networks,
including ours, is a layer f(·) that outputs a representation
for a node when given the node’s and its neighbors’ features:

yu = f (xu, {xv : (u, v) ∈ G}) .

The output yu ∈ Rdout is viewed as the representation of
node u, learned by the layer. The idea is that the neigh-
borhood of a node provides rich information that can be
leveraged to more comprehensively characterize the node.

We aim to derive a layer f(·) such that the output yu is
a disentangled representation. Specifically, we would like
yu to be composed of K independent components, i.e.,

2We follow the literature and use “convolutional” to refer to an
operation that aggregates information from a neighborhood, which
is also known as spatial filtering (Shuman et al., 2013).

Disentangled Graph Convolutional Networks

Algorithm 1 The proposed DisenConv layer, with K chan-
nels. It performs T iterations of routing. Typically T ≈ 5.

Input: xu ∈ Rdin (the feature vector of node u), and
{xv ∈ Rdin : (u, v) ∈ G} (its neighbors’ features).
Output: yu ∈ Rdout (the representation of node u).
Param: Wk ∈ Rdin×

dout
K , bk ∈ R

dout
K , k = 1, . . . ,K.

for i ∈ {u} ∪ {v : (u, v) ∈ G} do
for k = 1, 2, . . . ,K do
zi,k ← σ(W>

k xi + bk).
zi,k ← zi,k/‖zi,k‖2. // The kth aspect of node i.

end for
end for
ck ← zu,k,∀k = 1, 2, . . . ,K. // Initialize K channels.
for routing iteration t = 1, 2, . . . , T do

for v that satisfies (u, v) ∈ G do
pv,k ← z>v,kck/τ , ∀k = 1, 2, . . . ,K.
[pv,1 . . . pv,K]← softmax([pv,1 . . . pv,K]).

end for
for channel k = 1, 2, . . . ,K do
ck ← zu,k +

∑
v:(u,v)∈G pv,k zv,k. // Update.

ck ← ck/‖ck‖2.
end for

end for
yu ← the concatenation of c1, c2, . . . , cK .

yu = [c1, c2, . . . , cK], where ck ∈ R
dout
K (1 ≤ k ≤ K),

assuming that there are K latent factors to be disentangled.
The kth component ck is for describing the aspect of node u
that are pertinent to factor k. The key challenge is to identify
the subset of neighbors that are actually connected by node
u due to factor k, so as to more accurately describe the kth

aspect of node u. To this end, we propose the DisenConv
layer, presented in the next subsection.

2.2. The DisenConv Layer

Given xu ∈ Rdin and {xv ∈ Rdin : (u, v) ∈ G} as input,
a DisenConv layer outputs yu = [c1, c2, . . . , cK] ∈ Rdout ,
where ck ∈ R

dout
K describes the kth aspect of node u.

DisenConv consists of K channels. And we view ck as the
final output of the kth channel. We will first assume that
the K channels can extract different features 3 when given
a single node i ∈ {u} ∪ {v : (u, v) ∈ G}, by projecting the
feature vector xi into different subspaces:

zi,k =
σ(W>

k xi + bk)∥∥σ(W>
k xi + bk)

∥∥
2

, (1)

3Random initialization is sufficient to ensure the difference in
the beginning. During training, the channels will remain different,
because they receive different subsets of the neighbors and hence
different supervision signals thanks to neighborhood routing.

where Wk ∈ Rdin×
dout
K and bk ∈ R

dout
K are the parame-

ters of channel k, and σ(·) is a nonlinear activation function.
We use l2-normalization to ensure numerical stability and
prevent the neighbors with overly rich features (e.g., long
text) from distorting our prediction. We then assume that
zi,k approximately describes the aspect of node i that are
related with the kth factor, provided that xi does contain
meaningful information about the related aspect.

The feature vector xi, however, is typically incomplete in
the real world, e.g., a user may read but never post anything.
We hence cannot directly use zu,k to serve as ck for the input
node u. To comprehensively capture aspect k of node u, we
are required to mine information from the neighborhood,
i.e., to construct ck from both zu,k and {zv,k : (u, v) ∈ G}.

The key insight here is that we should not use all the neigh-
bors when constructing ck to describe aspect k of node u.
Specifically, we should use only the neighbors that are actu-
ally connected with node u due to factor k. The challenge
is to design a mechanism for inferring the subset of the
neighbors that are connected by node u due to factor k.

We therefore propose the neighborhood routing mechanism,
which is based on two plausible hypotheses 4. The first hy-
pothesis focuses on the relationships among the neighbors:

Hypothesis 1. Factor k is likely to be the reason why node
u connects with a certain subset of its neighbors, if the
subset is large and the neighbors in the subset are similar
w.r.t. aspect k, i.e., they form a cluster in the kth subspace.

This first hypothesis inspires us to search for the largest clus-
ter in each of the K subspaces projected from the original
feature space. This hypothesis is robust under the scenario
where xu is noisy or incomplete, since xu is not involved.
Moreover, when seeking the large clusters, the neighbors
who lack information about factor k will be automatically
pruned, since their projected features zv,k will be noises and
will not form a large enough cluster.

The second hypothesis, on the other hand, focuses on the
relationship between node u and one of its neighbors:

Hypothesis 2. Factor k is likely to be the reason why node
u and neighbor v are connected, if the two are similar in
terms of aspect k.

This second hypothesis suggests that zu,k>zv,k can provide
a hint on the factor behind the edge between u and v, which
is fast to compute and effective, provided that xu and xv do
contain sufficient information about factor k.

4Hypothesis 2 and Hypothesis 1 are analogous to the first-order
and the second-order proximity, respectively. The two concepts
of proximity are widely accepted explanations for the existence
of a link, with evidence from sociology (Granovetter, 1973) and
linguistics (Firth, 1930–1955), and are the essential ingredients of
many algorithms, e.g., LINE (Tang et al., 2015).

Disentangled Graph Convolutional Networks

The hint provided by Hypothesis 2, albeit computationally
efficient, can be misleading when xu or xv lacks infor-
mation about factor k. We therefore need to mitigate this
issue by combining it with Hypothesis 1. Meanwhile, Hy-
pothesis 1 requires a clustering procedure, which typically
involves many iterations. Hypothesis 2 can then serve as a
strong prior to guide clustering, in order to achieve fast con-
vergence. Therefore, we propose our neighborhood routing
mechanism based on both Hypothesis 1 and Hypothesis 2.

Let pv,k be the probability that factor k is the reason
why node u reaches neighbor v, which should satisfies
pv,k ≥ 0 and

∑K
k′=1 pv,k′ = 1. Then pv,k is also the

probability that we should use neighbor v to construct ck.
The neighborhood routing mechanism will iteratively in-
fer pv,k and construct ck. It starts by initializing pv,k as
p

(1)
v,k ∝ exp(zv,k

>zu,k/τ), based on Hypothesis 2. Moti-
vated by Hypothesis 1, it then iteratively searches for the
largest cluster in each subspace, under the constraint that
each neighbor should approximately belong to only one
subspace cluster:

c
(t)
k =

zu,k +
∑
v:(u,v)∈G p

(t−1)
v,k zv,k

‖zu,k +
∑
v:(u,v)∈G p

(t−1)
v,k zv,k‖2

, (2)

p
(t)
v,k =

exp(zv,k
>c

(t)
k /τ)∑K

k′=1 exp(zv,k′>c
(t)
k′ /τ)

, (3)

for iteration t = 2, . . . , T , where τ is a hyper-parameter that
controls the hardness of the assignment. Finally, it outputs
ck = c

(T)
k . We can view ck as the center of each subspace

cluster here. Hypothesis 2 is not only used for initialization,
but also used as a prior during every iteration, i.e., the term
zu,k in Equation 2, in order to ensure fast convergence. We
will formally prove that the algorithm converges in section 3.

The pseudocode of a DisenConv layer is listed in Algo-
rithm 1, which involves only differentiable operations.

2.3. Network Architecture

In this subsection, we describe the overall network architec-
ture of DisenGCN for performing node-related tasks.

Let G = (V,E) be the input graph. Node u is associ-
ated with a feature vector xu ∈ RD and a binary vector of
ground-truth labels yu ∈ {0, 1}C , whereC is the number of
classes. Some graph datasets do not provide node features.
In that case, we simply use the uth row of the adjacency
matrix of G to serve as the feature vector xu.

In practice, it may be desirable to stack multiple DisenConv
layers. First, this allows us to mine information beyond the
local neighborhood when producing a node’s representation.
For example, we can leverage the neighbors’ neighbors,

as well as the edges between two neighbors, by stacking
two DisenConv layers. Secondly, we can potentially learn
hierarchical representations, by gradually decreasing the
number of channels at the later layers.

DisenGCN thus uses L DisenConv layers. Let f (l)(·) be a
DisenConv layer at the lth layer, and let y(l)

u ∈ RK(l)∆d for
u ∈ V be the output of the layer. Here K(l) is the number
of channels used by layer l. And we keep ∆d, the output
dimension of a channel, to be the same across all layers. We
additionally impose the constraint K(1) ≥ K(2)) ≥ . . . ≥
K(L). ReLU is used as the activation function in Equation 1.
The output of layer l can then be expressed as

y(l)
u = dropout

(
f (l)

(
y(l−1)
u , {y(l−1)

v : (u, v) ∈ G}
))

,

where 1 ≤ l ≤ L, y(0)
u = xu, and u ∈ V . The dropout

operation (Srivastava et al., 2014) is appended after every
layer and is enabled only during training. The final layer
is a fully-connected layer, i.e., y(L+1) = W(L+1)>y(L) +

b(L+1), where W(L+1) ∈ RK(L)∆d×C ,b(L+1) ∈ RC .

We use − 1
C

∑C
c=1 yu(c) ln(ŷu(c)), where ŷu =

softmax(y
(L+1)
u), as the loss function for single-label node

classification. For multi-label node classification, where yu
can have more than one positive bits, we use the following
loss function: − 1

C

∑C
c=1[yu(c) · sigmoid(y

(L+1)
u (c)) +

(1 − yu(c)) · sigmoid(−y(L+1)
u (c))]. We compute the

gradients via back-propagation, and optimize the parameters
with Adam (Kingma & Ba, 2015).

3. Theoretical Analysis
In this section, we investigate two important problems about
the proposed neighborhood routing mechanism: (1) whether
it converges after a sufficient number of iterations, and (2)
to what solution it converges if it does. We will answer
these two questions simultaneously by showing the connec-
tion between neighborhood routing and a von Mises-Fisher
(vMF) mixture model proposed for this purpose.

Given the observation {zu,k}Kk=1 and {zv,k : (u, v) ∈
G, 1 ≤ k ≤ K}, the vMF mixture model has a set of
parameters {ck}Kk=1, and is defined as follows:

zu,k ∼ vMF(ck, 1),

rv ∼ Categorical ([1/K, 1/K, . . . , 1/K]) ,

zv,rv | rv ∼ vMF(crv , 1/τ),

zv,k′ | rv ∼ vMF(µ, 0), k′ 6= rv ∧ 1 ≤ k′ ≤ K,

where v ∈ {v : (u, v) ∈ G}, 1 ≤ k ≤ K, and µ is another
parameter. The value of µ is not important, because the
probability density function of vMF(µ, κ) is defined as
fvMF (x;µ, κ) ∝ exp(κµ>x), where ‖µ‖2 = ‖x‖2 = 1,
and thus fvMF (x;µ, 0) is constant.

Disentangled Graph Convolutional Networks

The mixture model views {ck}Kk=1 as the true k aspects of
node u to be estimated, with the following assumptions:
First, the extracted features {zu,k}Kk=1 of node u is a noisy
observation of {ck}Kk=1. Second, neighbor v and node u are
connected due to a unknown factor rv, and they should be
similar in terms of aspect rv. Third, if factor k′ is not the
factor that leads to the connection between u and v, then we
do not have any information abut aspect k′ of neighbor v,
and the best we can do is to assume that zv,k′ is sampled
uniformly, i.e., sampled from vMF(µ, 0).

With the vMF mixture model, we derive the following theo-
rem on neighborhood routing’s convergence properties:

Theorem 1. The neighborhood routing mechanism is equiv-
alent to an expectation-maximization (EM) algorithm for
the mixture model. In particular, it converges to a point
estimate of {c}Kk=1 that maximizes the marginal likelihood
p
(
{zi,k : i = u ∨ (u, i) ∈ G, 1 ≤ k ≤ K} ; {c}Kk=1

)
.

Proof. Let θ = {ck}Kk=1, R = {rv : (u, v) ∈ G}, and Z =
{zi,k : i = u ∨ (u, i) ∈ G, 1 ≤ k ≤ K)}. To derive an EM
algorithm that maximizes p(Z; θ) =

∑
R p(R,Z; θ), we

introduce here an additional auxiliary distribution q(R) over
R. Let L(θ, q) =

∑
R q(R) ln p(R,Z;θ)

q(R) and DKL (q‖pθ) =∑
R q(R) ln q(R)

p(R|Z;θ) . We can then verify that ln p(Z; θ) =

L(θ, q)+DKL (q‖pθ). The second term here is the Kullback-
Leibler (KL) divergence from p(R | Z; θ) to the auxiliary
distribution q(R). The KL divergence is non-negative. As a
result, L(θ, q) is a lower bound of ln p(Z; θ).

The E-step of the EM algorithm is to find q(R) that tightens
the lower bound. This can be achieve by setting q(R) to
p(R | Z; θ), since the KL divergence will become zero.
Note that p(R | Z; θ) =

∏
v p(rv | Z; θ), and p(rv = k |

Z; θ) ∝ p(rv = k, Z; θ) ∝ exp(zv,k
>ck/τ). Therefore,

the optimal q(R) that tightens the bound is q(rv = k) ∝
exp(zv,k

>ck/τ). This proves that Equation 3 is performing
the E-step and pv,k = q(rv = k) = p(rv = k | Z; θ).

After every E-step, the EM algorithm performs an M step
to maximize the lower bound L(θ, q) w.r.t. θ, with q(R)
fixed to the value found in the E-step. Note that we have
∂L(θ,q)

ck
= ck

> (zu,k +
∑
v pv,kzv,k) .We need to optimize

ck under the constraint that ‖ck‖2 = 1. We therefore find
the optimal ck by setting ∂

∂ck

[
L(θ, q) + λ(‖ck‖22 − 1)

]
to

zero. It turns out that the optimal ck is exactly Equation 2.
Thus Equation 2 is in fact performing the M-step.

Let q(t)(R) and θ(t) be the result of the tth E-step and the tth

M-step, respectively. Then ln p(Z; θ(t−1)) = L(θ(t−1), q)+
DKL (q‖pθ(t−1)) = L(θ(t−1), q(t)) ≤ L(θ(t), q(t)) ≤
L(θ(t), q(t)) + DKL

(
q(t)‖pθ(t)

)
= ln p(Z; θ(t)). The like-

lihood thus increases monotonically, while being upper-
bounded by zero. The algorithm therefore converges.

4. Empirical Results
In this section, we empirically assess the efficacy of Disen-
GCN on several node-related tasks, and analyze its behavior
on synthetic graphs to gain further insight.

4.1. Experimental Setup

Baselines To demonstrate the advantages of our approach,
we compare DisenGCN with two representative graph neu-
ral networks, including the graph convolution network
(GCN) (Kipf & Welling, 2017) and the graph attention net-
work (GAT) (Veličković et al., 2018). In particular, GAT
is the state-of-the-art graph neural network on node-related
tasks whose source code is available. When performing
graph convolution, GCN weights a node’s neighbors accord-
ing to their degrees, while GAT learns an parameterized
attention mechanism to prune irrelevant neighbors. Our
model contains the same number of parameters as GCN,
but much less than that of GAT’s. The original implemen-
tations of GCN and GAT do not support multi-label tasks.
We therefore modify them to use the same multi-label loss
function as ours for fair comparison in multi-label tasks.

We additionally include three node embedding algorithms,
including DeepWalk (Perozzi et al., 2014), LINE (Tang
et al., 2015), and node2vec (Grover & Leskovec, 2016), for
multi-label classification, because they are demonstrated to
perform strongly on the multi-label tasks.

Datasets We conduct our experiments on six real-world
graphs, whose statistics are listed in Table 1. Citeseer, Cora,
and Pubmed (Sen et al., 2008) are for semi-supervised node
classification. The nodes, edges, and labels in these three
represent articles, citations, and research areas, respectively.
BlogCatalog (Tang & Liu, 2009), PPI (Breitkreutz et al.,
2008; Grover & Leskovec, 2016), POS (Grover & Leskovec,
2016) are for multi-label node classification. Their labels
are user interests, biological states, and part-of-speech tags,
respectively. The latter three graphs do not provide node fea-
tures. We therefore use the rows of their adjacency matrices
in place of node features for them.

Hyper-parameters Let d be the output dimension of a
graph neural network’s first layer. In the semi-supervised
classification tasks, we follow GAT and use d = 64. In the
multi-label classification tasks, we follow node2vec and use
d = 128, while setting the dimension of the node embed-
dings to be 128 as well for the node embedding algorithms.
The output dimension of DisenGCN’s first layer is K(1)∆d,
where K(1) is the number of channels used by the layer and
∆d is the output dimension of each channel. We therefore
use K(1)∆d = K(1)

⌊
d/K(1)

⌋
instead of d for our model

when d/K(1) is not an integer. We set T = 7. We set
τ = 1, though a smaller value such as 0.1 should lead to

Disentangled Graph Convolutional Networks

Table 1. Dataset statistics.
Dataset Type Nodes Edges Classes Features Multi-label

Citeseer Citation network 3,327 4,732 6 3,703 No
Cora Citation network 2,708 5,429 7 1,433 No

Pubmed Citation network 19,717 44,338 3 500 No
Blogcatalog Social network 10,312 333,983 39 - Yes

PPI Biological network 3,890 76,584 50 - Yes
POS Word co-occurrence 4,777 184,812 40 - Yes

better interpretability. We tune the hyper-parameters of both
our model’s and our baselines’ using hyperopt (Bergstra
et al., 2013). Specifically, we run hyperopt for 200 trials for
each setting, with the hyper-parameter search space spec-
ified as follows: the learning rate ∼ loguniform[e−8, 1],
the l2 regularization term ∼ loguniform[e−10, 1], dropout
rate ∈ {0.05, 0.10, . . . , 0.95}, the number of layers L ∈
{1, 2, . . . , 6}, the number of channels used by the first
layer K(1) ∈ {4, 8, . . . , 32}, and K(l+1) −K(l) = ∆K ∈
{0, 2, . . . , 8}, i.e., each layer has ∆K fewer channels than
its previous layer. Then with the best hyper-parameters on
the validation sets, we report the averaged performance of
100 runs on each semi-supervised dataset, and 30 runs on
each multi-label dataset.

4.2. Semi-Supervised Node Classification

In this task, each dataset contains only 20 labeled instances
for each class. Hence the graph structure must be leveraged
when predicting the labels of the rest. We follow the ex-
periment protocol established by the previous works (Yang
et al., 2016; Kipf & Welling, 2017; Veličković et al., 2018)
strictly, and use the same dataset splits as them.

The results are listed in Table 2. The three datasets used here
do not contain as many factors as the multi-label ones. The
majority of the nodes in them only connects with neighbors
of the same class. Nevertheless, our model still outperforms
the baselines. The optimal number of layers for DisenGCN
found by hyperopt is 5, while GCN and GAT both use two
layers. The improved performance thus might stem from
DisenGCN’s ability to leverage a deep architecture better.
DisenGCN, by taking a disentangled approach instead of
a holistic one, does not suffer from the over-smoothing
problem faced by a deep GCN (Li et al., 2018). It is also less
prone to over-fitting compared with a deep GAT, because
our neighborhood routing mechanism does not introduce
extra parameters, contrary to the attention mechanism.

4.3. Multilabel Node Classification

We follow node2vec (Grover & Leskovec, 2016) and report
the performance of each method while varying the num-
ber of nodes labeled for training from 10%|V | to 90%|V |,

Table 2. Semi-supervised classification accuracies (%).

Datasets

Method Cora Citeseer Pubmed

MLP 55.1 46.5 71.4
ManiReg (Belkin et al., 2006) 59.5 60.1 70.7
SemiEmb (Weston et al., 2012) 59.0 59.6 71.1
LP (Zhu et al., 2003) 68.0 45.3 63.0
DeepWalk (Perozzi et al., 2014) 67.2 43.2 65.3
ICA (Lu & Getoor, 2003) 75.1 69.1 73.9
Planetoid (Yang et al., 2016) 75.7 64.7 77.2
ChebNet (Defferrard et al., 2016) 81.2 69.8 74.4
GCN (Kipf & Welling, 2017) 81.5 70.3 79.0
MoNet (Monti et al., 2017) 81.7 - 78.8
GAT (Veličković et al., 2018) 83.0 72.5 79.0

DisenGCN (this work) 83.7 73.4 80.5

where |V | is the total number of nodes. The rest of the nodes
are split equally to form a validation set and a test set.

We report the results in Figure 2. GCN has relatively high
Macro-F1 scores but low Micro-F1 scores, indicating that
it is not robust to class imbalance and cannot handle the
classes with few samples well. This is because the holistic
approach taken by GCN tends to ignore the information
provided by the minority of neighbors that are associated
with the classes with few samples. On the other hand, GAT
is likely suffering from over-fitting due to its parameterized
attention mechanism, as we have observed that its perfor-
mance on the validation sets is much higher than that on
the test sets. Our approach, in comparison, consistently
outperforms the best performing baselines by a significant
margin, reaching around 10% to 20% relative improvement
in most cases. This indicates that, by disentangling and
preserving the factors behind edge formation, our approach
can effectively address the aforementioned issues faced by
GCN and GAT.

4.4. Disentangling Synthetic Graphs

To further investigate the behavior of DisenGCN, we gener-
ate synthetic graphs with various number of latent factors.

Disentangled Graph Convolutional Networks

0 0.2 0.4 0.6 0.8 1

%Labeled Nodes

15

20

25

30

M
a
c
ro

-F
1
 (

%
)

DeepWalk

LINE

node2vec

GCN

GAT

DisenGCN (this work)

(a) Macro-F1(%), BlogCatalog.

0 0.2 0.4 0.6 0.8 1

%Labeled Nodes

10

15

20

25

M
a
c
ro

-F
1
 (

%
)

DeepWalk

LINE

node2vec

GCN

GAT

DisenGCN (this work)

(c) Macro-F1(%), PPI.

0 0.2 0.4 0.6 0.8 1

%Labeled Nodes

0

5

10

15

20

25

30

35

M
a
c
ro

-F
1
 (

%
)

DeepWalk

LINE

node2vec

GCN

GAT

DisenGCN (this work)

(e) Macro-F1(%), POS.

0 0.2 0.4 0.6 0.8 1

%Labeled Nodes

30

35

40

45

M
ic

ro
-F

1
 (

%
)

DeepWalk

LINE

node2vec

GCN

GAT

DisenGCN (this work)

(b) Micro-F1(%), BlogCatalog.

0 0.2 0.4 0.6 0.8 1

%Labeled Nodes

15

20

25

30

M
ic

ro
-F

1
 (

%
)

DeepWalk

LINE

node2vec

GCN

GAT

DisenGCN (this work)

(d) Micro-F1(%), PPI.

0 0.2 0.4 0.6 0.8 1

%Labeled Nodes

40

45

50

55

60

M
ic

ro
-F

1
 (

%
)

DeepWalk

LINE

node2vec

GCN

GAT

DisenGCN (this work)

(f) Micro-F1(%), POS.

Figure 2. Macro-F1 and Micro-F1 scores on the multi-label classification tasks. Our approach consistently outperforms the best performing
baselines by a large margin, reaching 10% to 20% relative improvement in most cases.

To generate a graph with K latent factors, we first generate
K Erdős-Rényi random graphs, each of which has 1, 000
nodes and 16 communities. Two nodes in an Erdős-Rényi
random graph are connected with probability p if they are
in the same community, with probability q otherwise. We
then generate the final synthetic graph with K latent factors
by summing the adjacency matrices of the K Erdős-Rényi
random graphs. We set q to 3e−5 to generate around 200
random edges, so as to ensure the graph is connected. For
each choice of K, we tune p such that the average degree is
between 39.5 and 40.5. The rows of the adjacency matrices
are used as node features, and the ground-truth communities
are used as labels, i.e., there are 16K classes and each node
has K labels. We use d = 64 in this task. For fair compari-
son, we do not manually set the number of channels used
by DisenGCN to K, but instead tune it as usual.

We vary the number of latent factors, and report the results
in Table 3. From the results, we find that as the number of
latent factors increases from 4 to 10, DisenGCN starts to
achieve a greater relative improvement, which emphasizes
the importance of disentangling the factors. However, when
K is very large, i.e., K > 12, the synthetic graph becomes
too challenging, and the relative improvement brought by
DisenGCN starts to fall.

In Figure 3, we visualize the absolute values of the correla-
tions between the elements of the 64-dimensional node rep-
resentations learned by DisenGCN, on the synthetic graph
with eight factors, using eight channels. DisenGCN’s corre-
lation plot exhibits eight clear diagonal blocks, indicating
that the eight channels of DisenGCN are likely capturing
mutually exclusive information.

4.5. Hyperparameter Sensitivity

In this subsection, we investigate the effect of the two
hyper-parameters that are most important to DisenGCN:
the number of channels, and the number of routing itera-
tions. We use a single DisenConv layer here and run the
experiments on a synthetic graph with eight latent factors
(see section 4.4). The results on the other datasets follow a
similar trend.

The results are reported in Figure 4. The results indicate that
DisenGCN performs the best when the number of channels
is around the actual number of latent factors, and routing for
more iterations generally leads to better performance before
saturation thanks to its convergence properties.

5. Related Work
Graph neural networks (GNNs) (Gori et al., 2005;
Scarselli et al., 2009), especially graph convolutional net-
works (Bruna et al., 2014; Henaff et al., 2015), have been
attracting considerable attention lately, because of their re-
markable success in various tasks, such as graph classifica-
tion (Defferrard et al., 2016) and node classification (Kipf
& Welling, 2017). The early attempts (Bruna et al., 2014;
Henaff et al., 2015) to derive a graph convolutional layer
were based on graph spectral theory, graph Fourier trans-
formation (Shuman et al., 2013) in particular. Defferrard
et al. (2016) then greatly reduced the computational cost by
using polynomial spectral filters. Kipf & Welling (2017)
made further simplification and suggested the usage of a
linear filter. Along with spectral graph convolution, directly
performing graph convolution in the spatial domain was also
investigated by many researchers (Duvenaud et al., 2015;
Atwood & Towsley, 2016; Hamilton et al., 2017). Later
the attention mechanism (Bahdanau et al., 2015) was em-

Disentangled Graph Convolutional Networks

Table 3. Micro-F1 scores on synthetic graphs generated with different numbers of latent factors.

Number of latent factors

Method 4 6 8 10 12 14 16

GCN 78.78 ± 1.52 65.73 ± 1.94 46.55 ± 1.55 37.37 ± 1.52 24.49 ± 1.03 18.14 ± 1.50 16.43 ± 0.92
GAT 83.77 ± 2.32 60.89 ± 3.75 45.88 ± 3.79 36.72 ± 3.58 24.77 ± 3.47 20.89 ± 3.57 19.53 ± 3.97
DisenGCN (this work) 93.84 ± 1.12 74.68 ± 1.92 54.57 ± 1.79 43.96 ± 1.45 28.17 ± 1.22 23.57 ± 1.28 21.99 ± 1.34

Relative improvement +12.02% +13.62% +17.23% +17.63% +13.73% +12.83% +12.6%

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) GCN.

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) DisenGCN (this work).

Figure 3. The absolute values of the correlations between the ele-
ments of the 64-dimensional representations learned by GCN and
DisenGCN with eight channels, respectively, on a synthetic graph
with eight latent factors. We can see that the eight channels of
DisenGCN are likely capturing mutually exclusive information,
because Figure 3b exhibits eight diagonal blocks (marked in red).

ployed to adaptively specify weights to the neighbors of a
node when performing spatial convolution (Veličković et al.,
2018). Monti et al. (2017) proposed a unified framework
that generalized the various graph convolutional networks.

The existing GNNs, however, cannot learn disentangled
node representations. The existing methods typically convo-
lute all the neighbors to obtain a node’s representation, in a
way oblivious to the different factors that may have caused
the edges. They may, in fact, even further blur the boundary
between the factors, and produce overly smoothed represen-
tations that are not desired for node classification, especially
when the number of layers is increased (Li et al., 2018; Xu
et al., 2018). On the other hand, Veličković et al. (2018) do
notice that there can be edges caused by factors irrelevant
to the task at hand, and thus use the attention mechanism
to prune the irrelevant ones. Yet the attention mechanism

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Channels

40

50

60

M
ic

ro
-F

1
 (

%
)

DisenGCN (this work)

GCN

1 2 3 4 5 6 7 8 9 10

Neighborhood Routing Iterations

40

50

60

M
ic

ro
-F

1
 (

%
)

DisenGCN (this work)

GCN

Figure 4. Hyper-parameter sensitivity of DisenGCN, using a single
DisenConv layer, on synthetic graphs with eight latent factors.

remains a holistic approach with respective to the preserved
factors, and therefore cannot disentangle the preserved ones.

Another line of works related to ours is the capsule neural
network 5 (CapsNet) (Hinton et al., 2011), which replaces
scalar-valued neurons with vector-valued ones, called cap-
sules, to capture the different parts of a single instance, and
uses dynamic routing (Sabour et al., 2017; Hinton et al.,
2018) to group low-level capsules into high-level ones. In
part inspired by dynamic routing, we propose neighborhood
routing to cluster the neighbors of a node while disentan-
gling the latent factors. Our approach generalizes dynamic
routing to handle the scenario where there is an undeter-
mined number of connected instances, each composed of
several parts, instead of a single instance.

6. Conclusion
We have studied the problem of disentangling the factors
behind the formation of a graph, and presented DisenGCN,
a graph neural network that learns disentangled node rep-
resentations. An interesting direction for future work is to
investigate if the disentangled node representations can be
leveraged to derive a single representation for the whole
graph that can more comprehensively describe the graph.

5There are recent GNNs that are inspired by the concept of cap-
sules (Verma & Zhang, 2018; Xinyi & Chen, 2019). The problems
they address are different from ours. And they are proposed to
learn whole graph representations for whole graph classification,
while we focus on node representations and node-related tasks.

Disentangled Graph Convolutional Networks

Acknowledgements
This work was supported in part by National Program on
Key Basic Research Project (No. 2015CB352300), National
Natural Science Foundation of China (No. 61772304, No.
61521002, No. 61531006, No. U1611461), China Post-
doctoral Science Foundation (No. BX201700136), Beijing
Academy of Artificial Intelligence (BAAI), the research
fund of Tsinghua-Tencent Joint Laboratory for Internet In-
novation Technology, and the Young Elite Scientist Sponsor-
ship Program by CAST. Peng Cui, Xin Wang, and Wenwu
Zhu supervised the project jointly, and are co-corresponding
authors. All opinions, findings, and conclusions in this pa-
per are those of the authors and do not necessarily reflect
the views of the funding agencies.

References
Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K.

Deep variational information bottleneck. In Proceedings
of ICLR 2017, 2017.

Atwood, J. and Towsley, D. Diffusion-convolutional neural
networks. In Proceedings of NIPS 2016, 2016.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
Proceedings of ICLR 2015, 2015.

Belkin, M., Niyogi, P., and Sindhwani, V. Manifold reg-
ularization: A geometric framework for learning from
labeled and unlabeled examples. JMLR, 2006.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2013.

Bergstra, J., Yamins, D., and Cox, D. D. Making a science of
model search: Hyperparameter optimization in hundreds
of dimensions for vision architectures. In Proceedings of
ICML 2013, 2013.

Breitkreutz, B.-J., Stark, C., Reguly, T., Boucher, L., Bre-
itkreutz, A., Livstone, M., Oughtred, R., Lackner, D. H.,
Bähler, J., Wood, V., Dolinski, K., and Tyers, M. The
BioGRID interaction database: 2008 update. Nucleic
Acids Research, 2008.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and locally connected networks on graphs. In
Proceedings of ICLR 2014, 2014.

Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal,
P., Schulman, J., Sutskever, I., and Abbeel, P. Variational
lossy autoencoder. In Proceedings of ICLR 2017, 2017.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Proceedings of NIPS 2016, 2016.

Doshi-Velez, F. and Kim, B. Towards a rigorous sci-
ence of interpretable machine learning. In eprint
arXiv:1702.08608, 2017.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bom-
barell, R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P.
Convolutional networks on graphs for learning molecular
fingerprints. In Proceedings of NIPS 2015, 2015.

Firth, J. R. A synopsis of linguistic theory. Studies in
linguistic analysis, pp. 1–32, 1930–1955.

Gori, M., Monfardini, G., and Scarselli, F. A new model
for learning in graph domains. In Proceedings of IJCNN
2005, 2005.

Granovetter, M. S. The strength of weak ties. American
Journal of Sociology, 78(6):1360–1380, 1973.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of KDD 2016,
2016.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In Proceedings
of NIPS 2017, 2017.

Henaff, M., Bruna, J., and LeCun, Y. Deep convolu-
tional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
VAE: Learning basic visual concepts with a constrained
variational framework. In Proceedings of ICLR 2016,
2016.

Hinton, G. E., Krizhevsky, A., and Wang, S. D. Trans-
forming auto-encoders. In Proceedings of ICANN 2011,
2011.

Hinton, G. E., Sabour, S., and Frosst, N. Matrix capsules
with EM routing. In Proceedings of ICLR 2018, 2018.

Kim, H. and Mnih, A. Disentangling by factorising. arXiv
preprint arXiv:1802.05983, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of ICLR 2015, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In Proceedings of
ICLR 2017, 2017.

Disentangled Graph Convolutional Networks

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Proceedings of AAAI 2018, 2018.

Lipton, Z. C. The mythos of model interpretability. ACM
Queue, 2018.

Lu, Q. and Getoor, L. Link-based classification. In Proceed-
ings of ICML 2003, 2003.

Ma, J., Cui, P., and Zhu, W. DepthLGP: Learning embed-
dings of out-of-sample nodes in dynamic networks. In
Proceedings of AAAI 2018, 2018.

Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proceedings
of CVPR 2017, 2017.

Perozzi, B., Al-Rfou, R., and Skiena, S. DeepWalk: Online
learning of social representations. In Proceedings of KDD
2014, 2014.

Sabour, S., Frosst, N., and Hinton, G. E. Dynamic routing
between capsules. In Proceedings of NIPS 2017, 2017.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 2009.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 2008.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and
Vandergheynst, P. The emerging field of signal processing
on graphs: Extending high-dimensional data analysis
to networks and other irregular domains. IEEE Signal
Processing Magazine, 2013.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. JMLR, 2014.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q.
LINE: Large-scale information network embedding. In
Proceedings of WWW 2015, 2015.

Tang, L. and Liu, H. Relational learning via latent social
dimensions. In Proceedings of KDD 2009, 2009.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
Proceedings of ICLR 2018, 2018.

Verma, S. and Zhang, Z.-L. Graph capsule convolutional
neural networks. In Joint ICML and IJCAI WCB Work-
shop, 2018.

Weston, J., Ratle, F., Mobahi, H., and Collobert, R. Deep
learning via semi-supervised embedding. Neural Net-
works: Tricks of the Trade, 2012.

Xinyi, Z. and Chen, L. Capsule graph neural network. In
Proceedings of ICLR 2019, 2019.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In Proceedings of ICML
2018, 2018.

Yang, Z., Cohen, W. W., and Salakhutdinov, R. Revisiting
semi-supervised learning with graph embeddings. In
Proceedings of ICML 2016, 2016.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. Semi-
supervised learning using Gaussian fields and harmonic
functions. In Proceedings of ICML 2003, 2003.

