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Abstract
One fundamental problem in causal inference is the treatment effect estimation in
observational studies, and its key challenge is to handle the confounding bias induced
by the associations between covariates and treatment variable. In this paper, we study
the problem of effect estimation on continuous treatment from observational data,
going beyond previous work on binary treatments. Previous work on binary treatment
focuses on de-confounding by balancing the distribution of covariates between the
treated and control groups with either propensity score or confounder balancing tech-
niques. In the continuous setting, those methods would fail as we can hardly evaluate
the distribution of covariates under each treatment status. To tackle the case of contin-
uous treatments, we propose a novel Generative Adversarial De-confounding (GAD)
algorithm to eliminate the associations between covariates and treatment variable
with two main steps: (1) generating an “calibration” distribution without associations
between covariates and treatment by randomly perturbation on treatment variable; (2)
learning sample weights that transfer the distribution of observed data to the “cali-
bration” distribution for de-confounding with a Generative Adversarial Network. We
show, both theoretically and with empirical experiments, that our GAD algorithm can
remove the associations between covariates and treatment, hence, precisely estimat-
ing the causal effect of continuous treatment. Extensive experiments on both synthetic
and real-world datasets demonstrate that our algorithmoutperforms the state-of-the-art
methods for effect estimation of continuous treatment with observational data.
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1 Introduction

Causal inference (Holland 1986), which refers to the process of drawing a conclusion
about a causal connection based on the conditions of the occurrence of an effect, is
a powerful statistical modeling tool for explanatory analysis. Treatment effect esti-
mation is one fundamental problem in causal inference and gains an essential role
for explainable decision making with answering the counterfactual questions (Rubin
1974; Pearl 2009). For example, how many doses of a medication will cause better
outcomes for patients. Pearl (2009) demonstrate that the gold standard approach for
treatment effect estimation is to run a Randomized Controlled Trial (RCT), such as
A/B testing, where the treatments are randomly assigned to units1 and independent of
the covariates as shown in Fig. 1a. A related class of techniques called uplift modeling,
which also strives to get the best possible estimator with properly randomized data
(Soltys et al. 2014; Rudas and Jaroszewicz 2018; Olaya et al. 2020). In many real
applications, however, fully randomized experiments are always expensive, unethical,
or even infeasible (Kohavi and Longbotham 2011). In this paper, hence, we focus on
approximately estimate the treatment effect from off-line data collected from observa-
tional studies. In such datasets, the assignment of treatment depends on the covariates
as we shown in Fig. 1b, leading to confounding bias between treatment and covariates,
i.e., P(T |X) �= P(T ). Therefore, confounding bias removing is the key challenge for
treatment effect estimation in observational studies.

In literature, many methods have been proposed for effect estimation with binary
treatment (treated or control), including matching methods (Kallus 2019; Liu et al.
2019), propensity score basedmethods (RosenbaumandRubin 1983;Bang andRobins
2005; Austin 2011), and confounder balancing techniques (Hainmueller 2012; Kuang
et al. 2017; Athey et al. 2018). The motivation of these methods is to remove the
association between treatment and covariates for de-confounding. Matching methods
(Liu et al. 2019) proposed to match units with almost the same covariates but dif-
ferent treatment. Inverse of propensity weighting (IPW) (Austin 2011) attempted to
re-weight samples for removing confounding bias between treatment and covariates.
Confounder balancingmethods (Kuang et al. 2017, 2019) proposed to balance the dis-
tribution of covariates between treated and control groups. These methods achieved
good performance in real applications for treatment effect estimation, and can be used
in related research field (e.g. discrimination measuring in Žliobaitė (2017)). However,
all of them focus on the binary treatment and cannot be applied for estimating the
causal effect of continuous treatment. Some researchers also consider the heteroge-
neous causal effect problem (Wager and Athey 2015; Athey and Imbens 2016; Künzel
et al. 2019), which the same treatment may affect individuals differently. Recently,
Zou et al. (2020) proposed a method to learn continuous treatment policy by decom-
posing treatment effect functions into different factors under heterogeneous causal
effect setting, which demonstrates feasibility relating continuous to effect definition
under binary treatment setting.

1 Units represent the objects of treatment. For example, in medical experiments, the units refer to the
patients who take a particular medication.
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(a) (b)

Fig. 1 Casual structure for RCT and observational studies, where X denotes the observed covariates, T
refers to the treatment variable, and Y is the outcome. In RCT, the treatment is independent with covariates,
while in observational studies, the treatment is affected by the covariates

The classical methods for estimating continuous treatment effect are based on
regression models, including Y-model (Imbens 2004; Hill 2011) to regress outcome Y
on the covariates and treatment, T-model (Hirano and Imbens 2004; Imai and Van Dyk
2004; Galvao andWang 2015; Zhu et al. 2015; Galagate 2016) to regress the treatment
T on the covariates, and doubly robust methods (Robins and Rotnitzky 2001) by com-
bining both Y-model and T-model. The performance of these methods entirely relies
on the correct specification of their models. Recently, a non-parametric covariate bal-
ancing generalized propensity score (Fong et al. 2018) was proposed to minimize the
association between the covariates and treatment for de-confounding, and achieved
great performance in real applications. However, it is limited by its liner assumption
on T-model. Galagate (2016) extended IPW for continuous treatment with consider-
ing second moments of covariates, but it assumes linear correlation between Y and T .
Overall, if one has NO prior knowledge on the grounded models, existing methods
for continuous treatment cannot fully remove the confounding bias in observational
studies, leading to imprecise estimation of continuous treatment effect.

To better remove the confounding bias in observational studies, we propose a
non-parametric data-driven method, named Generative Adversarial De-confounding
(GAD) algorithm by sample re-weighting techniques. Specifically, there are two main
components in ourGADalgorithm, including “calibration” distribution generation and
approximation. Firstly, we generate an “calibration” distribution by randomly shuffle
the covariates across units, such that the covariates would become independent with
the treatment, which fully removes the confounding bias. Then, we propose a sample
weight learning schema on the observed data for approximating the the “calibration”
distributionwith aGenerativeAdversarial Network (GAN), achieving de-confounding
between continuous treatment and covariates. Using both empirical experiments and
theoretical analysis, we demonstrate that our algorithm can remove the confounding
bias in observed data and precisely estimate the casual effect of continuous treatment.
We validate our GAD algorithm with extensive experiments on both synthetic and
real datasets. The experimental results clearly show that our algorithm outperforms
the state-of-the- artmethods on continuous treatment effect estimation in observational
studies.

The main contributions of this paper are summarized as follows:
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– We investigate the problem of causal effect estimation with continuous treatment
from observational data, going beyond previous work on binary treatments.

– We propose a novel Generative Adversarial De-confounding (GAD) algorithm
to learn a sample weight for removing the associations between treatment and
covariates, and estimating the causal effect of continuous treatment.

– We give theoretical analysis on our proposed algorithm and prove that our algo-
rithm can remove the confounding between treatment and covariates, hence,
precisely estimating the effect of continuous treatment.

– Extensive experiments on both synthetic and real world datasets demonstrate the
superior performance of our proposed algorithms on the problem of continuous
treatment effect estimation with observational data.

The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 gives the notations and formulates our problem. The details of our proposed
algorithm for continuous treatment effect estimation are introduced in Sect. 4. Exper-
imental results and analyses are reported in Sect. 5. Finally, Sect. 6 concludes the
paper.

2 Related work

2.1 Treatment effect estimation in causal inference

Previous work on treatment effect estimation in observational studies can be catego-
rized by the type of treatment variable as causal effect estimation on binary treatment
and continuous treatment.

On binary treatment The classical method for causal effect estimation on binary
treatment is propensity score based methods (Rosenbaum and Rubin 1983; Bang and
Robins 2005; Chan et al. 2010; Austin 2011; Kuang et al. 2020a). The propensity
score was first proposed by Rosenbaum and Rubin (1983), where it was estimated
via a logistic regression. Then many other machine learning algorithms (e.g., lasso
by Chernozhukov et al. 2016, boosting regression by McCaffrey et al. 2004, bagged
CART and neural network by Westreich et al. 2010) are employed for estimating
propensity score.Variousmethods have been proposed based on propensity score, such
as propensity score matching, inverse propensity weighting, double robust estimators
(Bang and Robins 2005; Chan et al. 2010; Austin 2011). However, these estimators
require correct model specification on treatment assignment or precise estimation of
the propensity score, which may not be the case in many applications. Moreover, these
methods focus on the causal effect estimation on binary treatment.

Bypassing propensity score estimation, recently, researchers proposed directly con-
founder balancing via sample weight learning (Egel et al. 2008; Tan 2010; Imai and
Ratkovic 2014; Zubizarreta 2015; Chan et al. 2016; Kuang et al. 2017; Athey et al.
2018; Kuang et al. 2019). Imai and Ratkovic (2014) introduced covariate balancing
propensity score, whichmodels treatment assignment while optimizing covariates bal-
ancing. Based on covariate balancing propensity score, several improvements were
also proposed either by introducing doubly robust property (Fan et al. 2016), or
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by introducing a more general framework with tailored loss function (Zhao 2016).
Besides covariate balancing propensity score based methods, some researchers find
other ways to perform confounder balancing. Zubizarreta (2015) proposed stable bal-
ancing weights, which finds the weights of minimum variance that balance covariates
between control and treated groupup to levels prespecified.Chan et al. (2016) proposed
empirical balancing calibration weighting, which finds the weights that minimize the
aggregate distance between final weights and uniform ones while satisfying moment
conditions. Athey et al. (2018) proposed approximate residual balancing algorithm,
which combines outcome modeling using the LASSO with balancing weights con-
structed to approximately balance covariates between treatment and control groups.
Kuang et al. (2017) proposed a differentiated variable balancing algorithm by jointly
optimizing sample weights and variable weights. These methods achieved good per-
formance in many real applications for treatment effect estimation, but all of these
methods still focus on the problem of binary treatment and cannot be directly applied
for continuous treatment.

On continuous treatment In practice, the most common approach for estimating
continuous treatment effect is regression model based, including Y-model (Imbens
2004; Hill 2011) and T-model (Hirano and Imbens 2004; Imai and Van Dyk 2004;
Galvao and Wang 2015; Zhu et al. 2015). Y-model method refers to the regression
modeling of how the outcome Y relates to covariates and treatment variable. T-model
methods mainly adapted propensity score based approaches to model how the treat-
ment T relates to the covariates, namely modeling treatment assignment mechanism.
However, the performance of these methods relies entirely on the correct specifica-
tion of either the outcome model or the treatment model. By combining Y-model and
T-model, many doubly robust estimators (Robins and Rotnitzky 2001) are proposed
and achieved consistent estimation of effects of continuous treatment as long as one
of two models is correctly specified and modeled well enough.

Recently, many non-parametric methods (Neugebauer and van der Laan 2007;
Kennedy et al. 2017; Fong et al. 2018; Kallus and Santacatterina 2019) have been
proposed to reduce the model dependency for continuous treatment effect estima-
tion. Neugebauer and van der Laan (2007) extended traditional parametric marginal
structural model to an nonparametric one and does not require correct specification
of a parametric model but instead relies on a working model for precise prediction.
Kennedy et al. (2017) developed a kernel smoothing based non-parametric method
for doubly robust estimation of continuous treatment effect, allowing for misappli-
cation of either the treatment model or outcome model. Fong et al. (2018) proposed
a non-parametric covariate balancing generalized propensity score to minimize the
association between the covariates and treatment, however, it only focus on the linear
association and would fail if the true T-model is non-linear. Kallus and Santacatterina
(2019) proposed a convex optimization-based method which finds weights that mini-
mize theworst-case penalized functional covariance between the continuous treatment
and the confounders, with relatively higher computational cost.
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Table 1 Symbols and definitions Symbol Definition

n Sample size

p Dimension of observed variables

T ∈ R
n×1 Treatment

T ′ ∈ R
n×1 Treatment after randomly shuffle

Y ∈ R
n×1 Outcome

X ∈ R
n×p Observed variables

w ∈ R
n×1 Sample weight

2.2 Causal inference and explainable AI

Owing to the big data and computing power, many machine learning algorithms,
especially deep learning methods, have been proposed and shown high accuracy in
many real applications (Rong et al. 2020), but lacking of explainability. Recently,
many researches focus on how to enhance the explainability of AI algorithm, includ-
ing interpreting the knowledge of machine leaning (Li et al. 2020b) and designing
interpretable models (Rudin 2019; Li et al. 2020a). The recent research on adversarial
learning (Tian et al. 2021; Ren et al. 2020), artificial general intelligent (Lu and Wang
2020), distributional robustness optimization (Duchi and Namkoong 2018) et al. also
try to improve the explainability of AI from different aspects. Causal inference (Kuang
et al. 2020b) (including treatment effect estimation and causal discovery) is also one of
the ways to explainable AI, where treatment effect estimation can help to identify the
causations from spurious correlation in observational data, and causal discovery can
be applied for identify causal features of outcome variable or identify the causal rela-
tionships among variables for a explainable prediction. By marrying causal inference
and machine learning, many causal learning methods have been proposed, including
stable learning (Kuang et al. 2018), causal transfer learning (Rojas-Carulla et al. 2018),
causal representation (Schölkopf et al. 2021), to enhance the explainability of AI.

3 Problem and assumptions

In this paper, we focus on continuous treatment effect estimation based on potential
outcome framework (Imbens and Rubin 2015) as shown in Fig. 1b. With the frame-
work, we define a treatment as a random variable T and a potential outcome as Y (t)
which corresponds to a specific treatment T = t . The continuous treatment of interest
can take values in t ∈ T , where T is an interval [t0, t1]. Then, for each unit indexed
by i = 1, 2, . . . , n, we observe a treatment Ti , an outcome Yobs

i and a vector of
observed variables Xi ∈ R

p×1, where the observed outcome Yobs
i of unit i is cor-

responding to its treatment and denotes as Yobs
i = Y (Ti ). The numbers of units are

equal to n and the dimension of all observed variables is p. Table 1 summarized the
symbol and definition. In our paper, for any column vector v = (v1, v2, . . . , vm)T , let
‖v‖∞ = max(|v1|, . . . , |vm |), ‖v‖22 = ∑m

i=1 v2i , and ‖v‖1 = ∑m
i=1 |vi |.
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The important goal of causal inference in observational studies is to evaluate the
casual effect of treatment T on outcome Y . In the setting with continuous treatment,
the causal effect of treatment can be captured by the Average Dose Response Function
(ADRF) and Marginal Treatment Effect Function (MTEF) (Kreif et al. 2015). The
ADRF refers to the expectation of potential outcome Y (t) on each treatment status
t over all units, which could be further used to demonstrate average treatment effect
caused by change of treatment level in continuous treatment setting. Formally, the
ADRF on treatment t is defined as:

ADRF(t) = E[Yi (t)]. (1)

The MTEF represents the effect of increasing the level of treatment on the expected
potential outcome over all units, which demonstrates average treatment effect caused
by change at each level of treatment. Formally, the MTEF is defined as:

MT EF = E[Yi (t)] − E[Yi (t − �t)]
�t

, (2)

where Yi (t) represents the potential outcome of units i with treatment status T = t
and E(·) refers to the expectation function. �t denotes the increasing the level of
treatment, for example, with �t = 1, MTEF captures the incremental change in the
potential outcome, for a unit change in the level of treatment.

The Eqs. (1) and (2) are infeasible because of the counterfactual problem (Chan
et al. 2010). For each unit i with treatment status T = t , we can only observe one
of the potential outcomes Yi (t), and the other potential outcomes Yi (t ′), t ′ ∈ T \ t
are unobserved or counterfactual. One can address this counterfactual problem by
approximate the unobserved potential outcome. The simplest approach is to directly
estimate the ARDF E[Yi (t)] on treatment level T = t only over the units with that
treatment. However, in observational studies, the treatment is not randomly assigned
to units as we shown in Fig. 1b, which leads to the confounding bias between treatment
and covariates (Chan et al. 2010), and the distribution of covariates would be different
over the units with different treatment level.

To address the counterfactual problem and confounding bias issue, throughout this
paper, we assume following standard assumptions (Rosenbaum and Rubin 1983) are
satisfied.

Assumption 1: Stable Unit Treatment Value Given the observed covariates, the
distribution of potential outcome for one unit is assumed to be unaffected by the
particular treatment assignment of another unit.

Assumption 2: UnconfoundednessGiven the observed covariates, the distribution
of treatment is independent of potential outcome. Formally we have, T⊥Y (t)|X,∀t ∈
T .

Assumption 3: Overlap Every unit has a nonzero probability to receive either
treatment status when given the observed covariates. Formally we have, P(r(T =
t,X = x) > 0) = 1, where r(T = t,X = x) = fT |X(t |x) denotes the conditional
density of treatment given covariates.
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Under these assumptions, we propose a sample re-weighting technique for remov-
ing the confounding bias between treatment T and covariates X. The re-weighting
method forms the surrogates of the unobserved potential outcome Yi (t) over all units
by re-weighting units with sample weightsw ∈ R

n×1 to make the treatment T become
independent with the covariatesX. Then, the unobserved potential outcome Yi (t) over
all units can be approximated by the observed outcome Yi (t) over the units with
treatment T = t . Finally, with the learned sample weights w, we can approximately
estimate the ADRF on each treatment level t by:

ÂDRF =
∑

i :Ti=t

wi · Yi (t). (3)

Similarity, we can also approximately estimate the MTEF as:

M̂T EF =
∑

i :Ti=t wi · Yi (t) − ∑
i :Ti=t−�t wi · Yi (t)

�t
. (4)

4 Method

In this section, we give the details of our proposed Generative Adversarial De-
confounding (GAD) algorithm for continuous treatment effect estimation in obser-
vational studies.

4.1 Generative adversarial de-confounding algorithm

To fully remove the confounding bias induced by the dependency between treatment
T and covariates X in observational studies as shown in Fig. 1b, we propose to make
treatment T become independent with the covariatesX by sample re-weighting, that is
our GenerativeAdversarial De-confounding (GAD) algorithm. In our GAD algorithm,
there are two key components: (i) “calibration” distribution generation: Based on the
observed data Dobs = {T ,X}, we generate an “calibration” data Dcal = {T ,X′} by
change the distribution of covariates such that P(T |X′) = P(T ), namely T ⊥ X′.
(ii) “calibration” distribution approximation: We develop a Generative Adversarial
Network to learn a sampleweightw on the observed dataDobs such that the distribution
of weighted observed data would be similar even identical with the “calibration” data
Dcal , formally wP(T ,X) = P(T ,X′). Finally, the learned sample weight w can
guarantee precise estimation on the causal effect of continuous treatment, since it
ensures the treatment is dependent of the covariates on the weighted observed data,
achieving de-confounding between treatment and covariates.

4.1.1 “Calibration” distribution generation

In this component, our goal is to generate an “calibration” distributionDcal = {T ,X′},
where the treatment T is independent of the covariates X′, ensuring there is no con-
founding between treatment and covariates.

123



Continuous treatment effect estimation via generative...

Fig. 2 Pearson correlation after shuffle versus sample size, where T = X. The Pearson correlation between
shuffled variable X′ and T would decrease to zero as the sample size n → ∞

Proposition 1 By randomly shuffle the covariates X over all samples in observed
data Dobs = {T ,X}, the shuffled covariates X

′
would become independent with the

treatment T if sample size n → ∞.

The randomly shuffle processing refers to random permutation of the unit index of
observed covariates X ∈ R

n×p. If n → ∞, the shuffled covariates, denoted as X′,
should be independently random variables.2 Hence, the treatment variable T would
be independent with the shuffled covariatesX′. An empirical evidence for Proposition
1 is given in Fig. 2, where we employ the Pearson coefficient between variables to
approximate their dependency.

Therefore, we can obtain an “calibration” dataDcal = {T ,X′} under Proposition 1,
where the confounding bias between the treatment T and covariates X′ are removed.

Need to note that the “calibration” data is meaningless except for its non-
confounding or independence property between its treatment and covariates. Many
other methods can also be employed for generating an “calibration” data, we leave it
in future work.

4.1.2 “Calibration” distribution approximation

In this component, we aim to adjust the distribution of observed data Dobs = {T ,X}
by sample weighting such that with the identical distribution of the “calibration” data
Dcal = {T ,X′}, resulting in the treatment becoming independent of the covariates in
the adjusted observed data.

2 X′ should have the identical marginal distribution with the observed covariates, that is P(X′) = P(X).
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Inspired by the immense success ofGenerativeAdversarialNetwork (GAN) (Good-
fellow et al. 2014) in producing simulated data that highly resembles the distribution
of real-world samples, we propose a novel framework that leverages the objective
of GAN to the task of generating weights to ensure that the distribution of adjusted
observed data has the identical distribution of the “calibration” one.

To be self-contained, we briefly revisit the key idea of GAN (Goodfellow et al.
2014). The goal of GAN is to learn a generative model g(·) of an unknown distribu-
tion Ddata using a class of discriminators d(·) to gauge the similarity between data
distributions. The GAN framework can be described as a game between the generator
g(·) and the discriminator d(·), where the generator g(·) simulates data g(z) with an
input random variable z from a predefined distributionDz , then the discriminator d(·)
attempters to bridge the distribution between the simulated data g(z) and real samples
s in Ddata by minimizing the expected classification error in the real and simulated
samples as:

L(g, d) = Es∼Ddata [l(d(s), 1)] + Ez∼Dz [l(d(g(z), 0)], (5)

where l(·) is the loss function. Given the discriminator model d(·), the generator g(·)
attempts to maximize the expected error with following objective function to find:

g� = argmax
g

(
min
d

L(g, d)
)
. (6)

In our problem, we employ the generator g(·) to optimize a sample weight vector
w = (w1, w2, . . . , wn) to adjust the distribution of observed data Dobs = {T ,X},
such that the discriminator d(·) cannot distinguish the adjusted observed distribution
and the “calibration” distribution by minimizing the expected classification error in
the adjusted observed and “calibration” samples as:

L(w, d) = E(t,x)∼Dcal [l(d(t, x), 1)]
+E(t,x)∼Dobs [w(t,x) · l(d(t, x), 0)],
s.t .E(t,x)∼Dobs [w(t,x)] = 1,w � 0 (7)

where w(t,x) refers to the sample weight related to the sample (t, x) in the observed
data, and l(·) is the loss function. The term E(t,x)∼Dobs [w(t,x)] = 1 avoids all sample
weights to be zero, andw � 0 constrains each sampleweight to be non-negative.Given
the discriminator model d(·), the generator g(·) attempts to maximize the expected
error with following objective function to find:

ŵ = argmax
w

(
min
d

L(w, d)
)
. (8)

Following theobjective function inEq. (7),weknowonly the termE(t,x)∼Dobs [w(t,x)·
l(d(t, x), 0)] is related to the parameter w. Then to optimize w with discriminator
d(·) fixed, we could either maximize E(t,x)∼Dobs [w(t,x) · l(d(t, x), 0)] with gradient
ascending methods, or instead choose to minimize E(t,x)∼Dobs [−w(t,x) · l(d(t, x), 0)]
or E(t,x)∼Dobs [w(t,x) · l(d(t, x), 1)]with gradient descending methods as mentioned in
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Algorithm 1 Generative Adversarial De-confounding
Input: ObservedDataDobs = {T ,X}, stopping criterionh(Dobs ,Dtarget ,w), optimizer for discriminator,

SGD(θ, Ld (w, d)), and optimizer for w, Ranger(w, Lw(w, d))

Output: sample weight w
1: Generating shuffled covariate X′ by randomly permuting unit indices of X
2: Generate target data Dcal = {T ,X′}
3: Initialize sample weight w0 = [1, 1, . . . , 1]
4: Initialize discrimator d(·) with parameter θ0

5: Initialize the iteration variable t ← 0
6: repeat
7: t ← t + 1
8: Update θ t ← SGD(θ t−1, Ld (wt−1, d))

9: Update wt ← Ranger(wt−1, Lw(wt−1, d))

10: wt
i ← nwt

i /
∑n

i=1 w
t
i , i = 1, 2, . . . , n

11: until h(Dobs ,Dcal ,wt ) satisfied or max iteration is reached
12: return sample weight w

Goodfellow et al. (2014). In practice, we switch 0/1 labels for two data distributions,
resulting the following loss functions for both w and discriminator d(·) to minimize
alternately:

Ld(w, d) = L(w, d)

Lw(w, d) = E(t,x)∼Dobs [w(t,x) · l(d(t, x), 1)],
s.t .E(t,x)∼Dobs [w(t,x)] = 1,w � 0 (9)

Besides the original GAN objective, other variants of GAN, e.g. WGAN (Arjovsky
et al. 2017), could also be applied to our problem. The details of our GAD algorithm
is summarized in Algorithm 1, where steps 1–4 is for generating the “calibration”
distribution Dcal = {T ,X′}, and steps 5–12 is for approximating the “calibration”
distribution by learning sample weight.

Finally, with the optimized sample weights w by our GAD algorithm, we can
estimate the ADRF with Eq. (3) and MTEF with Eq. (4).

4.2 Theoretical analysis

In this section, we give theoretical analysis about our algorithm, and prove it can
fully remove the confounding bias between treatment and covariates by making them
become independent via sample weight learning. A key requirement for the method
to work is following assumption.

Assumption 1 Each unit in “calibration” data is also included in the observed data.
Formally, P(t,x)∼Dcal (t, x) > 0 �⇒ P(t,x)∼Dobs (t, x) > 0.

Then, we have following theorem.

Theorem 1 Under Assumption 1 and Proposition 1, there exists a sample weights w�

such that

Tw� ⊥ Xw�

(10)
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in the weighted observed data Dw�

obs = {Tw�
,Xw�} with probability 1. In particular,

one solution to such w� that satisfies Eq. (10) is w� = P(t,x)∼Dcal (t,x)
P(t,x)∼Dobs (t,x)

Proof Firstly, we prove that the distribution of weighted observed data would similar
even identical with the “calibration” distribution. For any function f (·), with the
sample weight w�, we have

E(t,x)∼Dobs [w� · f (t, x)]
= E(t,x)∼Dobs

[
P(t,x)∼Dcal (t, x)

P(t,x)∼Dobs (t, x)
· f (t, x)

]

=
∫

t

∫

x

(
P(t,x)∼Dcal (t, x)

P(t,x)∼Dobs (t, x)
· f (t, x)

)

· P(t,x)∼Dobs (t, x) dtdx

=
∫

t

∫

x
P(t,x)∼Dcal (t, x) · f (t, x) dtdx

= E(t,x)∼Dcal [ f (t, x)] (11)

From the property ofMoments,3 we know that a distribution of variables is uniquely
determined by the collection of all the moments (of all orders, from 0 to ∞). Here, we
can adopt different functions f (·) to represent themoments of distribution of weighted
observed data Dw�

obs and “calibration” data Dcal = {T ,X′}, and obtain that Dw�

obs and
Dcal are identical distribution since they have the identical moment on all orders as
proved in Eq. (11).

From Proposition 1, we know T is independent with theX′ in the “calibration” data
Dcal = {T ,X′}. Hence, one can infer that the weighted treatment Tw�

would also be
independent with Xw�

in the weighted observed dataDw
obs with the sample weightw�,

namely Tw� ⊥ Xw�
. ��

With Proposition 1 and Theorem 1, we can derive the following property of the
sample weight ŵ optimized by our algorithm in Eq. (8).

Property 1. Under Assumption 1, the confounding bias between treatment and
covariates in observed data would be removed or de-confounded by sample weighting
with ŵ.

5 Experiment

In this section, we evaluate the effectiveness of our proposed method on both synthetic
and real-world datasets.

5.1 Baselinemethods

We implement or use the following baseline methods for comparison.

3 https://en.wikipedia.org/wiki/Moment_(mathematics).
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– Inverse Probability Weighting (IPW) (Robins et al. 2000): IPW is a classic,
well-researched method in continuous treatment setting. This method estimates
conditional probability P(Ti |Xi) by regressing treatment T on covariates X, then
uses it to generate sample weights. Both unstablized (IPWunstable = 1

P(Ti |Xi )
)

and stablized (IPWstable = P(Ti )
P(Ti |Xi )

) versions are evaluated. Performance of IPW
largely relies on estimation of P(Ti |Xi ). Thus, it’s not attractive inmost real-world
applications.

– Inverse Second-Moment Weighting (ISMW) (Galagate 2016): This method is an
extension of IPW with second-moment. Under linear assumption of Y-T relation,
ISMW generates sample weights matrix in closed form as E(Bi BT

i |Xi )
−1, where

Bi = [1, ti ]T . Thus, ISMW could perform well under limited assumptions. How-
ever, if Y-T relation is more complex, ISMW might be less attractive due to its
restriction to the means of higher-order terms.

– Generalized Propensity Score by Boosting Modeling (GBM) (Zhu et al. 2015):
GBM is an extension of IPW, which better improves generalized propensity score
estimation with more flexible modeling capability. This method generates weights
in the same way as I PWstable, except that it uses boosting to model general-
ized propensity score. To determine the best parameter for number of trees, GBM
calculates average correlation coefficient (e.g. PearsonCorrelation, SpearmanCor-
relation) for each value in searching grid, then chooses the best one. With the
boosting algorithm and parameter tuning procedure, GBM provides better con-
ditional density estimation. However the main problem of IPW on difficulty in
estimation of conditional probability still remains unsolved in GBM.

– Covariate-BalancingGeneralized Propensity Score (CBGPS) and non-parametric
version (npCBGPS) (Fong et al. 2018):CBGPS is a recent well-performedmethod
based on generalized propensity score. This method adapts covariate balancing
condition for continuous treatment that E(P(Ti |Xi )TiXi ) = E(Ti )E(Xi ) = 0,
where X and T are centralized and orthogonalized in preprocessing.

5.2 Evaluationmetrics

In synthetic experiments, we evaluate the performance based on three metrics:

– Bias(MTEF): mean absolute error of MTEF estimation over all samples

MT EFBias = 1

n

n∑

i=1

|MT EF(Ti ) − M̂T EF(Ti )|

– RMSE(MTEF): rooted mean squared error of MTEF estimation over all samples

MT EFRMSE =
√
√
√
√1

n

n∑

i=1

[MT EF(Ti ) − M̂T EF(Ti )]2
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– RMSE(ADRF): rooted mean squared error of ADRF estimation over all samples

ADRFRMSE =
√
√
√
√1

n

n∑

i=1

[ADRF(Ti ) − ÂDRF(Ti )]2

All metrics above measures performance of causal effect estimation, with respect to
specific choice of causal effect under continuous treatment setting based on commonly-
used definitions we introduced previously, ADRF andMTEF. Normally, MTEF-based
metrics aremore important thanADRF-based in synthetic experiments, as it eliminates
effect of intercept which involves means of covariates and noise.

5.3 Experiments on synthetic data

In this section, we introduce data generation process for synthetic datasets, and demon-
strate the effectiveness of our proposed weighting method with extensive experiments.

5.3.1 Dataset

The process of generating synthetic datasets basically follows Fong et al. (2018).
As the dimension of observed variables is fixed in the original procedure, we carry
out data generation with slight modification for further experiments with varying
sample size and dimensions of observed variables, where we consider three sample
sizes n = {2000; 5000; 8000} and also vary the dimension of observed variables
p = {10; 30; 50}. We first generate covariates X = (x1, x2, . . . , xp) independently
with Standard Normal distribution as:

x1, x2, . . . , xp
i .i .d∼ N (0, 1)

Then we generate treatment T and outcome Y generally as:

T = f (X) + εt ; Y = g(X) + μ(T ) + εy

where

f (X) =
p∑

j=1

αmod( j,10) · x j ,

g(X) =
p∑

j=1

βmod( j,10) · x j ,

α = [1, 1, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0] and εt ∼ N (0, 2). Function mod(a, b) returns
the modulus after division of a by b. β, μ(T ) and εy varies under different settings
with considering the relation (linear and non-linear) between Y and T , and between
Y and X:
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YT-linear:

μ(T ) = T and εy ∼ N (0, 5)

YT-nonlinear:

μ(T ) = T 2 + T , εy ∼ N (0, 9) and g(X) = 2g(X)

YX-linear:

β = [0, 1, 0, 0.1, 0.1, 0.1, 0, 0, 0, 0]

YX-nonlinear:

β = [0, 2, 0, 0.5, 0.5, 0.5, 0, 0, 0, 0] and for x j in g(X),

x j = I (mod( j, 10) = 1)(x j + 0.5)2 + I (mod( j, 10) �= 1)x j

By combining different YX relations and YT relations, we could evaluate all
methods under 4 different settings which cover a large variety of common cases.
As treatment assignment mechanism doesn’t always satisfy linear assumption made
by some methods, to demonstrate performance of all methods when misspecification
of treatment assignment occurs, we introduce settings under YX-linear relation, with
sample size n = 2000 and dimension of covariates p = 10. Similar to YX-nonlinear
setting, we add nonlinear term in treatment assignment function by modifying x j in
f (X) as,

x j = I (mod( j, 10) = 1)(x j + 0.5)2 + I (mod( j, 10) �= 1)x j

In simulation, we know the ground-truth ADRF and MTEF as:
YT-linear:

ADRF(T ) = T + E(g(X)) and MT EF = 1

YT-nonlinear:

ADRF(T ) = T 2 + T + 2E(g(X))

and MT EF = 2T + 1

Then,we evaluate theADRFandMTEFwith our algorithm, comparingwith baselines.

5.3.2 Implementation details

We implement both versions of IPW, and ISMW as baseline methods. For GBM, we
use implementation provided in Zhu et al. (2015). As for both versions of CBGPS, the
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R package ’CBPS’ is used to carry out experiments on both synthetic and real-world
datasets. Implementation details for experiments on TWINS dataset are the same.

The core part of IPW and ISMW is to estimate P(Ti ), P(Ti |Xi ) and E(Bi BT
i |Xi ).

As the main estimation part involves only regression, we follows similar procedure
for generalized propensity score estimation in Zhu et al. (2015). We use ordinary least
square method to perform regression without penalty term, thus no hyper-parameters
are needed to be tuned.

For GBM, we follows the whole procedure described in Zhu et al. (2015). The
original algorithm includes tuning procedure for the most important hyper-parameter,
the number of trees in boosting. We use the same procedure with the same searching
range for tuning the number of trees in all experiments.

Parameters of CBGPS and npCBGPS also are chosen according to the original
description in Fong et al. (2018) and documentation in R package. The only hyper-
parameter needs to be set manually is prior correlation in npCBGPS, we follow the
description in documentation to use .1/n as prior correlation, as the solution is likely
to exist while the balance is fine enough under such choice.

As hyper-parameters in our method are mostly normal ones for neural network
training, including keep probability for dropout layer, learning rates and internal steps
for optimizers.We use a hold-out dataset generated in the same procedure to tune these
hyper-parameters, based on the criterion that the ones achieved minimum Pearson
correlation coefficient are chosen. The final choices are as follows. Dropout layer with
keep probability = 0.5 is applied to last hidden layer. We use SGD with learning
rate lr = 1e−3 as optimizer of discriminator, Ranger (a combination of RAdam and
Look-Ahead) with learing rate lr = 3e−4, betas = (0.0, 0.9), internal step k = 5 as
optimizer of sample weights.

5.3.3 Results and analyses

To evaluate the performance of our proposed algorithm on continuous treatment effect
estimation, we carry out experiments for 10 times independently for each setting.
Based on the estimated ADRF andMTEF, we report Bias(MTEF), RMSE(MTEF) and
RMSE(ADRF), and their standard error (SD) over 10 times experiments in Tables 2,
3, 4 and 5. In Tables 2 and 4 we varied the sample size with fixed covariate dimensions,
and in Table 3 we varied the dimension of covariates. In Table 5 we demonstrate the
performance when possible misspecification of treatment assignment model occurs.
From these results, we have following observations and analyses:

– Model based regression method, OLS, cannot precisely estimate the causal effect
of continuous treatment even the model is correctly specified, since it ignores the
confounding bias between treatment and covariates.

– With constraints on the variance of weights, I PWstable achieves better perfor-
mance than I PWunstable across most settings. Moreover, with considering the
second moments, I SMW obtains the best performance among I PW based meth-
ods under setting with YT-linear. However, in the setting with YT-nonlinear, the
performance of I SMW is very poor and even worse than OLS, since it entirely
relies on the linear assumption between T and Y . When treatment assignment
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Continuous treatment effect estimation via generative...
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Continuous treatment effect estimation via generative...
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model is misspecified due to nonlinearity, all three methods perform even worse
than OLS, as terms in weight estimation are inaccurate.

– GBM uses more flexible modeling method to estimate generalized propensity
score. However when the linear relation assumption of confounder and treatment
is satisfied, it could only outperform I PWstable in a few settings when dimension
of observed variables is relatively low.When misspecification of treatment assign-
ment model occurs, GBM shows better performance due to modelling flexibility
of boosting algorithm.

– By directly minimizing the association between treatment and covariates, CBGPS
and npCBGPS obtain good performances across all settings. When the dimension
of observed variables is relatively low (i.e. p = 10), npCBGPS performs worse
than CBGPS. When the dimension is relatively high (i.e. p = 50), vice versa, as
npCBGPS adopts non-parametric solution which could better handle the difficulty
of finding feasible weights with increasing dimension. Misspecification of treat-
ment assignment problem also has impact on performance of both methods, as
CBGPS and npCBGPS also makes linear assumption of covariates-treatment rela-
tion in covariate balancing condition. However with covariate balancing condition,
both methods don’t heavily rely on accuracy of treatment assignment modelling.
Thus CBGPS and npCBGPS largely outperform I PW methods.

– Our algorithm, by directly making treatment become independent with covariates,
achieves better performance over the baselines in different settings, especially on
MTEF-based metrics. Under setting YT-linear, our algorithm can achieve compa-
rable results with the best baseline, ISMW, and is better than other baselines in
means ofmetrics. Under settingYT-nonlinear where the assumptions in ISMWare
violated, our GAD algorithm, a non-parametric method, almost obtains the best
performance. Aswe also adopt flexiblemodeling of treatment assignment problem
by introducing weights obtained under independence measurement, our method
also achieves best performance when linear treatment assignment assumption is
violated.

5.3.4 Discussion

To explain the improvements we obtain when compared to previous work, we demon-
strate the Pearson correlation coefficients (PCC) between treatment T and covariates
X on raw data with confounding bias and weighted data from baselines and our algo-
rithm in Fig. 3, wherewe do not comparewith ISMW, since its weights arematrix form
and cannot be applied for PCC calculation. Ideally, T should be independent ofX and
their PCC should be zero. From Fig. 3, we can find that in the raw data, the treatment
T is highly correlated with X, which clearly demonstrate the confounding bias in the
observational data. The confounding bias become more serious on the weighted data
with I PWunstable since it reweights samples by the inverse of propensity score with
high variance. With constraints on the variance of sample weight, I PWstable achieve
a better performance on confounding bias removing with smaller value of PCC than
I PWunstable. By directly minimizing the associations between treatment and covari-
ates, CBGPS and npCBGPS achieve better performances than other baselines and
can approximately remove the confounding bias. Aiming to make treatment become
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 3 Visualization of Absolute Pearson Correlation Coefficient among variables with setting n =
5000, p = 10, YX-linear and YT-nonlinear. a On raw data; b on data weighted by I PWunstable; c on
data weighted by I PWstable; d on data weighted by GBM; e on data weighted by CBGPS; f on data
weighted by npCBGPS; g on data weighted by our GAD algorithm. The higher correlation between treat-
ment T and covariates X approximately refers to more confounding bias in data

independent of covariates, our GAD algorithm obtains the best performance. This is
the main reason that our algorithm can achieve accurate estimation of causal effect on
continuous treatment.

5.4 Real-world data: TWINS

Considering that few real-world datasets with continuous treatment contain ground-
truth of causal effect. As in most cases the major problem is to tackle relation between
confounder and treatment, an alternative evaluation method is to carry out semi-
simulation with covariates and treatment from real-world datasets while outcome is
generated, like previous work on continuous treatment (Kallus and Zhou 2018). We
performa semi-simulation onTWINS, a dataset previously used in binary or categorical
treatment research for evaluation.

5.4.1 Dataset

TWINS is a dataset commonly used in binary treatment research (e.g. Flores andFlores-
Lagunes 2009; Louizos et al. 2017; Liu et al. 2018), which contains data of over 70,000
twins in total. The treatment of this dataset is to be the light one or not when born.
Originally, the treatment is generated from a continuous variable, born weight. The
dataset also includes 50 covariates recording information of parents, which are almost
the same for a pair of twins.

To conduct semi-simulation on TWINS dataset, we first filter dataset by limiting
weight under 2 kilogram. Data of 4,821 pairs of twins are left for further experiments.
We set the difference between born weight with 2 kilogram as treatment T in our
experiment. To ensuring the ground-truth, we propose to semi-simulate the outcome
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variable Y from treatment and covariates to represent the risk of death after born.
We reorganize a few columns of covariates according to twins identity, such as birth
order. Also, we concatenate original binary treatment to covariates. From observation
of dataset, as weight difference increases, death rate over dataset population also
increases. Thus, we can generate outcome as follows with different settings of Y-T
relations:
YT-linear:

Y = 4 · T − 40 + Xγ + ε

YT-nonlinear:

Y = 0.15 · T 2 + T − 20 + Xγ + ε

where γ ∈ R
p×1 and γi ∼ N (0, 0.25), ε ∼ N (0, 2.25). Then we can get the ground-

truth ADRF and MTEF as
YT-linear:

ADRF(T ) = 4T − 40 + E(Xi,·γ ) and MT EF = 4

YT-nonlinear:

ADRF(T ) = 0.15 · T 2 + T − 20 + E(Xi,·γ )

and MT EF = 0.3 · T + 1

5.4.2 Results and analyses

We report the results in Table 6. Though we can only carry out semi-simulation on
real dataset, the hidden T-X relation is still a major challenge to tackle for methods
based on generalized propensity score or other methods requiring a T-model. Thus,
IPWunstable and IPWstable perform worse on causal effect estimation on continuous
treatment due to possible misspecified T-model and inaccuracy estimation on general-
ized propensity score as demonstrated in Table 6. Contrast to the results on synthetic
data, under the setting with YT-linear, ISMW doesn’t achieve the best performance
among baselines due to possible misspecification of treatment assignment model, even
though its assumption on linear YT relation is satisfied. Benefitting from modelling
flexibility of boosting,GBM shows slight better performance thanmethods mentioned
above. However, it still relies on accuracy of treatment assignment modelling. With
further constraints on covariate balancing, performances of CBGPS and npCBGPS
show great capability of handling complex treatment assignment model. By directly
making treatment independent of covariates, our method achieves better result than
other methods, since our method is non-parametric and can theoretically guarantee
the de-confounding between treatment and covariates.
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Table 6 Results on TWINS dataset

Setting Method TWINS
BIASMT EF RMSEMT EF RMSEADRF

linear Y-X, linear Y-T OLS 0.125 (0.082) 0.125 (0.082) 0.569 (0.371)

IPWunstable 0.112 (0.097) 0.112 (0.097) 0.575 (0.411)

IPWstable 0.140 (0.130) 0.140 (0.130) 0.725 (0.527)

ISMW 0.166 (0.142) 0.166 (0.142) 0.811 (0.686)

GBM 0.116 (0.083) 0.116 (0.083) 0.553 (0.353)

CBGPS 0.043 (0.040) 0.043 (0.040) 0.620 (0.378)

npCBGPS 0.041 (0.025) 0.041 (0.025) 0.265 (0.133)

Ours 0.022 (0.017) 0.022 (0.017) 0.149 (0.068)

linear Y-X, nonlinear Y-T OLS 0.208 (0.079) 0.236 (0.089) 0.686 (0.350)

IPWunstable 0.227 (0.127) 0.258 (0.144) 0.794 (0.480)

IPWstable 0.232 (0.129) 0.264 (0.146) 0.821 (0.489)

ISMW 0.295 (0.143) 0.336 (0.162) 1.180 (0.509)

GBM 0.207 (0.149) 0.231 (0.169) 0.737 (0.371)

CBGPS 0.187 (0.137) 0.216 (0.158) 0.683 (0.380)

npCBGPS 0.079 (0.032) 0.095 (0.040) 0.350 (0.140)

Ours 0.065 (0.039) 0.076 (0.048) 0.248 (0.120)

Bold number refers to the best result in means for each metric

6 Conclusion

In this paper, we focus on the problem of causal effect estimation on continuous
treatment in observational studies. We argue that traditional methods for continuous
treatment effect estimation are basically regression model based, hence, their perfor-
mances entirely rely on correctly specified models or some impractical assumptions.
Hence, we propose a non-parametricmethod, Generative Adversarial De-confoudning
(GAD) algorithm to remove the confounding bias between treatment and covariates
for precisely estimation on continuous treatment effect. In our GAD algorithm, we
propose a Generative Adversarial Network based de-confounding algorithm to gen-
erate sample weights for making treatment and covariates independent of each other.
We prove that the learned sample weight from our GAD algorithm can fully remove
the confounding bias with both theoretical analysis and empirical experiments. The
experimental results on both synthetic and realworld datasets show that ourGADalgo-
rithm outperforms the baselines for causal effect estimation on continuous treatment
in observational studies.
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