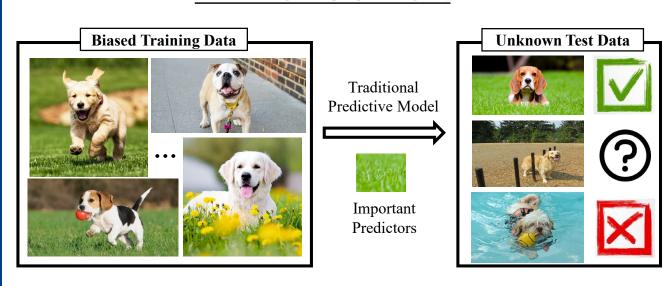
Stable Prediction with Model Misspecification and Agnostic Distribution Shift

Kun Kuang^{1,2}(kunkuang@zju.edu.cn), Ruoxuan Xiong³, Peng Cui², Susan Athey³, Bo Li² ¹Zhejiang University, ²Tsinghua University, ³Stanford University

INTRODUCTION

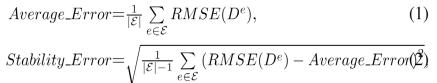


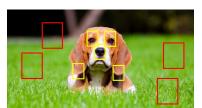
Unstable prediction of traditional predictive model, WHY?

- **■** Model misspecification and correlation based
 - Spurious correlation (Unexplainable)
- **□** Agnostic distribution shift
 - Variant of spurious correlation (Unstable)

PROBLEM

Problem 1 (Stable Prediction) Given one training environment $e \in \mathcal{E}$ with dataset $D^e = (\mathbf{X}^e, Y^e)$, the task is to learn a predictive model to predict across unknown environment E with not only small Average_Error but also small Stability Error.





Human like thinking: What cause the object to be a dog? Suppose $X = \{S, V\}$, and the label $Y = f(S) + \varepsilon$

We define S as stable features and V as unstable features

Assumption 1: P(Y|S) is invariant across environments

Assumption 2: All stable features *S* are observed

Model misspecification: ignoring non-linear term g(S)

$$Y^e = f(\mathbf{S}^e) + \mathbf{V}^e \beta_V + \epsilon^e = \mathbf{S}^e \beta_S + g(\mathbf{S}^e) + \mathbf{V}^e \beta_V + \epsilon^e.$$

where $\beta_V = 0$ and $\epsilon^e \perp \mathbf{X}^e.$

$$\hat{\beta}_{V_{OLS}} = \beta_V + (\frac{1}{n} \sum_{i=1}^n \mathbf{V}_i^T \mathbf{V}_i)^{-1} (\frac{1}{n} \sum_{i=1}^n \mathbf{V}_i^T g(\mathbf{S}_i))$$

$$+ (\frac{1}{n} \sum_{i=1}^n \mathbf{V}_i^T \mathbf{V}_i)^{-1} (\frac{1}{n} \sum_{i=1}^n \mathbf{V}_i^T \mathbf{S}_i) (\beta_S - \hat{\beta}_{SOLS}), (4)$$

$$\hat{\beta}_{OLS} = (\frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^T \mathbf{S}_i)^{-1} (\frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^T \mathbf{S}_i) (\beta_S - \hat{\beta}_{SOLS}), (4)$$

$$\hat{\beta}_{SOLS} = \beta_S + (\frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^T \mathbf{S}_i)^{-1} (\frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^T g(\mathbf{S}_i))$$

$$+ (\frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^T \mathbf{S}_i)^{-1} (\frac{1}{n} \sum_{i=1}^n \mathbf{S}_i^T \mathbf{V}_i) (\beta_V - \hat{\beta}_{VOLS}), (5)$$

 $\hat{\beta}_{V_{oLS}}$ is biased if $\mathbb{E}(\mathbf{V}^T g(\mathbf{S})) \neq 0$ or $\mathbb{E}(\mathbf{V}^T \mathbf{S}) \neq 0$ in Eq. (4), leading to the biased estimation on $\hat{\beta}_{S_{oLS}}$ in Eq. (5)

Spurious Correlation between S and V might vary across environments, resulting in unstable prediction across unknown environments.

Solution: precisely estimate the $\hat{\beta}_{V_{OLS}}$ by removing spurious correlation

Let
$$\mathbb{E}(\mathbf{V}^T g(\mathbf{S})) = 0$$
 and $\mathbb{E}(\mathbf{V}^T \mathbf{S}) = 0$

METHOD

Proposition 1 If **X** are mutually independent with mean 0, then $\mathbb{E}(\mathbf{V}^T g(\mathbf{S})) = 0$ and $\mathbb{E}(\mathbf{V}^T \mathbf{S}) = 0$.

Making variable independent by sample reweighting:

$$\min_{W} \sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \| \mathbb{E}[\mathbf{X}_{,j}^{a^{T}} \mathbf{\Sigma}_{W} \mathbf{X}_{,k}^{b}] - \mathbb{E}[\mathbf{X}_{,j}^{a^{T}} W] \mathbb{E}[\mathbf{X}_{,k}^{b^{T}} W] \|_{2}^{2}, \quad (6)$$

Variables decorrelation regularizer

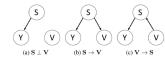
$$\min_{W} \sum_{j=1}^{p} \left\| \mathbb{E}[\mathbf{X}_{,j}^{T} \mathbf{\Sigma}_{W} \mathbf{X}_{,-j}] - \mathbb{E}[\mathbf{X}_{,j}^{T} W] \mathbb{E}[\mathbf{X}_{,-j}^{T} W] \right\|_{2}^{2}$$
 (7)

 $\min_{W,\beta} \sum_{i=1}^{n} W_i \cdot (Y_i - \mathbf{X}_{i,\beta})^2$ Decorrelated s.t $\sum_{j=1}^{p} \left\| \mathbf{X}_{,j}^{T} \mathbf{\Sigma}_{W} \mathbf{X}_{,-j} / n - \mathbf{X}_{,j}^{T} W / n \cdot \mathbf{X}_{,-j}^{T} W / n \right\|_{2}^{2} < \lambda_{2}$ Weighted Regression $|\beta|_1 < \lambda_1, \ \frac{1}{n} \sum_{i=1}^n W_i^2 < \lambda_3,$ (DWR) $\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}-1\right)^{2}<\lambda_{4},\ W\succeq0,$

EXPERIMENTS

Experiments on Synthetic Data

Generating S and V:



Generating Y:

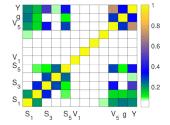
$$Y_{poly} = f(\mathbf{S}) + \varepsilon = [\mathbf{S}, \mathbf{V}] \cdot [\beta_s, \beta_v]^T + \mathbf{S}_{.,1} \mathbf{S}_{.,2} \mathbf{S}_{.,3} + \text{d,17})$$

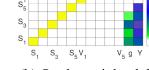
$$Y_{exp} = f(\mathbf{S}) + \varepsilon = [\mathbf{S}, \mathbf{V}] \cdot [\beta_s, \beta_v]^T + e^{\mathbf{S}_{.,1} \mathbf{S}_{.,2} \mathbf{S}_{.,3}} + \varepsilon (18)$$

Generating Distributional Shift:

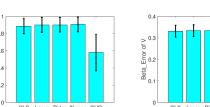
Varying P(Y|V) with bias rate r:

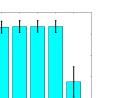
• r > 1: positive correlation between V and Y r < 1: negative correlation between V and Y

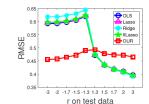


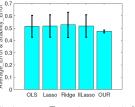


(a) On raw data (b) On the weighted data





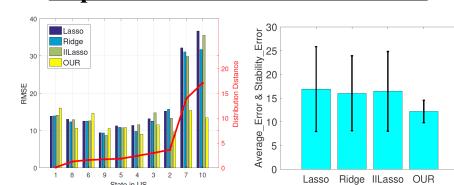




(a) β Error of S: Mean (green (b) β Error of V: Mean (green (c) RMSE over all test environ- (d) Average Error (green bar) & bar) and Variance (black line) bar) and Variance (black line) Stability Error (black line)

Scenario 1: varying sample size n															
n, p, r		n = 100		0, r = 1.7		n = 2000, p = 10, r = 1.7					n = 4000, p = 10, r = 1.7				
	OLS	Lasso	Ridge	IILasso	Our	OLS	Lasso	Ridge	IILasso	Our	OLS	Lasso	Ridge	IILasso	Our
β_S _Error	0.892	0.907	0.907	0.912	0.578	0.887	0.903	0.903	0.908	0.581	0.906	0.921	0.921	0.926	0.614
β_V _Error	0.331	0.333	0.334	0.334	0.109	0.332	0.334	0.335	0.335	0.077	0.338	0.340	0.341	0.341	0.078
Average_Error	0.509	0.511	0.511	0.511	0.476	0.514	0.516	0.527	0.516	0.473	0.526	0.528	0.531	0.528	0.480
Stability_Error	0.084	0.086	0.086	0.086	0.012	0.090	0.092	0.103	0.092	0.012	0.104	0.105	0.108	0.106	0.015
					Scenario	2: vary	ing varia	ables' di	mension p						
n, p, r	n = 2000, p = 10, r = 1.5					n = 2000, p = 20, r = 1.5					n = 2000, p = 40, r = 1.5				
	OLS	Lasso	Ridge	IILasso	Our	OLS	Lasso	Ridge	IILasso	Our	OLS	Lasso	Ridge	IILasso	Our
β_S _Error	0.618	0.628	0.630	0.632	0.409	2.608	2.677	2.670	2.713	1.761	8.491	8.846	8.669	8.998	7.800
β_V _Error	0.243	0.245	0.246	0.245	0.052	0.426	0.433	0.433	0.437	0.260	0.661	0.684	0.673	0.694	0.606
Average_Error	0.486	0.487	0.487	0.487	0.476	0.523	0.527	0.539	0.529	0.480	0.532	0.540	0.537	0.543	0.490
Stability_Error	0.058	0.059	0.060	0.059	0.010	0.116	0.121	0.134	0.123	0.014	0.138	0.148	0.145	0.153	0.073
Scenario 3: varying bias rate r on training data															
n, p, r	n = 2000, p = 10, r = 1.5					n = 2000, p = 10, r = 1.7					n = 2000, p = 10, r = 2.0				
	OLS	Lasso	Ridge	IILasso	Our	OLS	Lasso	Ridge	IILasso	Our	OLS	Lasso	Ridge	IILasso	Our
β_S _Error	0.618	0.628	0.630	0.632	0.409	0.887	0.903	0.903	0.908	0.581	1.232	1.249	1.245	1.257	0.651
β_V _Error	0.243	0.245	0.246	0.245	0.052	0.332	0.334	0.335	0.335	0.077	0.441	0.444	0.443	0.445	0.119
Average_Error	0.486	0.487	0.487	0.487	0.476	0.514	0.516	0.527	0.516	0.473	0.568	0.571	0.571	0.571	0.476
Stability_Error	0.058	0.059	0.060	0.059	0.010	0.090	0.092	0.103	0.092	0.012	0.144	0.147	0.147	0.147	0.008

Experiments on Real World Data



(a) RMSE v.s. Distribution Dis-(b) Average_Error (green bar) & Stability_Error (black line)

Air quality prediction across different States in U.S.