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Abstract

The advent of the big data era brought new opportunities
and challenges to draw treatment effect in data fusion, that
is, a mixed dataset collected from multiple sources (each
source with an independent treatment assignment mecha-
nism). Due to possibly omitted source labels and unmea-
sured confounders, traditional methods cannot estimate indi-
vidual treatment assignment probability and infer treatment
effect effectively. Therefore, we propose to reconstruct the
source label and model it as a Group Instrumental Variable
(GIV) to implement IV-based Regression for treatment ef-
fect estimation. In this paper, we conceptualize this line of
thought and develop a unified framework (Meta-EM) to (1)
map the raw data into a representation space to construct
Linear Mixed Models for the assigned treatment variable;
(2) estimate the distribution differences and model the GIV
for the different treatment assignment mechanisms; and (3)
adopt an alternating training strategy to iteratively optimize
the representations and the joint distribution to model GIV
for IV regression. Empirical results demonstrate the advan-
tages of our Meta-EM compared with state-of-the-art meth-
ods. The project page with the code and the Supplementary
materials is available at https://github.com/causal-machine-
learning-lab/meta-em.

Introduction
Estimating the causal effects of treatment/exposure on the
outcome of interest from the observation dataset is crucial
for explanatory analysis and decision-making (Pearl 2009;
Kuang et al. 2020b; Li et al. 2020; Zhang et al. 2021; Tian
et al. 2022). In the presence of unmeasured confounders, as-
suming a fixed additive noise model (ANM), state-of-the-art
(SOTA) approaches use an instrumental variable (IV) to im-
plement a two-stage regression to reduce endogenous con-
founding bias in treatment effect estimation (Hartford et al.
2017; Lin et al. 2019; Muandet et al. 2020; Wu et al. 2022a).
These methods are reliable when the pre-defined IV is a
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T: Treatment (Offer)
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Figure 1: The causal diagram for mixed datasets from mul-
tiple sources, each source with an independent treatment as-
signment mechanism. Blue nodes denote observable vari-
ables, and gray nodes indicate latent variables. The arrows
with different colors define different causal effects. The bidi-
rected arrows encode unmeasured confounders.

valid IV that only affects the outcome through its strong as-
sociation with treatment options, called exclusion assump-
tion. Under these assumptions, Angrist et al. (1996); Newey
and Powell (2003) verify that causal effects can be identi-
fied by exogenous IVs. In instrumental variable literature,
researchers usually implement Randomized Controlled Tri-
als (RCTs) to obtain exogenous IVs, such as Oregon health
insurance experiment (Finkelstein et al. 2012) and effects of
military service on lifetime earnings (Angrist 1990), which
are too expensive to be universally available.

With the advent of the big data era, a variety of obser-
vation databases collected from different sources have been
established, which may contain the same treatment effect
mechanism (from treatment to outcome) but different treat-
ment assignment mechanisms (from covariates to treatment)
(Bareinboim and Pearl 2016; Hünermund and Bareinboim
2019). For instance, as shown in Fig. 1, in the study of treat-
ment effect of individual offers (treatment T ) on enterprise
development (outcome Y ), different human resources (HR)
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interviewers (instrument Z) may assign different offer deci-
sions to the same individual (covariate X) based on differ-
ent evaluation strategies (assignment fθZ ). In this case, can-
didates will be randomly assigned to different interviewers,
each with different prejudices or opinions, to decide whether
to give an offer or not (Pager and Karafin 2009). Here, the
omitted interviewer label (source label) can serve as a latent
multi-valued IV, which only affects the outcome through its
strong association with offer decisions (Kuang et al. 2020c;
Rothenhäusler et al. 2021). Such heterogeneous assignment
mechanism is common and widespread in real applications,
such as the assessment rules in university admissions or aca-
demic title evaluation (Harris et al. 2022), and the environ-
ments in Generalized Causal Dantzig (Long et al. 2022).

Nevertheless, due to data privacy and missing data, inter-
viewers’ information is rare in public datasets. Besides, the
source label is not always available in some scenarios. For
example, people tend to consult an expert consultant, and the
consultant’s emotional state could be a latent IV that cannot
be accessed. A large amount of literature for Summary/Se-
lection IVs has attempted to resolve this problem (Burgess,
Small, and Thompson 2017; Kuang et al. 2020c; Hartford
et al. 2021; Yuan et al. 2022). Two main limitations of
these methods are that they require expert knowledge to pro-
vide well-predefined IV candidates, and lack metrics to test
the validity of IV variables learned by unsupervised meth-
ods. Moreover, to obtain valid Summary IVs, these methods
assume that at least half of pre-defined IV candidates are
valid strong IVs so that they can synthesize an IV through
a weighted average (Burgess and Thompson 2013; Davies
et al. 2015; Burgess, Small, and Thompson 2017).

Since summary IVs require half of the IV candidates to be
valid, which rarely happens in practice, the estimation might
be unreliable. Therefore, it is highly demanded to model
latent IVs and implement a data-driven approach to auto-
matically obtain valid IVs directly from the observed vari-
ables {X,T, Y }, without pre-defined hand-made IV candi-
dates. Fortunately, the advent of the big data era brought
new opportunities to reconstruct IVs from multiple sources
data (each source with an independent treatment assignment
mechanism). In the offer case (Fig. 1), the interviewers gen-
erate multiple causal relations between the covariates and
the treatment, and it can serve as a latent multi-valued IV.
Motivation: Thus, we propose to separate the observational
data into multiple groups to reconstruct the source label and
then explicitly model the group indicator as a Group Instru-
mental Variable (GIV) to implement IV-based Regression.

In this paper, we aim to recover latent IV and estimate
the individual treatment effect (ITE) from mixed observa-
tional datasets in the presence of unmeasured confounders.
Due to possibly omitted source labels and unmeasured con-
founders, traditional methods cannot estimate individual
treatment assignment probability and infer treatment effect
effectively (Wu et al. 2022b; Kuang et al. 2017, 2020a).
Therefore, we propose to reconstruct the source label and
model it as a Group Instrumental Variable (GIV) to imple-
ment IV-based Regression for treatment effect estimation.
In this paper, we conceptualize this line of thought and de-

velop a unified framework (Meta-EM1) to (1) map the raw
data into a representation space to construct Linear Mixed
Models for the assigned treatment variable; (2) estimate the
distribution differences and model the GIV for the differ-
ent treatment assignment mechanisms using Expectation-
Maximization algorithm (EM); and (3) adopt an alternating
training strategy to iteratively optimize the representations
and the joint distribution to model GIV for IV regression.
Empirical results demonstrate the advantages of the GIV
compared with SOTA methods.

The contribution of our paper is three-fold:

• We propose a Meta-EM algorithm to reconstruct the
source label as GIV directly from the observed variables,
i.e., no available IV candidates for learning, which is be-
yond the capability of existing Summary IV methods.
GIV (source label) is effective when there are identifi-
able differences in mechanisms across groups.

• Meta-EM algorithm uses a shared representation block to
learn a nonlinear representation space to EM algorithm,
which relaxes the underlying linear regression assump-
tion. Theoretically, Meta-EM can obtain an asymptotic
source label as GIV for ITE estimation.

• We empirically demonstrate that the Meta-EM algorithm
reconstructs the source label as GIV from the observed
variables for accurate treatment effect estimation and
gains SOTA performance compared with existing sum-
mary IV methods.

Related Work
Instrumental Variable Methods
The sufficient identification results for causal effect un-
der the additive noise assumption in instrumental variable
regression were developed by (Imbens and Angrist 1994;
Newey and Powell 2003). For semi-parametric and nonpara-
metric estimation, there are four main research lines about
IV methods, including: (1) The two-Stage Least Squares,
Poly2SLS and NN2SLS; (2) The Kernel-based Methods,
Kernel IV (Singh, Sahani, and Gretton 2019) and DualIV
(Muandet et al. 2020) map X to a reproducing kernel Hilbert
space (RKHS); (3) The Deep Methods, DeepIV (Hartford
et al. 2017), OneSIV (Lin et al. 2019) and DFIV (Xu et al.
2021) adopts deep neural nets and fit a mixture density net-
work; (4) The Adversarial GMM, AGMM (Dikkala et al.
2020) and DeepGMM (Bennett et al. 2019) construct a
structural function and select moment conditions via adver-
sarial training.

The above methods are reliable only if the pre-defined IVs
are valid and strongly correlated with the treatment. In prac-
tice, such valid IVs are hardly satisfied due to the untestable
exclusion assumption. In this paper, we reconstruct a GIV
and plug it into IV methods to predict the treatment effect.

Summary IV Synthesis
A growing number of works have been proposed to synthe-
size a Summary IV by combining existing IV candidates. In

1Meta means “learn nonlinear mappings to learn EM”.
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Mendelian Randomization (MR), IV candidates are merged
into a summary IV by unweighted/weighted allele scores
(UAS/WAS) (Burgess, Small, and Thompson 2017; Kuang
et al. 2020c), UAS takes the average of IV candidates while
WAS weights each IV candidate based on the associations
with the treatment. Besides, ModeIV (Hartford et al. 2021)
adopts the tightest cluster center of estimation points as IV
to approximate causal effects. Assuming that all IV candi-
dates are independent of the unmeasured confounders, Au-
toIV (Yuan et al. 2022) generates IV representation. Exist-
ing Summary IV Methods require a high-quality IV candi-
dates’ set with at least half valid IVs, which is unrealistic
in practice due to cost issues and lack of expert knowledge.
Under a more practical setting, we model latent IVs and im-
plement a data-driven approach to automatically reconstruct
valid Group IVs directly from the observed variables, with-
out hand-made IV candidates.

Problem Setup and Assumptions
In this paper, we aim to learn latent IV and estimate the
individual treatment effect (ITE) from mixed datasets in
the presence of unmeasured confounders. As shown in Fig.
1, a mixed dataset D = {D1, D2, · · · , DK} collected
from K sources Dk = {xi, ti, yi, ϵi | fθk}

nk
i=1, k =

1, 2, · · · ,K, each source with an independent treatment as-
signment mechanism2 fθk , the size of samples from source
k is nk and the total sample size is n =

∑K
k=1 nk. For unit i

from source zi = k, we observe confounders xi ∈ X where
X ⊂ RmX with dimension mX , a treatment variable ti ∈ T
from mechanism fθk where T ⊂ R, and a outcome variable
yi ∈ Y where Y ⊂ R. In data fusion, due to data privacy and
missing data, the source label zi and some key confounders
may be unrecorded in observational data. We incorporate the
unobserved confounders into the term ϵi.

Without interactions between unmeasured confounders
and treatment, we can represent the effect of infinitely many
unmeasured causes as an additive noise {ϵT , ϵY } regardless
of how they interact among themselves. The sufficient iden-
tification results for causal effect under the additive noise
assumption in instrumental variable regression were devel-
oped by (Angrist et al. 1996; Newey and Powell 2003).

Assumption 0.1 Additive Noise Assumption: Similar to
(Hartford et al. 2017; Singh, Sahani, and Gretton 2019; Xu
et al. 2021), we assume that the mixed data is generated by:

T = fθZ (X) + ϵT , Y = g(T,X) + ϵY , (1)

Definition 0.2 Individual Treatment Effect (ITE):
τ = g(t,X)− g(0, X), g(t,X) = E[Y | do(T = t), X].

Definition 0.3 An Instrument Variable Z is an exogenous
variable that only affects the outcome through its strong as-
sociation with the treatment. Besides, an valid instrument
variable satisfies the following three assumptions:
Relevance: interviewers Z assign treatments T to each unit,

2In causal inference, we assume the causal effect of treatment
on the outcome is invariant across sources. If the treatment effect
varies across sources, then we will not identify which treatment
effect mechanism the individual’s outcome came from in testing.

i.e., P(T | Z) ̸= P(T ).
Exclusion: interviewers Z does not directly affect the out-
come Y , i.e., Z ⊥ Y | T,X, ϵ.
Unconfounded: the offer-seekers will be randomly assigned
to different interviewers, so Z is independent of all con-
founders, including X and ϵ, i.e., Z ⊥ X, ϵ.

With the advent of the big data era, a variety of ob-
servation databases collected from different sources have
been established, which may contain the same treatment ef-
fect mechanism (from treatment to outcome) but different
treatment assignment mechanisms (from covariates to treat-
ment). Such heterogeneous assignment mechanism is com-
mon and widespread in real applications(Harris et al. 2022;
Long et al. 2022). Plausible settings include: the socio-
economic status influences treatment but not outcomes, and
admissions assessment rules affect students’ SAT scores but
do not determine their success in college. In addition, there
are many subtle factors that are easily overlooked in real-
world applications that may be latent assignment variables,
such as weather, holiday, mood, dresses, travel style, lunch,
etc. All of them may only affect the treatment choice without
directly changing the outcome, but they are often ignored.
In the presence of such assignment variables, we propose
to separate the observational data into multiple groups to re-
construct the assignment variables and then explicitly model
the group indicator as a Group Instrumental Variable (GIV)
to implement IV-based Regression.

Algorithm
In this section, we propose a Meta-EM algorithm to auto-
matically identify the latent source label Z, inducing the dif-
ferent treatment assignment mechanisms, as group indicator
to separate data into multiple groups. Specifically, the over-
all Meta-EM architecture (Fig. 2) of our model consists of
the following components: (1) Meta-EM uses a Shared Net-
work Layer to map the covariates X to non-linear represen-
tations R, and then uses latent variable Z (obtained from EM
algorithm) to regress the treatment variables and optimize
the representation; (2) Meta-EM estimates the distribution
differences across sources and models latent variable as a
GIV for the different treatment assignment mechanisms us-
ing Expectation-Maximization algorithm (EM); (3) Meta-
EM adopts an alternating training strategy to iteratively op-
timize the Representations and the joint distribution for
GIV Reconstruction. Theoretically, Meta-EM achieve an
asymptotic IV and accurately predict ITE by plugging GIV
into downstream IV-based methods.

Representation Learning Step
Let zi = k denotes the latent source label (k = 1, 2, · · · ,K)
for unit i, and source number K is a hyper-parameter. To
construct Linear Mixed Models for the assigned treatment
variable T , we use a representation function fR maps the
covariates X ∈ RmX into a representation R ∈ RmR . Con-
sider the following representation model (Fig. 2(a)):
ti = fθzi (xi) + ϵi = α′

zifR(xi) + ϵi = α′
ziri + ϵi, (2)

where fR is a shared representation block which can be
learned from polynomial functions, kernel functions or a
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Figure 2: Overview of Meta-EM Architecture.

neural network, ri is a (non-)linear representation of xi, and
αzi is the corresponding coefficients for Linear Mixed Mod-
els. Then we formulate a linear (non-)gaussian mixed model:

ti =
∑K

k=1 1zi=k (α
′
kri + ϵi), (3)

where 1zi=k denote the indicator function. Specifi-
cally, in polynomial from, we expect to obtain ti =∑K

k=1 1zi=k

{∑mR

j=1

[
αkj(ξkj,1x

1
ij + ξkj,2x

2
ij + · · · )

]
+ ϵi

}
,

where ξkj,d denotes the corresponding expectation coeffi-
cient of the d-th power of j-th variable xij .

We design two prediction networks fT and fX to regress
treatment T and covariates X , and adopt an alternating train-
ing strategy to optimize the representations iteratively (Fig.
2(b)), and the superscript (s) denotes the s-th iteration:

L =
∑n

i

(
fT (z

(s)
i , r

(s)
i )− ti

)2

+ λ
∑n

i

(
fX(r

(s)
i )− xi

)2

=
∑n

i

(
α′
z
(s)
i

r
(s)
i − ti

)2

+ λ
∑n

i

(
fX(r

(s)
i )− xi

)2

, (4)

In the term fT (z
(s)
i , r

(s)
i ), z(s)i is a latent function indicator

to activate the corresponding linear coefficients αzi for treat-
ment regression, and the representation ri is shared in all
sources. The second term is a regularization term to ensure
that the representation contains as much information as pos-
sible from the original data. Besides, λ is a trade-off parame-
ter to control the relative importance of treatment regression
and covariate regression. We let λ = 1/mX , representing
that we adopt mean square of L2 norm (λ(fX(ri)− xi)

2 =∑
j(fj − xij)

2/mX , and j = 1, · · · ,mX ) in covariates re-
gression and treat it as important as treatment regression. By
minimizing L, our model can map the raw data into a rep-
resentation space to construct Linear Mixed Models for the
assigned treatment variable.

Distribution Learning Step
Based on the traditional Expectation-Maximization (EM) al-
gorithm with group number K (Fig. 2(c)), we seek to find
the Maximum Likelihood Estimate (MLE) of the marginal
likelihood by iteratively applying the Expectation step and
Maximization step. Consider the following log-likelihood
function for Gaussian Mixture with θ = {π, µ,Σ}:

logPr(CTR | θ) = logPr(CTR | π, µ,Σ)
=

∑n
i=1

∑K
k=1 log (πkPr(ci | µk,Σk))

1zi=k , (5)

where CTR denotes the concatenation of T and R, ci =
{ti, ri}, and πk = Pr(zi = k), k = 1, 2, · · · ,K. µk and
Σk are the mean vector and covariance matrix of samples
{ci}i:zi=k for group k. Pr(ci | µk,Σk) is the density of ci
conditional on zi = k:

Pr(ci | µk,Σk) = (2π)−
mR
2 |Σj |−

1
2 e−

1
2 (ci−µk)

′Σ−1
k (ci−µk).

Initialization. Pr(R(s)) and Pr(ϵ) should be fixed
among all groups since the population does not change ac-
cording to treatment assignment (Fig. 1), i.e., Pr(R|Z =
i) = Pr(R|Z = j) for any groups Z = i and Z =
j. Therefore, we can use E[R] and Cov(R,R) to initial-
ize the distribution parameters θ[0] = {π[0], µ[0],Σ[0]} =

{{π[0]
k , µ

[0]
k ,Σ

[0]
k }k=1,2,··· ,K} with π

[0]
k = 1/K:

µ
[0]
k = {µ[0]

k (T ),E[R]},Σ[0]
k =

[
σ
[0]
k (T, T ) σ

[0]
k (T,R)T

σ
[0]
k (T,R) Cov(R,R)

]
, (6)

where {µ[0]
k (T ), σ

[0]
k (T, T ), σ

[0]
k (T,R)} are the random ini-

tialization of the mean of T , the covariance of T , and the
covariance matrix of T and R in the group Z = k, respec-
tively. The superscript [h] denotes h-th iteration

Expectation Step. In the expectation step of the v-th iter-
ation, given the observation data C(s)

TR and current parameter
estimation θ[h] = {π[h], µ[h],Σ[h]}, we calculate the log ex-
pectation of likelihood function Eq. (5):
Q(θ[h]) =

∑n
i=1

∑K
k=1 γ̂ik log (πkPr(ci | µk,Σk))

1zi=k , (7)
where γ̂ik is the conditional probability distribution that the
i-th unit comes from the k-th group given θ[h]:

γ̂ik = Pr(zi = k | θ[h]) = π
[h]
k Pr(ci|µ[h]

k ,Σ
[h]
k )∑K

j=1 π
[h]
j Pr(ci|µ[h]

j ,Σ
[h]
j )

. (8)

Maximization Step. In the maximization step of the h-
th iteration, given the observational data C

(s)
TR and the cur-

rent parameter estimation θ[h] = {π[h], µ[h],Σ[h]}, we
maximize the expectation of the log-likelihood function
Q({π[h], µ[h],Σ[h]}) (Eq. (7)) to obtain the parameter es-
timation θ[h+1] of next iteration:

θ[h+1] = argmaxθQ({π[h], µ[h],Σ[h]}). (9)
The solution is: for any k = 1, 2, · · · ,K,

µ
[h+1]
k =

∑n
i=1 γ̂ikci∑n
i=1 γ̂ik

, (10)

Σ
[h+1]
k =

∑n
i=1 γ̂ik

[
ci−µ

[h+1]
k

]2∑n
i=1 γ̂ik

, (11)

π
[h+1]
k =

∑n
i=1 γ̂ik

n . (12)
Then, the EM algorithm would obtain the convergent pa-

rameters θ∗ = {π∗, µ∗,Σ∗} by iteratively applying the Ex-
pectation and Maximization steps. We can sample/identify
the sub-group indicator Z(s+1) from the estimated distribu-
tion parameters {π∗, µ∗,Σ∗}:

γ
(s+1)
ik = Pr(zi = k) =

π∗
kPr(c

(s)
i |µ∗

k,Σ
∗
k)∑K

j=1 π∗
jPr(c

(s)
i |µ∗

j ,Σ
∗
j )
,

z
(s+1)
i ∼ Disc(γ(s+1)

i1 , γ
(s+1)
i2 , · · · , γ(s+1)

iK ),

where Disc(·) denotes discrete distribution with {γik}Kk=1.
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Optimization and MMD
Specifically, our Meta-EM is composed of two phases: in
representation learning phase, we fix GIV z to optimize rep-
resentation network and corresponding coefficients (fR and
α) by minimizing objective in Eq. (4); in distribution learn-
ing phase, we use representation R to re-devide group and
update GIV z using EM algorithm. As shown in Fig 2, the
Meta-EM algorithm would learn an optimal representation
R∗ to learn γ

(∗)
ik and z

(∗)
i by iteratively applying the repre-

sentation learning step and distribution learning step:

γ
(∗)
ik = Pr(zi = k) =

π∗
kPr(c

(∗)
i |µ∗

k,Σ
∗
k)∑K

j=1 π∗
jPr(c

(∗)
i |µ∗

j ,Σ
∗
j )
,

z
(∗)
i ∼ Disc(γ(∗)

i1 , γ
(∗)
i2 , · · · , γ(∗)

iK ).

Suppose each coordinate in the coefficient vector αk in Eq.
(3) is nonzero for all K = k. As (mR, n) → ∞, γ̂ik con-
verges to 1zi=k with the rate o(exp(−(mR +M))) for each
k, where mR is the dimension of the representations. For
theorems and proofs, see the Supplementary material.

As shown in Fig. 1, Pr(X) should be fixed among
all groups since the population does not change accord-
ing to treatment assignment, which means the instrumen-
tal variable should be independent of all confounders (Un-
confounded Assumption of IV), i.e., Pr(X|Z = i) =
Pr(X|Z = j) for any groups Z = i and Z = j. To imple-
ment an end-to-end algorithm, we use Maximum Mean Dis-
crepancy (MMD) to measure the correlation between dis-
crete variable Z and observed confounder X: MMD =
∥E[R|Z = i] − E[X|Z = j]∥22. Furthermore, we can au-
tomatically select the most appropriate group number K∗

by the minimum correlation:

MMDK = 2
n(n−1)

∑K
i=1

∑K
j=i+1 ||X̄Z=i − X̄Z=j ||22,

K∗ = argminKMMDK ,K = {2, 3, ...}.

where X̄Z=i denotes the mean of the covariates X in the i-th
sub-group according to the EM algorithm.

Experiments
Baselines
IV Generation In this paper, we adopt Meta-EM with
MMD to find the most appropriate group number K and take
the cluster results as GIVEM . We compare our algorithm
Meta-EM with the Summary IV methods: (1) NoneIV uses
a full-zeros vector as IV; (2) UAS (Davies et al. 2015) takes
the average of IV candidates as IV; (3) WAS (Burgess, Dud-
bridge, and Thompson 2016) weights each candidate based
on the associations as IV; (4) ModeIV (Hartford et al. 2021)
takes the tightest center of estimation points as IV; (5) Au-
toIV(Yuan et al. 2022) learns a disentangled representation
as IV. Besides, we adopt Meta-KM3 to generate GIVKM

and use the superscript ∗ to represent the priori of the num-
ber of groups, i.e., GIVKM∗. TrueIV denotes the known
ground-truth source label.

3Meta-KM is the K-means replacement of Meta-EM.

IV Regression To evaluate the performance of Meta-EM
for IV generation, we plug synthetic IVs, obtained from
Meta-EM and other IV generation baselines, into IV regres-
sion methods (as listed in Related Work) for ITE estimation.

Experiments on Synthetic Datasets
Similar to DeepIV (Hartford et al. 2017), DFIV (Xu et al.
2021), DeepGMM (Bennett et al. 2019) and AutoIV (Yuan
et al. 2022), due to lack of the prior of latent outcome
function and instrumental variable in existing real-world
datasets, we evaluate and compare our algorithm Meta-EM
with the above baselines on the synthetic and semi-synthetic
data. To simulate real-world data as much as possible, we ad-
just the difficulty of the simulation and expand experiments
to various non-linear scenarios (Fig. 3), increase the number
of sub-groups and the dimension of covariates (Table 4 in
Supplementary material).

Datasets We generate the synthetic datasets as follows:
• The confounders {X, ϵ}:

X, ϵ ∼ N (0,ΣmX+1),ΣmX+1 =

[
ImX

σ
σ 1

]
, (13)

where mX is the dimensions of observed confounders X ,
ImX

denotes mX order identity matrix, and σ denotes the
covariance between confounders X and unmeasured con-
founder ϵ. In this paper, we let σ = 0.1.
• The treatments T collected from multiple sources Z:

T =
∑K

z=1 1[Z=z] [
∑mX

i=1 wzi[Xi + fX(Xi)] + fz(ϵ)] + δT , (14)
Z ∼ Pr(Z = z) = 1/K,wzi ∼ Unif(−1, 1), z = 1, · · · ,K, (15)
where Xi, i = {1, · · · ,mX} denotes the i-th variable in X ,
δT ∼ N (0, 0.1), Unif means we draw wzi from the param-
eterized uniform distribution, and fz(ϵ) = 0.2ϵ. The mixed
data derives from K different sources, meaning that there
are K independent potential treatment assignment models.
Z is the indicator of the potential treatment assignment
model, which can be regarded as an instrumental variable.
To simulate real-world data as much as possible, we de-
sign 5 different treatment functions fX(·) to discuss the
performance of Meta-EM algorithm: (1) linear scenario,
fX(Xi) = Xi; (2) poly scenario, fX(Xi) = X2

i ; (3) sin sce-
nario, fX(Xi) = sin(Xi); (4) sigmoid scenario, fX(Xi) =
1/(1 + exp(−Xi)); (5) abs scenario, fX(Xi) = abs(Xi).
• The latent outcome function Y :

Y = − 1.5T + 0.9T 2 +
∑m

i=1
Xi

m + |X1X2|
− sin(10 +X2X3) + 2ϵ+ δY . (16)

where ϵ is an unmeasured confounder and δY ∼ N (0, 0.1).
For synthetic datasets, we sample 3,000 units and perform

10 independent replications to report mean squared error
(MSE) and standard deviations of the individual treatment
effect estimation over the testing data (3000 units) that we
intervene the treatment as T = do(t). To verify the effective-
ness of GIVEM in different scenarios with different dimen-
sions of covariates mX and different group numbers K, we
use Data-K-mX to denote the different scenarios. In this
paper, we set the representation dimension as mR = mX .
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Poly2SLS NN2SLS KernelIV DualIV(1) DeepIV OneSIV DFIV(1) DeepGMM AGMM
NoneIV 0.33(0.04) 1.90(1.25) 0.35(0.07) 1.92(0.48) 0.37(0.01) 0.31(0.03) 1.33(0.14) 0.33(0.07) 0.21(0.05)

UAS 0.33(0.04) 2.30(1.46) 0.35(0.07) 0.98(0.34) 0.37(0.02) 0.31(0.03) 1.30(0.10) 0.32(0.04) 0.21(0.05)
WAS 0.31(0.04) 1.59(0.92) 0.36(0.05) 2.16(0.46) 0.37(0.02) 0.34(0.03) 1.29(0.12) 0.32(0.06) 0.23(0.04)

ModeIV 0.33(0.04) 2.25(1.30) 0.35(0.08) 1.90(0.56) 0.37(0.02) 0.31(0.02) 1.29(0.12) 0.31(0.07) 0.20(0.04)
AutoIV > 100(2) 2.10(1.01) 0.35(0.07) 0.79(0.32) 0.37(0.02) 0.31(0.03) 1.29(0.11) 0.31(0.09) 0.21(0.05)
GIVKM 0.27(0.13) 0.65(0.36) 0.22(0.04) 1.47(0.26) 0.28(0.01) 0.23(0.02) 1.25(0.11) 0.14(0.01) 0.12(0.02)

GIVKM* 0.19(0.09) 0.37(0.22) 0.21(0.03) 1.60(0.36) 0.26(0.04) 0.22(0.03) 1.24(0.10) 0.14(0.04) 0.10(0.01)
GIVEM 0.05(0.00) 0.12(0.01) 0.11(0.02) 1.99(0.41) 0.08(0.00) 0.12(0.01) 0.79(0.08) 0.08(0.01) 0.06(0.00)
TrueIV 0.05(0.00) 0.08(0.01) 0.11(0.02) 1.93(0.39) 0.08(0.00) 0.11(0.01) 0.79(0.06) 0.06(0.01) 0.06(0.01)

- (1) DualIV and DFIV don’t perform well on GIV, because they require continuous IVs rather than discrete IVs. (2) ”> 100” means ”MSE > 100”.

Table 1: The Mean Squared Error mean(std) on Linear Experiments (Linear-3-3)
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Figure 3: Treatment Effect Estimation (sorted by Ground-Truth g(T,X)) in Non-linear Scenario Data-3-3.

Linear Poly Sin Sigmoid Abs
EM 86.1% 82.9% 87.2% 89.4% 85.2%

Meta-EM 86.1% 92.7% 90.3% 94.7% 92.3%
Fun-EM 86.1% 98.1% 96.3% 98.4% 96.5%

Table 2: Ablation Experiments for Meta-EM in Data-2-5

The Results of Individual Treatment Effect Estimation
As shown in Table 1 (The top-2 is highlighted in bold for
all tables), following observations are identified from the re-
sults: (1) Without valid IV candidates, Summary IVs are
not reliable and fail to synthesize a valid IV, and plugging
them into the IV methods can hardly improve the estimation
performance, which is close to the NoneIV; (2) DualIV and
DFIV do not perform well on GIV and fail to estimate treat-
ment effect, even with TrueIV, because they require contin-
uous IVs rather than discrete IVs. (3) Through clustering,
we reconstruct the latent exogenous IV that generates differ-
ent treatment mechanisms, GIVs (with Meta-KM or Meta-
EM) bring higher accuracy on individual treatment effect es-
timation by comparing with Summary IV methods in vari-
ous IV-based methods except for DualIV; (4) By estimating
the latent differentiated covariate-treatment distribution pa-
rameters across groups and reconstructing the source label,
GIVEM significantly improves the performance of cluster-
ing methods compared with GIVKM and achieves SOTA
performance for individual treatment effect estimation, even
comparable with TrueIV. Empirically, this demonstrates that
our Meta-EM successfully reconstructs the GIV, and it con-
verges to the TrueIV, i.e., source label.

Then, to verify the effectiveness of GIV in non-linear
cases, we design 4 different non-linear treatment functions
fX(·) to evaluate the treatment effect estimation perfor-

mance of Meta-EM algorithm. We select the SOTA IV-based
method (AGMM) to evaluate GIV. We plot the estimated
value of effect function with T=do(t) and sort it by Ground-
Truth (GT) for different synthetic scenarios. The results
(Fig. 3) show GIVs (with Meta-KM or Meta-EM) achieve
SOTA performance, especially GIVEM achieves compara-
ble results with TrueIV and estimated outcome curves from
GIVEM approximate the true curve. For the detailed results
of non-linear cases, see the Supplementary material.

The Ablation Study for Reconstruction Accuracy of GIV
To demonstrate that Meta-EM can automatically find the
proper group number and implement end-to-end train for
IV generation, we plot MMD line for each group number
in different synthetic settings (Linear-K-mX ). As shown in
Fig. 4, Meta-EM always find the proper group number (red-
line) automatically, but Meta-KM fails to do it. Besides, as
an ablation experiment, we compare the accuracy of Meta-
KM and Meta-EM for GIV reconstruction on data fusion
with different group numbers. As shown in Fig. 5, Meta-
EM algorithm successfully reconstructs the GIV, and the av-
erage reconstruction accuracy has reached 77% under vari-
ous group numbers, especially exceeding 90% accuracy on
Two Groups setting. In contrast, the identification accuracy
of Meta-KM is basically below 60%.

Meta-EM algorithm uses a shared representation block
to learn a nonlinear representation space to EM algorithm,
which relaxes the underlying linear regression assumption.
To verify it, in the ablation experiments (Table 2), we com-
pare the accuracy of EM, Meta-EM and Fun-EM, where
Fun-EM implements EM algorithm with known non-linear
functions fX(X) (Eq. (14)). The results show that Meta-EM
improves the reconstruction accuracy by 6.3% than EM al-
gorithm, bus still below the GT Fun-EM.
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Figure 4: MMD for Selection of Group Number with Different Synthetic Setting (Data-K-mX ).

IHDP Dataset PM-CMR Dataset

Poly2SLS KernelIV DeepIV AGMM Poly2SLS KernelIV DeepIV AGMM
NoneIV 0.24(0.13) 0.46(0.24) 0.58(0.24) 0.14(0.06) 0.18(0.04) 0.35(0.20) 0.41(0.16) 0.13(0.06)

UAS 0.24(0.133) 0.46(0.24) 0.57(0.24) 0.14(0.06) 0.18(0.04) 0.35(0.20) 0.40(0.16) 0.13(0.06)
WAS 0.24(0.13) 0.45(0.24) 0.57(0.23) 0.14(0.06) 0.18(0.04) 0.37(0.21) 0.42(0.16) 0.16(0.08)

ModeIV 0.24(0.13) 0.46(0.25) 0.57(0.24) 0.15(0.06) 0.18(0.04) 0.36(0.20) 0.41(0.15) 0.13(0.07)
AutoIV > 100 0.46(0.24) 0.58(0.25) 0.14(0.07) 0.18(0.04) 0.35(0.20) 0.41(0.18) 0.13(0.06)
GIVKM 0.05(0.03) 0.35(0.18) 0.50(0.20) 0.11(0.05) 0.09(0.04) 0.33(0.20) 0.38(0.16) 0.12(0.05)
GIVEM 0.03(0.01) 0.20(0.17) 0.48(0.23) 0.09(0.03) 0.05(0.01) 0.31(0.21) 0.34(0.18) 0.08(0.04)
TrueIV 0.03(0.01) 0.15(0.06) 0.46(0.17) 0.09(0.03) 0.03(0.01) 0.14(0.07) 0.14(0.05) 0.05(0.02)

Table 3: The Mean Squared Error mean(std) on IHDP & PM-CMR Dataset

GIVKM (Acc: 60.50%)

GIVEM (Acc: 93.17%)

TrueIV(Acc: 100%)

GIVKM (Acc: 43.00%)

GIVEM (Acc: 86.60%)

TrueIV(Acc: 100%)

GIVKM (Acc: 29.13%)

GIVEM (Acc: 77.57%)

TrueIV(Acc: 100%)

(a) Two Groups (b) Three Groups (c) Five Groups

Figure 5: GIV Reconstruction Accuracy of Meta-EM.

Experiments on Real-World Datasets
Real-World Datasets Similar to previous methods(Nie
et al. 2020; Hartford et al. 2017; Bica, Jordon, and van der
Schaar 2020; Schwab et al. 2020), we perform experiments
on two real-world datasets IHDP4 (Shalit, Johansson, and
Sontag 2017) & PM-CMR5 (Wyatt et al. 2020), as the true
effect function is rarely available for real-world data. Then
we use the continuous variables from IHDP & PM-CMR to
replace the covariates X in Eq. (14)&(16) to generate treat-
ment T and outcome Y , respectively. Both two datasets are
randomly split into training (63%), validation (27%), and
testing (10%). We perform 10 replications to report the mean
squared error (MSE) and its standard deviations (std) of the

4IHDP: https://www.fredjo.com/
5PM-CMR:https://pasteur.epa.gov/uploads/10.23719/1506014/

SES PM25 CMR data.zip

treatment effect function estimation. We select four SOTA
IV-based methods to evaluate the performance of GIV.

The Results of Individual Treatment Effect Estimation
By estimating the latent differentiated covariate-treatment
distribution parameters across groups, Meta-EM recon-
structs the latent IV and the reconstruction accuracy reaches
93.47% and 82.62% on IHDP and PM-CMR, however, K-
Means is only 64.29% and 46.09%. This demonstrates Meta-
EM can automatically find the optimal IV, but K-Means
cannot. In Table 3, comparing the two optimal combina-
tions (AutoIV in Poly2SLS & UAS in AGMM) in effect
estimation in Table 3, Meta-EM further reduced the errors
by 0.131(↓73%) and 0.043(↓33%), which well eliminated
the unmeasured confounding bias. Besides, GIVEM shows
consistent and robust performance, always maintaining the
performance of top-2 and almost achieving the same effect
as TrueIV on IHDP & PM-CMR Datasets. Compared with
GIVEM , the performance of GIVKM exceeds most base-
lines in downstream tasks, but it is still inferior to GIVEM

and TrueIV. This means that GIVEM can reconstruct the la-
tent group IV with the data distribution in the real scene and
obtain asymptotically unbiased causal effect estimation.

Conclusion
In this paper, by estimating the differentiated covariate-
treatment distribution across groups, we propose a novel
Meta-EM, a tool for reconstructing latent Group IVs and
predicting treatment effect function from data fusion. To the
best of our knowledge, using representation learning to re-
construct Group Instrumental Variables by Meta-EM algo-
rithm in data fusion is the first work for IV generation with-
out expert knowledge. Theoretically and empirically, we ad-
dress a vital problem in causal inference: how to learn valid
IVs from observational data for ITE.
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