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Abstract—Both interpretation and accuracy are very important
for a predictive model in real applications, but most of previous
works, no matter interpretable models or black-box models,
cannot simultaneously achieve both of them, resulting in a trade-
off between model interpretation and model accuracy. To break
this trade-off, in this paper, we propose a flexible framework,
named IB-M, to align an Interpretable model and a Black-
box Model for simultaneously optimizing model interpretation
and model accuracy. Generally, we think most of samples that
are well-clustered or away from the true decision boundary
can be easily interpreted by an interpretable model. Removing
those samples can help to learn a more accurate black-box
model by focusing on the left samples around the true decision
boundary. Inspired by this, we propose a data re-weighting
based framework to align an interpretable model and a black-
box model, letting them focus on the samples what they are
good at, hence, achieving both interpretation and accuracy. We
implement our IB-M framework for a real medical problem
of ultrasound thyroid nodule diagnosis. Extensive experiments
demonstrate that our proposed framework and algorithm can
achieve a more interpretable and more accurate diagnosis than
a single interpretable model and a single black-box model.

Index Terms—Interpretable model, Black-box model, Thyroid
nodules

I. INTRODUCTION

Owing to the big data and computing power, many machine
learning methods, especially deep learning methods, have been
proposed and shown to be successful in many real applications.
For example in medical fields, [1], [2] based on the neural
network can significantly improve the performance and even
surpass the ability of corresponding experts. However, the
increase in model performance always comes as a cost of
increasing model complexity and opacity. As a result, most
of those “great performance” models are used in a black-
box way, resulting in a big gap between model knowledge
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Fig. 1: Comparison between a single model and an aligned
model. (a) Performance of a single interpretable (linear)
model or a single black-box (non-linear) model, where the
interpretable model cannot explain the samples (outside the
dashed circle) that around the decision boundary and the black-
box model would be affected by the samples (in the dashed
circle) that well-clustered or away from the decision boundary;
(b) Performance of an aligned model between an interpretable
model and a black-box model, where by data separation/re-
weighting, the interpretable model and the black-box model
mainly focus on the samples that they are good at, respectively.
The interpretable model focuses on blue samples, while the
black-box model focuses on the black samples.

and human understanding. The lack of interpretability of deep
learning algorithms limits their applications in real scenarios,
especially those requiring human understanding. Hence, it is
highly demanding to develop a kind of statistical model with
great performance on both accuracy and interpretation.

Recently, many interpretable models have been proposed to
bring an understanding of black-box models. These methods
can be roughly categorized into two branches: (i) “posthoc”
interpretable models [3]–[5], and (ii) “intrinsic” interpretable
models [6]–[8]. The “posthoc” interpretable models focus on



increasing human understanding of models by interpreting the
predictive results of models. For example, [3] proposed to
highlight the important features via heatmap of gradients for
interpreting the predictive result of each sample; [5] explained
the predictions of any classifier by learning a linear but
interpretable model locally around the prediction. While the
“intrinsic” interpretable models attempt to explain the infer-
ence process/logic of models to achieve human understanding
and trust. For example, [6] designed a ProtoPnet based on
human inference logic and visualized the prototypes of each
class to interpret the inference logic of ProtoPnet; [7] proposed
to replace the black-box model by a simple (interpretable)
model on the data-space where the simpler model can be
almost as accurate as the black-box model. Most of these inter-
pretable methods, both “posthoc” and “intrinsic”, can achieve
a good interpretation of deep models in real applications, but
their performance on predictive accuracy would be always
worse than the black-box model. The trade-off between model
accuracy and interpretation puts the practitioners in a dilemma
of choosing between high accuracy and model interpretability.

Is a trade-off necessary between model accuracy and in-
terpretability? No, it is not always necessary. In this paper,
we focus on how to break that dilemma by aligning the
interpretable model and the black-box model for simultane-
ously optimizing the accuracy and interpretability. The main
idea is demonstrated in Fig. 1. Fig. 1(a) demonstrates a
setting where the true decision boundary (orange line) is very
complex but most of the samples can be easily classified
by a interpretable classifier (e.g., linear model). If one only
uses a linear model for training, the majority of the samples
(data point in the dashed circle) that well-clustered or away
from the true decision boundary can be interpreted by the
learned linear model, but it would sacrifice the accuracy on
the samples (data point outside the dashed circle) that around
the true decision boundary. On the other hand, if one employs
a black-box model (e.g., non-linear classifier) for training, the
accuracy might be guaranteed, but lacking the interpretability.
Moreover, the learned decision boundary of the black-box
(green line) would be affected by those samples (data point
in the dashed circle) that are well-clustered and near to the
true decision boundary, leading the loss of model accuracy.
To address this problem, cooperation between an interpretable
model and a black-box model is needed as shown in Fig. 1(b),
where the interpretable model only focuses on the samples that
are well-clustered or away from the true decision boundary
for optimizing model interpretation, then the black-box model
concentrates on the left samples that are around the decision
boundary but hardly explained by the interpretable model for
optimizing model accuracy. Hence, our key idea to align an
interpretable model and a black-box model is to let each model
perform its own functions on the samples it is good at.

To simultaneously optimize the accuracy and interpretabil-
ity, we propose a flexible framework, named IB-M, to align
an Interpretable model and a Black-box Model. Our IB-M
framework consists of three modules: an interpretable model, a
black-box model, and a data re-weighting and model selection

module. The interpretable model and black-box model in our
framework can be any model by the practitioners. Given the
interpretable model and the black-box model, the data re-
weighting and model selection module is to re-weight/separate
the whole data into two subsets, one set for training the
interpretable model and the other for training the black-box
model. The criteria for data re-weighting is mainly based on
whether the prediction of the interpretable model on a sample
can be as accurate as the black-box model. With the data re-
weighting and model selection module, our IB-M framework
can let both interpretable and black-box models perform their
own functions on the samples they are good at, respectively,
hence achieve both interpretation and accuracy.

In this paper, we apply our IB-M framework into the
real medical problem of ultrasound thyroid nodule diagnosis.
Thyroid nodule disease has become one of the hot research
questions in the medical field with its extremely high preva-
lence [10]. A number of researchers have attempted to use
deep learning to classify nodules based on their main di-
agnostic basis, ultrasound images, but the interpretation and
accuracy of existing studies are not satisfactory. We design
a specific model to solve Thyroid Nodule Classification using
the IB-M framework, named TNC-IB-M. Considering medical
interpretability, we combine medical diagnosis logic of thyroid
nodules with the ProtoPnet model [6] to design an interpretable
model suitable for the problem. Cooperating it with a powerful
black-box model under the framework of IB-M, the TNC-IB-
M obtains a very high accuracy rate.

The main contributions of this paper can be summarized as
follows:
• We study the symbiotic relationship between model ac-

curacy and interpretability, while previous methods make
a trade-off between them.

• We propose a flexible IB-M framework to align an inter-
pretable model and a black-box model for simultaneously
optimizing model accuracy and interpretability.

• We apply our IB-M framework in the practical medical
problem, and propose a TNC-IB-M algorithm for ultra-
sound thyroid nodule diagnosis.

• Extensive experiments demonstrate that our framework
and algorithm can achieve better performance on both
accuracy and interpretability than a single interpretable
model or a single black-box model.

II. RELATED WORK

A. The Interpretability of Deep Learning

In recent years, researchers have attempted to achieve the
interpretability of deep learning models in a variety of ways,
and have made some breakthroughs. Some researchers have
tried to use the “posthoc” approach to interpret the trained deep
learning model [3]–[5], [11], [12]. [3] used salient visualiza-
tion to present the model’s attention to different image regions
as a heat map. [11] used an inverse convolution approach to
explain the intermediate layers of a neural network, further
clarifying the semantic information of each layer. [12] used



the method of maximum activation to find the important high-
level features of the model. The “posthoc” method can enhance
the interpretability of the model to some extent, but it cannot
explain the real inference process of the model.

Recognizing the shortcoming of the “posthoc” approach,
some researchers have attempted to improve the interpretabil-
ity of the neural network by the “intrinsic” approach [6]–[8],
[13], which is to design the model, part of which is inter-
pretable. [6] simulated the way that the human analyzes things
and proposed a prototype matching approach. [13] further
developed this approach by combining it with segmentation
to visualize the model’s division of semantic regions. These
methods make the inference process of the model reality
transparent and are easier to gain the trust of users, but it
comes at the expense of model accuracy. In order to improve
the accuracy of the interpretable model, some researchers try
to use the joint classification framework of the interpretable
model and the black-box model. [7] used the interpretable
model to approach the black-box model’s classification plane,
so that the black-box model can be partially replaced. [14] ex-
tended this idea by using multiple linear classifiers competing
to achieve multi-class classification. Although such methods
can improve the accuracy of the model to some extent, their
upper limit of accuracy is limited by the black-box model.
Thus, the trade-off between the interpretability and accuracy
still exists. In this paper, we break this trade-off by designing
a new type of joint classification model framework, which can
achieve a more reasonable division of labor and cooperation
between the interpretable model and the black-box model.

B. Application of Deep Learning in Ultrasound Diagnosis of
Thyroid Nodules

In recent years some researchers have attempted to apply
deep learning to the ultrasound diagnosis of thyroid nodules.
[15] applied the VGG-16 model to this problem and initially
achieved the classification of thyroid nodules. [16] employed a
deeper convolution neural network to further improve the accu-
racy of thyroid nodule classification by relying on the model’s
stronger feature extraction capability. Such methods that rely
on model depth to improve classification accuracy suffer from
accuracy bottlenecks and poor medical interpretability. [17]
used a basic multi-task model to solve the classification prob-
lem of thyroid nodules. The accuracy and interpretability were
improved compared with previous algorithms. [18] improved
the interpretability and classification accuracy by designing a
multi-task model using multi-semantic attention. While these
studies have improved the interpretability of the models to
some extent, the inference process is still not transparent
enough to show, which prevents these models from gaining
sufficient trust.

III. IB-M FRAMEWORK AND APPLICATION

In this section, we introduce how our IB-M framework
aligns an interpretable model and a black-box model for
simultaneously optimizing both accuracy and interpretation.
Then, we introduce a specific implementation of each part of

Fig. 2: IB-M framework. It consists of three main compo-
nents: an interpretable model, a black-box model, and a data
re-weighting and model selection module. Given any inter-
pretable model and black-box model, the data re-weighting
and model selection module learns two weights of samples
by analyzing the interpretable model output, one weight for
highlighting the samples that the interpretable model is good
at for interpretation, and the other for the black-box model for
accuracy.

the framework on a real medical application of the thyroid
nodule classification task.

A. IB-M Framework

To break the dilemma between model accuracy and inter-
pretation in traditional methods, in this paper, we propose
an IB-M framework to align an interpretable model and a
black-box model for simultaneously optimizing the accuracy
and interpretability. Fig. 2 shows our IB-M framework, which
consists of the following three parts:

• An Interpretable Model (IM). The IM is designed for
interpreting a part of samples (data points) that can be
accurately predicted by IM, ensuring the interpretation
and accuracy on that part of samples. The IM can be
any interpretable model, such as linear regression model,
decision tree, and ProtoPNet, as long as it is thought to
be interpretable by the practitioners.

• A Black-box Model (BM). The BM is designed for
collaborating with the IM to ensure the predictive ac-
curacy of those samples that IM cannot guarantee its
interpretation and accuracy. The BM can also be any
black-box model, such as CNN and RNN, as long as
it is thought to be accurate by the practitioners.

• The Data Re-weighting and Model Selection module
(DR&MS). It is assigned to coordinate the division of
labor between the predefined interpretable model and the
black-box model by sample (data points) re-weighting
during the model training process. Considering the pre-
diction from IM, we measure the uncertainty of each
sample about whether the prediction of IM can be as
accurate as BM. By sample weighting with uncertainty,
we let IM focus on the samples with high certainty for
ensuring their interpretation and accuracy, and let BM
focus on other samples that cannot be well-interpreted
by IM for ensuring the accuracy. During the model infer-
ence process, DR&MS is designed for model selection
to select IM or BM for final prediction based on the
uncertainty of each sample during the inference process.



Among three modules, DR&MS is the core component to
align the interpretable model and black-box model in our IB-
M framework. It’s responsible for calculating the weight of
samples during the training phase, and selecting models during
the inference phase.

In the training phase, since the classification plane of well-
trained IM is far from the samples, which is well-clustered
or away from the true decision plane, IM prediction accuracy
of these samples is high. DR&MS generates the uncertainty
u of samples using the distance d between samples and the
classification plane of IM:

u = log(
1 + d

d+ ε
) (1)

Setting the threshold δ and comparing u with it, the weight
of sample i to train IM and BM is calculated out:

wi
IM =

{
rIM (u < δ)

1(u > δ)
(2)

wi
BM =

{
rBM (u > δ)

1(u < δ)
(3)

where rIM > 1 and rBM > 1.
Then, with sample weights wIM , the loss function for

retraining IM can be represented as:

Lre−weight
IM =

n∑
i=1

wi
IML

i
IM , (4)

where Li
IM refers to the loss on sample i predicted by IM.

If IM is a linear model, the Li
IM = (yi − xiβ)2, where xi

and yi are the features and outcome of sample i, β is linear
regression coefficient.

Similarity, the loss function for retaining BM with sample
weight wBM can be represented as:

Lre−weight
BM =

n∑
i=1

wi
BML

i
BM , (5)

where Li
BM is the loss of sample i calculated by BM.

Combining Eq.(4) and Eq.(5), the total loss function
LIB−M during the training phase can be obtained:

LIB−M = Lre−weight
IM + Lre−weight

BM (6)

During the inference phase, if wi
IM > wi

BM , DR&MS
outputs the prediction of IM for the sample i; otherwise, the
prediction of BM is output.

B. Specific Realization of Thyroid Nodules Classification Task

In the process of diagnosing benign and malignant thyroid
nodules, doctors focus on observing the properties of nodules
such as echogenic foci, composition, margin, and echogenicity
as the key basis for diagnosis. At present, many studies apply
the convolution neural network model on the ultrasound image
dataset of thyroid nodules and claim that they reach a high
accuracy [15]–[18], but most of the studies do not use thyroid

attribute information. Based on the medical diagnosis logic, we
propose a specific implementation for IB-M to solve Thyroid
Nodule Classification, named TNC-IB-M. In order to make
full use of attribute information, we adopt the multi-tasking
approach. In detail, we regard the classification of benign
and malignant thyroid nodules as the main task and attribute
classification as the subtask. In addition, considering that both
the interpretable model and the black-box model need to
include feature extractors, in order to reduce the computational
complexity, we use a shared CNN instead of two feature
extractors to process the input images.

Fig. 3: Black-box model structure. The black-box model
classifies the image features, which is extracted by the shared
CNN, through multi-layer stacked convolution layers and fully
connected layers.

Black-box Model in TNC-IB-M. We design a black-box
model named TNC-IB, whose structure is shown in Fig. 3.
Suppose there are 1 main task label and K attribute labels
in the image classification task. A set of feature maps F is
extracted by shared CNN from the image. After the feature
maps F are input into the TNC-BM, a highly nonlinear model
composed of multi convolution layers CNN and multi fully
connected layers FC completes the classification task, then
generates multi-task classification prediction PTNC−BM =
{p0b , p1b , . . . , pKb }:

VTNC−BM = GAP (CNN(F )) (7)

PTNC−BM = softmax(FC(VTNC−BM )) (8)

The calculation formula of the loss function LTNC−BM is:

LTNC−BM =−
C0∑
c=1

log(p0b(c))q
0(c)

− α ∗
K∑

k=1

Ck∑
c=1

log(pkb (c))q
k(c)

(9)

α is the weight of the loss function of the attribute classi-
fication task. Ck is the number of task k categories. For the
task k, if the target is c, qk(c) = 1; otherwise, qk(c) = 0.

Interpretable Model in TNC-IB-M. We combine multi-
tasking and ProtoPnet model [6] to specifically realize module
IM and generate a new model named TNC-IM. The specific



Fig. 4: Interpretable model structure. Shared CNN and a set
of independent CNNs extract feature maps from the image.
Then, the interpretable model is responsible for analyzing
feature maps using built-in prototype layers, and generating
multi-task prediction using the fully connected layers FC.

structure of TNC-IM is shown in Fig. 4. Before inputting
a set of feature maps F extracted by the shared CNN to
TNC-IM, K+1 independent CNNs are used to extract the
feature maps required for each classification task from F .
Subsequently, the feature maps are analyzed in parallel by the
internal multi prototype layers of TNC-IM, and transformed
into interpretable feature vectors VTNC−IM . After dealt by the
fully connected layers FC, the predictions of 1 main task and
K attribute classification tasks PTNC−IM = {p0i , p1i , . . . , pKi }
are generated. The process can be formally described as:

VTNC−IM = Prototype Layer(CNN(F )) (10)

PTNC−IM = softmax(FC(VTNC−IM )) (11)

The loss of task k to penalize misclassification is:

LCrsEnt−k
TNC−IM = −

Ck∑
c=1

log(pki (c))q
k(c) (12)

Considering the independence between attributes and the
master-slave relationship between the main task and the at-
tribute classification tasks, each attribute classification task
uses their own prototype layer independently, named attribute-
k prototype layer, to analyze the feature maps of each attribute.
The classification of the main task relies on the comprehen-
sive analysis of attribute characteristics generated by attribute
prototype layers. Since the known attributes often cannot fully
describe the main task, we add a supplement prototype layer
to analyze feature maps that contain supplementary informa-
tion. To ensure the orthogonality of information, the one-way
orthogonal constraint is added between the CNN convolution
kernel parameter Ws used to extract supplement information
and the CNN convolution kernel parameter WAttribute−k used
to extract attribute information:

LOrtho
TNC−IM =

∑
(|WsW

T
Attribute−k − I|) (13)

Fig. 5: Prototype layer model structure. The feature maps
extracted by CNN are input into the prototype layer. The
prototype layer uses built-in prototypes to match the feature
maps, then generates similarity maps and similarity scores.

I represents the identity matrix. The loss function term can
adjust the Ws parameter during the back propagation process,
but cannot modify the WAttribute−k parameter.

The prototype layer model structure refers to the ProtoPnet
model structure [6], as shown in Fig. 5. The feature map FP

generated by CNN is matched with the built-in prototypes Pr:

FD = match(FP , P r) (14)

For the “match” operation, FP is divided into many patches
of size 1*1. Calculating L2 distance between the patches and
Pr, we get the distance maps FD. After that, we invert FD

into the similarity maps FA:

FA = log(
1 + FD

ε+ FD
) (15)

After the max pooling operation, the global maximum
similarity scores s between the input image and the built-in
prototypes are obtained:

s = max pool(FA) (16)

The attribute-k prototype layer is responsible for analyzing
and transforming features that contain both the attribute k
information and the main task information. Each of its built-
in prototypes contains information, which is about a certain
category of attribute k and a certain category of the main task.
Thus, the number of prototypes #Prk should be determined
by the number of attribute k categories Ck and the number of
main task categories C0:

#Prk = Ck ∗ C0 (17)

The supplement prototype layer is only responsible for
analyzing and transforming features containing the main task
information. Each built-in prototype of it contains information
which is about a certain category of the main task. Thus, the
number of prototypes #Prs is determined by the number of
main task categories:

#Prs = C0 (18)



To train the prototypes, for task k, we choose one whose
similarity score is the largest, from the prototypes Prc which
contains the information of target category c, and optimize
how similar it is to the feature; another one whose similarity
score is the largest, is chosen from prototypes not containing
the information of target category, and we punish its similarity
to the feature:

LProto−k
TNC−IM = min

pr∈Prc
min

z∈patches(FP )
(z − pr)2

− min
pr/∈Prc

min
z∈patches(FP )

(z − pr)2
(19)

Combining the formulas Eq.(12), Eq.(13) and Eq.(19), we
can get the loss of TNC-IM:

LTNC−IM =LOrtho
TNC−IM + LCrsEnt−0

TNC−IM + LProto−0
TNC−IM

+

K∑
k=1

(LCrsEnt−k
TNC−IM + LProto−k

TNC−IM )
(20)

Data Re-weighting and Model Selection. Use the pre-
diction PTNC−IM output by TMC-IM and the prediction
PTNC−BM output by TNC-BM as the input of the data re-
weighting and model selection module, which is named TNC-
DR&MS. TNC-DR&MS calculates the difference between
maximum main task prediction probability of TNC-IM and
1
C0

to evaluate the distance d between samples and the main
task classification plane of TNC-IM:

d = max(p0i )−
1

C0
(21)

After getting the distance d, according to Eq.(21), Eq.(1),
Eq.(2), Eq.(3), the weightes of samples wTNC−IM and
wTNC−BM , which are used to train TNC-IM and TNC-BM
can be calculated by setting threshold δ. Substituting the loss
of TNC-IM LTNC−IM and the weight of samples wTNC−IM
into Eq.(4), the loss of TNC-IM after re-weighting Lre−weight

TNC−IM
is calculated:

Lre−weight
TNC−IM =

n∑
i=1

wi
TNC−IML

i
TNC−IM (22)

Substituting the loss of TNC-BM LTNC−BM and the
weight of samples wTNC−BM into Eq.(5), the loss of TNC-
BM after re-weighting Lre−weight

TNC−BM is calculated:

Lre−weight
TNC−BM =

n∑
i=1

wi
TNC−BML

i
TNC−BM (23)

With the loss Lre−weight
TNC−IM and Lre−weight

TNC−BM , the loss of TNC-
IB-M LTNC−IB−M is:

LTNC−IB−M = Lre−weight
TNC−IM + Lre−weight

TNC−BM (24)

During the inference phase, the inference process of TNC-
IB-M refers to IB-M.

TABLE I: Accuracy comparison among TNC-IB-M, TNC-IM,
and TNC-BM.

Methods Accuracy
Trained in IB-M Trained alone

TNC-IM 79.47% 78.69%
TNC-BM 82.01% 80.35%

TNC-IB-M 83.63%

IV. EXPERIMENT

In this section, we check the performance, including in-
terpretation and accuracy, of our proposed IB-M framework
and TNC-IB-M algorithm on the real medical application of
ultrasound thyroid nodule diagnosis.

A. Dataset Description

The ultrasound image dataset of thyroid nodules dataset
used in this paper is collected from 1,790 patients with a
collection of 2,285 ultrasound images, including 1,055 images
of malignant nodules and 1,230 images of benign nodules.
The labeling of the images is done by thyroid professional
doctors, as follows: (1) Compare pathological anatomy which
is the gold standard, and label thyroid nodules benign and
malignant. (2) Label the four key thyroid nodule attributes
of echogenic foci, composition, margin, and echogenicity,
which are considered to be the most important by the medical
community for thyroid nodule diagnosis. Due to the extremely
difficult medical data collection, in our cognitive category,
this dataset is the largest ultrasound image dataset of thyroid
nodules with finely labeled attribute information.

B. Implementation Details

We use DenseNet-201 [19] as the backbone and set the size
of feature maps output by shared CNN to 128*7*7. In the loss
function, we set the attribute loss weight coefficient α to 0.1,
the parameter rTNC−IM used in calculating wTNC−IM to 1.3,
and the parameter rTNC−BM used in calculating wTNC−BM

to 2.Before the training phase, the input images are resized
to 224*224 and normalized. During training, the batch size is
set to 8, the learning rate is set to 0.03 and the total training
epochs is set to 150.

C. Comparison with Single IM and Single BM

First, we conduct extensive experiments to demonstrate the
effectiveness of our proposed IB-M framework and the TNC-
IB-M algorithm on both model accuracy and interpretation.

To validate the advantage of our method on the accuracy, we
compare our TNC-IB-M algorithm with a single interpretable
model (including trained in our IB-M framework and trained
alone) and a single black-box model (including trained in our
IB-M framework and trained alone). We report the result in
Table I. From the results, we have the following observations
and analysis: (1) With aligning the TNC-IM and TNC-BM
and letting each of them focus on the samples that they are
good at respectively, our TNC-IB-M algorithm achieves the



TABLE II: Comparison with the state-of-art algorithms on the
ultrasound image dataset of thyroid nodules.

Methods Accuracy F1-score k value
Ko et al., 2019 [15] 78.47% 0.7853 0.5722

Song et al., 2019 [16] 78.78% 0.7771 0.5749
Li et al., 2019 [21] 79.70% 0.7894 0.5953

Buda et al., 2019 [17] 78.99% 0.7757 0.5781
Li et al., 2019 [18] 80.09% 0.8009 0.5981

TNC-IB-M 83.63% 0.8272 0.6720

best performance on predictive accuracy. (2) The performance
of TNC-BM trained in our IB-M framework is better than it
trained alone. The main reason is that by the DR&MS module,
our IB-M framework can help to reduce the side effect of the
samples that can be well-interpreted and predicted by TNC-
IM, and let TNC-BM focus on those samples around true
decision boundary. (3) With the help of DR&MS, the TNC-IM
trained in the IB-M framework can also focus on the samples
that it’s good at, hence achieving a better performance than it
trained alone.

D. Comparison with the State-of-Art Algorithms

We also compare our proposed method with five current
most advanced algorithms for the problem of thyroid nodules
classification as shown in Table II. Among them, [15], [16],
[21] train a single-task learning model with only benign and
malignant thyroid nodule labels. [17], [18] train a multi-
task learning model to jointly predict thyroid nodule benign
and malignant labels and attribute labels. [17] proposes a
shared CNN followed by fully connected layers to achieve
multi-tasking; and [18] uses multiple semantic branches com-
prehensive classification to achieve multi-tasks learning. In
experiments, we use 10-fold cross-validation to ensure the
reliability of results.

We report the results in Table II, and from the result,
we have followed observations. Our proposed TNC-IB-M
algorithm achieves the best performance on the task of ul-
trasound thyroid nodules classification, where the accuracy of
our algorithm is 83.63%, achieving an improvement of 3.54%
than baselines. The results on the other two measurements, F1-
score and k value, also demonstrate the effectiveness of our
proposed algorithm on the task of ultrasound thyroid nodule
diagnosis.

V. CONCLUSION

In this paper, we focus on how to simultaneously optimize
the model accuracy and interpretation. We argue that the trade-
off between model accuracy and interpretation is not necessary
for some scenarios. To break this trade-off, we propose an
IB-M framework to align an interpretable model and a black-
box model for simultaneously optimize the model accuracy
and interpretation. Based on the IB-M framework, moreover,
we design a TNC-IB-M algorithm for a real medical problem
of ultrasound thyroid nodule diagnosis. Experimental results

verify the practical usefulness of our proposed framework and
method on model accuracy and model interpretation.
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