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ABSTRACT
In online search and display advertising, the click-through rate
(CTR) and the post-click conversion rate (CVR) are key measures
of ad/campaign effectiveness. We find, however, both CTR and
CVR are not always fair for advertisers to charge because of the
"free-rider", referring to the user who inherently intended to make
a conversion no matter with the ads promoting or not, but acted
through promoted ads passingly. To tackle this problem, we propose
a new measure, namely true post-click conversion rate (TCVR), to
count the users who are truly affected by the ads promoting (i.e.,
users that made a conversion under ads, but no conversion if no
ads.) under the Neyman-Rubin potential outcome framework. The-
oretically, we demonstrate the advantages of our proposed TCVR
for measuring ads’ effectiveness compared with the CTR and CVR.
In the advertising scenarios, by assuming that all users can be strat-
ified into five groups based on their behaviors with/without ads
promoting under counterfactual overview, we can clearly identify
the groups of users that are truly affected by the ads promoting.
Moreover, to precisely estimate the TCVR, we propose an easy but
effective counterfactual model, namely Group-stratified Counter-
factual Inference (GCI) algorithm, by counterfactually predicting
the probability of each specific group of each unit belongs to. With
empirical experiments, we demonstrate the effectiveness of our pro-
posed counterfactual predictive model and confirm the advantages
of our TCVR compared with CTR and CVR.

CCS CONCEPTS
• Information systems → Online advertising; • Computing
methodologies→ Supervised learning by classification.
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1 INTRODUCTION
Click-through rate (CTR) and post-click conversion rate (CVR) live
the heart at many industrial systems with counterfactual overview,
such as display advertising, online search and recommender sys-
tems. Taking an App advertisement from the App store as an ex-
ample, based on the user behaviors (click and download) to the
promoted App advertisement, both the CTR and CVR can be de-
fined as the portion of users who clicked and downloaded the
promoted App, respectively. In many online advertising systems,
the CTR and CVR are key measures of ad effectiveness, hence, al-
ways be adopted for price bidding and charging from advertisers.
To precisely estimate the CTR and CVR, recently, many methods
have been proposed based on deep learning models. However, we
find that bid price based on CTR and CVR is not fair for advertisers
because there exist some users who would also click or download
the advertisement even without ads promoting, and those users
are counted for charging in both CTR and CVR. [17] also finds
that a commercial recommender system brings a large number of
click-through, where at least 75% of them would likely occur even
without recommendations. Therefore, for a more fair price bidding,
one needs to identify the users who are truly affected by the pro-
moted ads (i.e., users that would make a conversion under ads, but
no conversion without ads).

To clearly demonstrate the users that are truly affected by the
promoted ads and show the drawbacks of the CTR and CVR, under
some assumptions, we can divide all users into five groups as shown
in Table 1 from a counterfactual overview using the principal strat-
ification from causal inference literature instead of observational
variables [5, 7, 11]. The stratification is based on the users’ behav-
iors, such as exposed (𝑇 = 0/1, 1 for expose), clicked (𝐶 = 0/1, 1 for
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Table 1: Five groups of users in advertisement scenarios with
counterfactual overview.C(T = 0) andC(T=1) refer to the click
behaviors (1 for click) of users when he/she is exposed (T=1)
to the promoted ad or not (T=0), respectively. And Y(T = 0)
and Y(T=1) refer to the download behaviors (1 for download)
of users when he/she is exposed (T=1) to the promoted ad or
not (T=0), respectively.

Groups C(T=0) C(T=1) Y(T=0) Y(T=1)

A 0 0 0 0
B 0 0 1 1
C 0 1 0 0
D 0 1 0 1
E 0 1 1 1

click) and downloaded (𝑌 = 0/1, 1 for download) to the promoted
App advertisement. Hence, the principal stratification is defined
as a joint potential outcomes of (𝐶 (𝑇 = 0), 𝐶 (𝑇 = 1), 𝑌 (𝑇 = 0),
𝑌 (𝑇 = 1)). Specifically, group A refers to the non-interested users
who would never click and download an advertising App no matter
being exposed to the promoted App or not; group B means the
users who would always download the advertising App no matter
with exposure to the promoted App or not, but never click the
advertisement; group C represents the users who would click the
advertisement if and only if he/she is exposed to it, but they would
not download the corresponding App; group D refers to the real
affected users by the ads who would click and download the adver-
tising Apps if and only if exposed to them; group E refers to the
"free-rider", representing the users who would always download
the advertised App no matter ads are promoted or not, and they
would like to click and download if ads are promoted.

From Table 1, we know that the users who belong to group C,
D and E would be counted for CTR charging from advertiser since
they would click the promoted advertise (i.e., C(T=1)=1), and the
users that belong to group D and E would be counted for CVR
charging since they would click and download the promoted App
(i.e., C(T=1)=1 and Y(T=1)=1). Exclusion of users from group C that
with only click but no download makes CVR become a better way
than CTR for bidding prices in some online advertising applica-
tions [14]. While the inclusion of users from group E for both CTR
and CVR would lead to unnecessary payment for advertiser, since
users from group E would also download the App even without
advertising and promoting. The most reasonable and fair charging
for advertisers should be only based on the users from group D,
where advertising and promoting actually changed their behaviors
(click and download) on the advertised app. How to estimate the
portion of users belong to group D for fair bidding price is of para-
mount importance for both academic researches and real-world
applications.

In this paper, we define the portion of users that belong to group
D as true post-click conversion rate (TCVR), and we focus on pre-
cisely estimate TCVR for future bidding prices. The main challenge
of TCVR estimation is the counterfactual problem that one can
only observe users’ behaviors (click and download) under one sce-
nario (with ad exposure 𝑇 = 1 or not 𝑇 = 0). To address this

challenge, inspired by causal literature, we therefore propose a
novel Group-stratified Counterfactual Inference (GCI) model under
the Neyman-Rubin potential outcome framework. Specifically, GCI
model aims to predict the probability of the specific group given
a user embedding. GCI learns two different distributions under
treatment and control group with trainable parameters of a multi-
layer perceptron. Extensive experiments on the real-world dataset
indicate the existence of group D and group E.

Overall, our contributions are summarized as follow.
• We formally define the free-rider effect in the CTR and
CVR model, and propose the true post-click conversion rate
(TCVR) for advertising strategy optimization, which is a
more reasonable strategy for the benefits of the advertisers.

• Wepropose a Group-stratified Counterfactual Inference (GCI)
algorithm for TCVR estimation. Furthermore, we demon-
strate the stability of the proposed GCI.

• We conduct analysis on real-world datasets to show the ex-
istence of group D and group E, and extensive experimental
results on real-world datasets demonstrate that the proposed
GCI algorithm can capture the free-rider effect.

2 RELATEDWORK
In this section, we review the previous related work, including
CTR/CVR estimation and causality based counterfactual learning.

Click estimation and conversion estimation. The CTR and
CVR are two important measures of ad/campaign effectiveness
in online search and display advertising applications. Advertisers
bids for each ad request for maximizing their campaign perfor-
mance (e.g., CTR / CVR), and advertising systems always determine
ranking score of each ads. In an App store, given a list of recom-
mended Apps, users may click some ones and further download
some of them. So the behaviors sequential pattern follows obser-
vation -> click -> conversion. The clicked samples are the positive
samples of CTR prediction task, and the conversion samples are the
positive samples of CVR prediction task.

The two tasks can always be modeled as binary classification.
Logistic Regression is the most popular and effective model in
advertising industry. There are several 2-order feature conjunction
methods for CTR/CVR tasks, such as AutoConjunction[3]. In order
to capture high order feature interactions, deep neural networks
have been widely studied in the last few years, the models include
Deep crossing [20] and DeepFM [9]. Recently, some counterfactual
learning technologies have been studied to handle the bias problems
for advertising system [6], such as propensity-free doubly robust
methods for click prediction [21], direct methods for solving both
position bias and selection bias[22], debias study with uniform
data[12]. For jointly optimizing both CTR and CVR prediction tasks,
some multi-task learning models have been proposed, like Entire
Space Multi-Task Model (ESSM) [14] and Multi-gate Mixture-of-
Experts (MMoE) [13]. As far as we know, our work is the first study
about true post-click conversion rate (TCVR) with the potential
outcome framework.

Causality and counterfactual learning.Causal inference is used
in fields of advertisement widely, economics and marketing [2, 18].
We are mainly concerned with the impact of ad exposure on a
consumer, which can help advertisers efficiently target customers.
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Those methods, which combines both causal inference and machine
learning algorithm, to estimate the causal effect of ad exposure is
also called uplift model [10]. For example, Facebook uses to measure
the advertisement effect [8].

The Neyman–Rubin causal model, is an approach to the sta-
tistical analysis of cause and effect based on the framework of
potential outcomes [15]. The causal effect is the difference between
the outcome variable with the treatment and without the treatment.
Nowadays, more and more works adopt machine learning meth-
ods for causal effect inference, and in particular for individual-level
treatment effect. [19] uses tree-based model and random forest to es-
timate individual treatment effect, and [16] adopts neural networks
to individual treatment effect estimation.

3 PROBLEM AND METHODOLOGY
In this paper, we focus on how to precisely estimate the proposed
TCVR for future bidding prices. Firstly, we will give a formal defi-
nition of TCVR, then propose an easy but effective counterfactual
learning algorithm for TCVR estimation. Moreover, we will com-
pare our method with traditional uplift modeling methods.

3.1 Problem
As shown in our causal diagram in Figure 1, we define a treatment
as a random variable 𝑇 , denoting whether a user being exposed
in the target advertising App; and two potential outcomes 𝐶 (𝑡)
and 𝑌 (𝑡) which correspond to a specific treatment 𝑇 = 𝑡 . 𝐶 (𝑡) and
𝑌 (𝑡) refer to the click and download behaviors of a user to the
corresponding advertisement, respectively. In a real online recom-
mendation system, the treatment 𝑇 is directly affected by users’
attributes𝑋 , which would also affect the users’ click behavior𝐶 and
download behavior 𝑌 . Fortunately, users’ attributes 𝑋 can always
be observed and collected. But users’ click and download behaviors
𝐶 and 𝑌 might be also affected by some unobserved factors𝑈 , such
as friend’s recommendation and popularity of the App.

Based on the causal diagram in Figure 1, the proposed TCVR can
be formally denoted as:

𝑇𝐶𝑉𝑅 = 𝑝 (𝑌 = 1|𝑋,𝑇 = 1) − 𝑝 (𝑌 = 1|𝑋,𝑇 = 0). (1)

where 𝑝 (𝑌 = 1|𝑋,𝑇 = 1) and 𝑝 (𝑌 = 1|𝑋,𝑇 = 0) represent the
probability of download (𝑌 = 1) behaviors of user with treatment
status as treated 𝑇 = 1 (being exposed to a target ad) and control
𝑇 = 0, respectively. For example, in the scenario of an online App
advertisement system, the TCVR refers to the probability of a user,
who would not click and download an App if not be exposed to
the corresponding advertising App, to make a click and download
behavior after being exposed to the App by intervention.

3.2 Methodology
In order to estimate TCVR unbiasedly from observational data,
one has to control the impact of confounders 𝑋 . In this paper, we
propose to remove the confounding bias based on Neyman-Rubin
potential outcome framework [16] in causal literature, where the
following standard assumptions are needed:

Assumption 1: Stable Unit Treatment Value. The distribu-
tion of potential outcome for one unit is assumed to be unaffected

exposure click download

user 

attributes

unobserved

variables

exposure click download

user 

attributes

unobserved

variables

Figure 1: Our causal diagram.

by the particular treatment assignment of another unit, when given
the observed variables.

Assumption 2: Strong Ignorability. The distribution of treat-
ment is independent of potential outcome when given the observed
variables.

Assumption 3: Overlap. Every unit has a nonzero probability
to receive either treatment status when given the observed variables.
Formally, 0 < 𝑝 (𝑇 = 1|𝑋 ) < 1.

In this paper, we focus on the TCVR estimation under advertise-
ment settings. Here, we need to assume following assumptions to
deeply describe the relationship between advertisement exposure,
click and download:

Assumption 4: Exposure-Necessary. Every unit cannot click
the advertisement without exposure. Formally, 𝐶 (𝑇 = 0) = 0.

Assumption 5: Monotonicity. The causal effect of 𝑇 on 𝑌 is
non-negative, i.e. 𝑌 (1) ≥ 𝑌 (0).

Assumption 6: Exclusion. The exposure 𝑇 affect download 𝑌
only through click 𝐶 , namely exposure 𝑇 have not direct effect on
download 𝑌 .

Assumption 4-6 are reasonable in the advertisement setting based
on the users’ behaviors. All users can be categorized into five groups
as shown in Table 1, then we have the following equations,

𝑝 (𝑌 = 0,𝐶 = 0|𝑇 = 1, 𝑋 ) = 𝑝 (𝐴|𝑋 ) (2)

𝑝 (𝑌 = 1,𝐶 = 0|𝑇 = 1, 𝑋 ) = 𝑝 (𝐵 |𝑋 ) (3)

𝑝 (𝑌 = 0,𝐶 = 1|𝑇 = 1, 𝑋 ) = 𝑝 (𝐶 |𝑋 ) (4)

𝑝 (𝑌 = 1,𝐶 = 1|𝑇 = 1, 𝑋 ) = 𝑝 (𝐷 |𝑋 ) + 𝑝 (𝐸 |𝑋 ) (5)

𝑝 (𝑌 = 1,𝐶 = 1|𝑇 = 0, 𝑋 ) = 0 (6)

𝑝 (𝑌 = 0,𝐶 = 1|𝑇 = 0, 𝑋 ) = 0 (7)

𝑝 (𝑌 = 1,𝐶 = 0|𝑇 = 0, 𝑋 ) = 𝑝 (𝐵 |𝑋 ) + 𝑝 (𝐸 |𝑋 ) (8)

𝑝 (𝑌 = 0,𝐶 = 0|𝑇 = 0, 𝑋 ) = 𝑝 (𝐴|𝑋 ) + 𝑝 (𝐶 |𝑋 ) + 𝑝 (𝐷 |𝑋 ) (9)
All left-hand side (LHS) of these equations can be estimated

from observed data and the right-hand side (RHS) is the probability
distribution of the five groups people. These equations are saturated,
we have the following proposition:

Proposition: Under assumption 1-6, the proportion of each groups
is identifiable.

Furthermore, use Eq. (5)+(3)-(6)-(8), we have:

𝑝 (𝐷 |𝑋 ) = 𝑝 (𝑌 = 1|𝑇 = 1, 𝑋 ) − 𝑝 (𝑌 = 1|𝑇 = 0, 𝑋 ); (10)
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Table 2: Comparison among related metrics and their corre-
sponding probability distribution.

Metric Probability Distribution

CACE of 𝑇 on 𝐶 𝑝 (𝐶 |𝑋 ) + 𝑝 (𝐷 |𝑋 ) + 𝑝 (𝐸 |𝑋 )
CACE of 𝑇 on 𝑌 𝑝 (𝐷 |𝑋 )
LATE of 𝐶 on 𝑌 𝑝 (𝐷 |𝑋 )

𝑝 (𝐶 |𝑋 )+𝑝 (𝐷 |𝑋 )+𝑝 (𝐸 |𝑋 )
CTR 𝑝 (𝐶 |𝑋 ) + 𝑝 (𝐷 |𝑋 ) + 𝑝 (𝐸 |𝑋 )
CVR 𝑝 (𝐷 |𝑋 ) + 𝑝 (𝐸 |𝑋 )
TCVR 𝑝 (𝐷 |𝑋 )

free-rider metric 𝑝 (𝐸 |𝑋 )
𝑝 (𝐷 |𝑋 )+𝑝 (𝐸 |𝑋 )

with Eq. (5), we have:

𝑝 (𝐷 |𝑋 ) + 𝑝 (𝐸 |𝑋 ) = 𝑝 (𝑌 = 1,𝐶 = 1|𝑇 = 1, 𝑋 ); (11)

with Eq. (4)+(5), we have:

𝑃 (𝐶 |𝑋 ) + 𝑝 (𝐷 |𝑋 ) + 𝑝 (𝐸 |𝑋 ) = 𝑝 (𝐶 = 1|𝑇 = 1, 𝑋 ) (12)

So, we can estimate the TCVR, CTR, CVR by the estimated con-
ditional distribution from observed data distribution as:

𝐶𝑇𝑅(𝑋 = 𝑥) = 𝑃 (𝐶 |𝑥) + 𝑝 (𝐷 |𝑥) + 𝑝 (𝐸 |𝑥) (13)

𝐶𝑉𝑅(𝑋 = 𝑥) = 𝑝 (𝐷 |𝑥) + 𝑝 (𝐸 |𝑥) (14)

𝑇𝐶𝑉𝑅(𝑋 = 𝑥) = 𝑝 (𝐷 |𝑥) (15)
From Eq. 13 & 14 & 15, conceptually, we have following obser-

vations and analyses:
• CVR is fairer than CTR for advertisers to charge since CVR
can exclude the users of group C that with only click but no
conversion (i.e., download) from CTR. Hence, conceptually,
CVR is a better way for bidding price than CTR.

• Both CTR and CVR are facing the unfair charge induced by
the "free-rider" problem from users of group E, who would
also make a conversion (i.e., download) even without adver-
tising and promoting.

• By exclusion of users from group C and E, TCVR is more
reasonable and fair for bidding price than CTR and CVR.

3.3 Comparison with uplift modeling
Uplift modeling refers to the set of techniques that a company
may use to estimate the effect of advertisements on customers. For
example, they estimate the conditional average causal effect (CACE)
of exposure on click to maximize the number of user clicks. And all
such effect can be rewritten using the probability distribution, for
example, the conditional average causal effect of 𝑇 on 𝐶 and 𝑌 are
𝑝 (𝐶 |𝑋 ) + 𝑝 (𝐷 |𝑋 ) + 𝑝 (𝐸 |𝑋 ) and 𝑝 (𝐷 |𝑋 ), respectively. And the local
average treatment effect (LATE) of𝐶 on𝑌 is 𝑝 (𝐷 |𝑋 )

𝑝 (𝐶 |𝑋 )+𝑝 (𝐷 |𝑋 )+𝑝 (𝐸 |𝑋 )
[1].

Beyond causal effect estimation, our approach has a deeper per-
spective. Our method can solve more actual problems. For example,
a CTR customer wants to convert to CVR, due to the change of
proposing strategies, it is difficult to price. However, using our
framework, we can price it by estimating the amount of TCVR in
both the old and new proposing strategies.

Data scientists always estimate the causal effect of 𝐶 on 𝑌 to
measure the power of advertisement. We think there is another
important metric 𝑝 (𝐸 |𝑋 )

𝑝 (𝐷 |𝑋 )+𝑝 (𝐸 |𝑋 ) . It measures the proportion of
converts not due to the advertisement. It also measures how mature
or necessary a production is. For example, this metric of daily
necessities is often very low. People click this advertisement and buy
this product due to their rigid demand. Even without this ad, they
will still buy those products. For a mature advertisement, such as
Facebook or WeChat, people click and download the advertisement
just because the location is more prominent. In those situations,
advertising ismore like a shortcut link and powerless andwe call the
metric as “free-rider metric". To summarize, the relationship with
existing works, some new metrics and the probability distribution
of the five groups is listed in Table 2.

4 ESTIMATION
Group-stratified Counterfactual Inference (GCI) model under the
Neyman-Rubin potential outcome framework is shown in Fig. 1. In
the online advertisement scenarios, the user attributes 𝑋 are often
observable and would affect the following decisions: (i) whether
the platform decides to present the advertisement to the user, (ii)
whether a user would click the advertisement, and (iii) whether a
user would download the corresponding contents in the advertise-
ments. Moreover, there exist some unobserved latent variables𝑈
(e.g. friends recommendation, recreation, shopping for others) that
may simultaneously affect a user’s click and download behaviors.

We aim to predict the probability of whether a user would make a
click and download behavior under an intervention in the treatment
variable 𝑡 (i.e. exposure), which is formally defined as 𝑝 (𝑦, 𝑐 |𝑡, 𝑥).

𝑝 (𝑦, 𝑐 |𝑡, 𝑥) = 𝑝 (𝑦 (𝑡), 𝑐 (𝑡) |𝑥) (16)

However, the group stratification model illustrates the free-rider
effect in CVR (i.e. group 𝐸. Traditional CVR optimized advertising
strategies unavoidably take both group 𝐷 and group 𝐸 into account,
which is not beneficial to advertisers.

Clearly, a better strategy is to maximize 𝑝 (𝐷). However, we claim
that it is hard to directly distinguish group 𝐸 as it is a counterfac-
tual situation in real-world advertising systems. Finding users that
belong to group 𝐸 requires not only the behaviors in the treated
group (i.e. advertisement exposure) but also the behaviors in the
control group (i.e. non-advertisement exposure).

Therefore, we summarize GCI into following two steps.
Step1: Estimate 𝑝 (𝐶 = 𝑐, 𝑌 = 𝑦 |𝑇 = 𝑡, 𝑋 = 𝑥).
Step2: Plug the estimator of 𝑝 (𝐶 = 𝑐, 𝑌 = 𝑦 |𝑇 = 𝑡, 𝑋 = 𝑥) into

Eq. (2) to (9) and solve the equations.
In order to estimate 𝑝 (𝐶 = 𝑐, 𝑌 = 𝑦 |𝑇 = 𝑡, 𝑋 = 𝑥), we first apply

differentiable transformation functions to learn the feature vectors
from user attributes and item attributes respectively. More specifi-
cally, we assume the user embedding of a user 𝑖 in online advertising
system to be 𝑢𝑢𝑠𝑒𝑟

𝑖
, which is learned from user 𝑖’s attribute 𝑥𝑢𝑠𝑒𝑟

𝑖
. It

can be formalized as 𝑢𝑢𝑠𝑒𝑟
𝑖

= ℎ𝑢𝑠𝑒𝑟 (𝑥𝑢𝑠𝑒𝑟𝑖
), where ℎ𝑢𝑠𝑒𝑟 is a trans-

formation function for user embedding. Similarly, the embedding
of an advertisement 𝑗 in online advertising systems is assumed to
be 𝑢𝑖𝑡𝑒𝑚

𝑗
learned from item 𝑗 ’s attribute 𝑥𝑖𝑡𝑒𝑚

𝑗
. It can also be for-

malized as 𝑢𝑖𝑡𝑒𝑚
𝑗

= ℎ𝑖𝑡𝑒𝑚 (𝑥𝑖𝑡𝑒𝑚
𝑗

), where ℎ𝑖𝑡𝑒𝑚 is a transformation
function for advertisement embedding. Then the concatenation
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User attributes Item attributes

Embedding 

layer

Fully

Connected

layer

Embedding
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Figure 2: The architecture of GCI, which consists of three
layers. Namely, embedding layer, embedding concatenation
layer and fully connected layer. Please note that 𝑡𝑖 is a bi-
nary variable, representing whether an advertisement is de-
termined to be exposed. As we are only able to observe one
result for a user 𝑖 and the advertisement 𝑗 , each sample is to
update model parameters on either 𝑡 = 0 or 𝑡 = 1.

operation is applied to integrate 𝑢𝑢𝑠𝑒𝑟
𝑖

and 𝑢𝑖𝑡𝑒𝑚
𝑗

. Please note that
other embedding methods such as [4] could also serve as a base
model for user and advertisement embedding learning.

˜𝑢𝑖, 𝑗 = 𝐶𝑜𝑛𝑐𝑎𝑡 ( [𝑢𝑢𝑠𝑒𝑟𝑖 ;𝑢𝑖𝑡𝑒𝑚𝑗 ]), (17)

where 𝑢𝑖, 𝑗 represents the embedding of a user 𝑖 and an advertise-
ment 𝑗 .

As we could only observe 𝐶 (𝑇 = 0) and 𝑌 (𝑇 = 0) for units with
𝑇 = 0, and the same for the situation when𝑇 = 1, the assumption 2
(i.e. strong ignorability) is necessary to make our conditional effect
identifiable. For each situations (i.e. 𝑇 = 1 and 𝑇 = 0), we use a
multi-layer perceptron to learn the integrated representations:

�̃�
(𝑘) |𝑇=𝑡
𝑖, 𝑗

= 𝜎 (𝑊 (𝑘−1) |𝑇=𝑡�̃� (𝑘−1 |𝑇=𝑡 )
𝑖, 𝑗

+ 𝑏 (𝑘−1) |𝑇=𝑡 ), (18)

where 𝜎 (𝑥) = 1/(1+ 𝑒𝑥𝑝 (−𝑥)) is the sigmoid function,𝑊 (𝑘−1) |𝑇=𝑡

and 𝑏 (𝑘−1) |𝑇=𝑡 are trainable parameters at the (𝑘 − 1)-layer percep-
tron when 𝑇 = 𝑡 and �̃�𝑖, 𝑗 = �̃�

(0) |𝑇=𝑡
𝑖, 𝑗

.
The final final embdding are then fed into the classifier 𝑔 (𝑇=𝑡 ) (·),

𝑦𝑇=𝑡
𝑖, 𝑗

= 𝑔 (𝑇=𝑡 ) (�̃� (𝑘) |𝑇=𝑡
𝑖, 𝑗

), where 𝑔 (𝑇=𝑡 ) (·) is also a differentiable
transformation function. Note that the dimensions of the classifier
are different in the situation when 𝑇 = 0 and 𝑇 = 1.

Based on Eq. (1), we can estimate the TCVR by modelling 𝑝 (𝑌 =

1|𝑇 = 1, 𝑋 ) and 𝑝 (𝑌 = 1|𝑇 = 0, 𝑋 ). Here, we split all training data

into two subset, including treated training data with 𝑇 = 1, and
control training data with 𝑇 = 0. Then, 𝑝 (𝑌 = 1|𝑇 = 1, 𝑋 ) and
𝑝 (𝑌 = 1|𝑇 = 0, 𝑋 ) can be estimated by modelling 𝑝 (𝑌 = 1|𝑋 ) under
treated training data and control training data, respectively.

According to Eq. (2)-(9), both of the two situations (i.e.𝑇 = 0 and
𝑇 = 1) are the classification problems. Therefore, we minimize the
cross entropy over both the treated group and the control group
between the ground truth and the prediction. Therefore, when the
advertisement is fixed, the objective function can be formalized as:

𝐿 = −
∑
𝑖∈D𝑡

𝑦𝑖 log(𝑊𝑇=𝑡 · 𝑦𝑇=𝑡𝑖 ), (19)

where𝑊𝑇=𝑡 is the parameter of the final classifier layer, D𝑡 is the
set of indices in the training dataset with 𝑇 = 𝑡 . 𝑦𝑖 and 𝑦𝑇=𝑡𝑖

are
the labels and the corresponding embeddings. Specifically, Eq.(19)
could be written as 𝑙𝑇=0 = −∑

𝑖∈D𝑇=0
𝑦𝑖 log(𝑊𝑇=0 · 𝑦𝑇=0

𝑖
) and

𝑙𝑇=1 = −∑
𝑖∈D𝑇=1

𝑦𝑖 log(𝑊𝑇=1 · 𝑦𝑇=
𝑖

). The detailed architecture of
our GCI algorithm is demonstrated in Figure 2.

5 EXPERIMENTS
In this section, we conduct extensive experiments on the real-world
datasets to demonstrate the advantages of our methodology.

5.1 Dataset
To further validate the phenomenon of TCVR in real-world scenar-
ios, we analyze the data of three advertising Apps from an online
advertising system. In order to strictly follow the definition of the
groups in the advertisement scenarios, we consider a duration of
15 days to categorize user behaviors as:

• Group A: if an advertisement is exposed to the user in the
first week, but not exposed in the second week, and on the
last day (15𝑡ℎ day), the user did not make a conversion, then
we claim that the user belongs to group A.

• Group B: If an advertisement is exposed to the user in the
first week but not exposed in the second week, and on the
last day, the user downloaded the corresponding App, then
we claim that the user belongs to group B1.

• Group B+E: If an advertisement is not exposed to users in the
first week, so (s)he did not have chances to click or download
the App, but the user installed the App from other places in
the following days, hence, belonging to group B or E.

• Group C: If an advertisement is exposed to the user in the
first week, and it is both exposed and clicked by the user
in the second week, but on the last day the user did not
download the App. We claim the user belongs to group C.

• Group D+E: if an advertisement is exposed to the user in the
first week, and it is both exposed and clicked by the user in
the second week, and on the last day the user downloaded
the App, then we claim the user belongs to group D or E.

In real-world data, it is impossible to distinguish the users be-
longing to the group E from those belonging to group D, hence, we
mainly demonstrate the existence of group D and group E, and give
the estimation of the free-rider effect.
1The number of users belongs to the group B should be zero, since users download an
App must with a click in our recommendation scenario.
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Figure 3: The probability of free-rider metric of three apps
and the corresponding number of downloads.

Table 3: Number of users in each group under three active
app’s advertisements.

Apps/Group A B+E C D+E E / D+E

App#1 17,022 885 333 24,152 3.66%
App#2 54,205 585 553 40,372 1.44%
App#3 122,201 1,490 1,117 131,733 1.13%

5.2 Experimental Results and Analyses
Overall, Table 3 summarizes the statistics of users of each group in
the three advertising Apps. We can see our advertising system con-
tains group E, which represents the users that inherently intended
to download the App whether the advertising system exposes it or
not. So comparing with group D, the advertisers probably do not
hope to spend the payment for the advertising Apps from group E,
since these users can always find ways to download the Apps. In
our App advertising system, the number of users in group E is less
than that of group D as shown in the column of "E/D+E" of the Table
3, one possible reason is that we can not collect all the users who
belong to group E as we discussed in the last paragraph. The above
analysis on real advertising data demonstrates the group E exists,
and the ratios of group E are different for different advertising Apps.

Figure 3 shows the predicted free-rider metrics (i.e. 𝑝 (𝐸)
𝑝 (𝐷)+𝑝 (𝐸) of

three apps by GCI and the total number of downloads in recent two
weeks from the online advertising system. App#1 and App#3 have
2, 208, 868 downloads and 4, 486, 693 downloads, respectively. If the
CVR optimized strategy is employed, both App#1 and App#3 could
have comparatively high prices for advertisement promotion. As
for App#2, it has 1, 829, 707 downloads and would pay fewer prices.
However, according to the free-rider metric deduced by TCVR, it
shows that mature apps would have large free-rider metrics (i.e.
0.194 for App#1 and 0.184 for App#3). Therefore, there are many
users in some mature apps that shouldn’t have been charged, as
the contribution to downloads by these users is not the effect of the
advertisement’s promotion but the inherent intentions. Moreover,
Figure 3 also illustrates that less well-known apps would have
comparatively fewer free-rider metrics (i.e. 0.093 for App#2). This
phenomenon also corresponds to the well-known fact that users
are unlikely to download an unknown app only by the intentions.

6 CONCLUSION
In this paper, we formalize a new evaluation metric TCVR in online
advertising systems to address the problem of the free-rider effect
in CVR optimized advertising strategy. We point out both CTR and
CVR fail to achieve a win-win situation for advertisers as the exis-
tence of the people belonging to the group D. A novel model(GCI)
is proposed under a counterfactual learning framework to solve
the above challenges. GCI learns the two distributions through
splitting models with different trainable parameters with shared
embeddings. Experimental results confirm both our analysis on
reasonableness of TCVR and the effectiveness of our GCI.
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