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Abstract

One fundamental problem in causal inference is the treatment
effect estimation in observational studies when variables are
confounded. Control for confounding effect is generally han-
dled by propensity score. But it treats all observed variables
as confounders and ignores the adjustment variables, which
have no influence on treatment but are predictive of the out-
come. Recently, it has been demonstrated that the adjustment
variables are effective in reducing the variance of the estimat-
ed treatment effect. However, how to automatically separate
the confounders and adjustment variables in observational s-
tudies is still an open problem, especially in the scenarios of
high dimensional variables, which are common in big data er-
a. In this paper, we propose a Data-Driven Variable Decom-
position (D2VD) algorithm, which can 1) automatically sepa-
rate confounders and adjustment variables with a data driven
approach, and 2) simultaneously estimate treatment effect in
observational studies with high dimensional variables. Under
standard assumptions, we show experimentally that the pro-
posed D2VD algorithm can automatically separate the vari-
ables precisely, and estimate treatment effect more accurately
and with tighter confidence intervals than the state-of-the-art
methods on both synthetic data and real online advertising
dataset.

Introduction
Causal inference, which refers to the process of drawing
a conclusion about a causal connection based on the con-
ditions of the occurrence of an effect (Holland 1986), is
a powerful statistical modeling tool for explanatory analy-
sis. The gold standard approaches for causal inference are
randomized experiments, for example, A/B testing (Lewis
and Reiley 2009), where different treatments are randomly
assigned to units 1. However, the fully randomized experi-
ments are usually extremely expensive (Kohavi and Long-
botham 2011) or sometimes even infeasible (Bottou et al.
2013) in many scenarios. Hence it is highly demanding to
develop automatic statistical approaches to infer treatment
effect in observational studies.

In literature, (Rosenbaum and Rubin 1983) proposed a
statistical framework for treatment effect estimation based
on propensity score adjustment. Such framework has been
widely used in observational causal study, including match-
ing, stratification, inverse weighting and regression on
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1Units represent the objects of treatment. For example, in online
advertising campaign, the units refer to the users in the campaign.
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Figure 1: Our causal diagram. We separate all observed vari-
ables U into three different sets: (1) Confounders X, which
are associated with the treatment T and may be causally re-
lated to the outcome Y , (2) Adjustment Variables Z, which
are causally related to outcome Y , but independent with
treatment T , and (3) Irrelevant Variables I (Omitted), which
are independent with both treatment and outcome.

propensity score (Austin 2011; Chan et al. 2010; Lunce-
ford and Davidian 2004). The inverse propensity weight-
ing is a most commonly used method and has been part
of a large family of causal models known as marginal
structural model (Hernán, Brumback, and Robins 2000;
2002). With combination of inverse propensity weighting
and regression, (Bang and Robins 2005) proposed a doubly
robust estimator. These methods have been widely used in
various fields, including economics (Stuart 2010), epidemi-
ology (Funk et al. 2011), health care (Reis et al. 2015), social
science (Lechner 1999), political science (Dudı́k, Langford,
and Li 2011) and advertising (Sun et al. 2015).

The essence of these methods is to eliminate the con-
founding impact of confounders so that the precision of
treatment effect estimation can be significantly improved.
However, most of these works treat all observed variables
as confounders when estimating propensity score. Eventual-
ly, in the scenarios of high dimensional variables, some of
them are not confounders but are predictive of the outcome,
which are denoted by adjustment variables Z as shown in
our causal diagram in Fig. 1. Ignoring the adjustment vari-
ables will make the estimated treatment effect imprecise and
with inflated variance.

Recently, some researchers have investigated the impor-
tance of the adjustment variables. (Brookhart et al. 2006;
VanderWeele and Shpitser 2011) have advocated that the ad-



justment variables should be included in the causal inference
model. And (Sauer et al. 2013) suggested that conditioning
on such adjustment variables is unnecessary to remove bias
but can reduce variance in treatment effect estimation. In
randomized experiments setting, (Bloniarz et al. 2016) have
proved that adjusting for the adjustment variables by lasso
can reduce the variance of estimated treatment effect.

All these methods in observational studies assume that
the causal structure, i.e. whether a variable is the cause of
the treatment or outcome, is known a priori. However, the
causal structure cannot be well defined by prior knowledge
in most cases, especially in the scenarios of high dimension-
al variables in the big data era. How to automatically sepa-
rate confounders and adjustment variables in observational
studies is still an open problem.

To address this problem, we propose a Data-Driven Vari-
able Decomposition (D2VD) algorithm to jointly optimize
confounders separation and Average Treatment Effect (ATE)
estimation. More specifically, we propose a regularized in-
tegrated regression model, where a combined orthogonality
and sparsity regularizer is constructed to simultaneously 1)
separate the confounders and adjustment variables with a da-
ta driven approach, 2) eliminate irrelevant variables which
are neither confounders nor adjustment variables to avoid
overfitting, and 3) estimate the ATE in observational studies.
During estimating the ATE, the separated confounders can
effectively eliminate their confounding impact on treatment,
while the adjustment variables can significantly reduce the
variances of estimated ATE through outcome adjustment.
This enables us to estimate the true ATE more accurately
and with tighter confidence intervals than baseline methods.

The main contributions in this paper are as follows:
• We study a new problem of automatically separating con-

founders and adjustment variables, which is critical for
the precision and confidence intervals of ATE estimation
in observational studies.

• We propose a novel data-driven variables decomposition
algorithm, where a regularized integrated regression mod-
el is presented to enable confounder separation and ATE
estimation simultaneously.

• The advantages of D2VD algorithm are demonstrated in
both synthetic and real world data. It can also be straight-
forwardly applied into other causal inference studies, such
as social marketing, health care and public policy.

Adjusted ATE Estimator
In this section, we first give the notations and assumptions
for the ATE estimation in observational studies, then pro-
pose a new adjusted ATE estimator by utilizing the adjust-
ment variables for reducing the variance of estimated ATE.

Notations and Assumptions
As described in our causal diagram in Fig.1, we define a
treatment as a random variable T and a potential outcome as
Y (t) which corresponds to a specific treatment T = t. In this
paper, we only consider binary treatment, that is t ∈ {0, 1}.
We define the units which received the treatment, that is T =
1, as treated units and the others with T = 0 as control units.
Then for each unit indexed by i = 1, 2, · · · ,m, we observe
a treatment Ti, an outcome Y obsi and a vector of variables Ui
with dimension n. Our observed outcome Y obsi of unit i can
be denoted by:

Y obsi = Yi(Ti) = Ti · Yi(1) + (1− Ti) · Yi(0), (1)

For any column vector v = (v1, v2, · · · , vm)T , let ‖v‖22 =∑m
i=1 v

2
i , and ‖v‖1 =

∑m
i=1 |vi|.

In observational studies, there are three standard assump-
tions (Rosenbaum and Rubin 1983) for ATE estimation.

Assumption 1: Stable Unit Treatment Value. The dis-
tribution of potential outcome for one unit is assumed to be
unaffected by the particular treatment assignment of another
unit, when given the observed variables.

Assumption 2: Unconfoundedness. The distribution of
treatment is independent of potential outcome when given
the observed variables. Formally, T⊥

(
Y (0), Y (1)

)
|U.

Assumption 3: Overlap. Every unit has a nonzero prob-
ability to receive either treatment status when given the ob-
served variables. Formally, 0 < p(T = 1|U) < 1.

Adjusted ATE Estimator
The important goal of causal inference in observational s-
tudies is to evaluate the ATE on outcome Y . The ATE rep-
resents the mean (average) difference between the potential
outcome of units under treated and control status. Formally,
the ATE is defined as:

ATE = E
[
Y (1)− Y (0)

]
, (2)

where Y (1) and Y (0) represent the potential outcome of u-
nit with treatment status as treated T = 1 and control T = 0,
respectively. E(·) refers to the expectation function.

The Eq. (2) is infeasible, because for each unit, we can on-
ly observe one potential outcome corresponding to its treat-
ment status, treated or control. This is called “the counter-
factual problem” (Chan et al. 2010).

One can address this counterfactual problem by approxi-
mating the unobserved potential outcome. The simplest ap-
proach is to directly compare the average outcome between
the treated and control units. However, in observational s-
tudies, comparing two samples directly is likely to have bias
if the treatment assignment is not random, as confounding
impact is not taken into account (Chan et al. 2010).

To unbiasedly evaluate the ATE in observational studies,
one have to control the impact of confounders. Under the as-
sumptions (1,2,3), (Rosenbaum and Rubin 1983) introduced
the propensity score to summarize the information required
to control the confounders. The propensity score, denoted
by e(U), was defined as the probability with treated status
(T = 1) of a unit given all variables U. Actually, only con-
founders X are associated with the treatment, therefore

e(U) = p(T = 1|U) = p(T = 1|X) = e(X). (3)

Based on the propensity score, (Rosenbaum 1987) proposed
the transformed outcome Y ? to address the counterfactual
problem in Eq. (2) with Inverse Propensity Weighting (IPW)
estimator ÂTEIPW , see also (Athey and Imbens 2016). The
transformed outcome Y ? is defined as

Y ? = Y obs · T−e(U)
e(U)·(1−e(U)) = Y obs · T−e(X)

e(X)·(1−e(X)) , (4)

and the IPW estimator is defined as

ÂTEIPW = Ê(Y ?) = Ê
(
Y obs · T−e(X)

e(X)·(1−e(X))

)
. (5)

However, most previous approaches based on propensity
score usually treat all observed variables as confounders
when estimating the propensity score. This will make the
estimated treatment effect imprecise and with inflated vari-
ance because some variables could be non-confounders and



have direct impact on outcome.
Therefore, based on our causal diagram as shown in

Fig. 1, we propose to separate all observed variables U in-
to three sets, the confounders X, the adjustment variables
Z and irrelevant variables I (Omitted in Fig.1). And then,
we propose a new adjusted estimator by incorporating ad-
justment variables to reduce the variance of estimated ATE
under following assumption.

Assumption 4: Separateness. The observed variables U
can be decomposed into three sets, that is U = (X,Z, I),
where X are confounders, Z are adjustment variables and I
are irrelevant variables.

With assumption 4, we introduce our adjusted trans-
formed outcome Y + based on the transformed outcome in
Eq. (4) with the definition as

Y + =
(
Y obs − φ(Z)

)
· T−e(X)
e(X)·(1−e(X)) , (6)

where φ(Z) helps to reduce the variance among Y , which
are associated with Z.

Then we propose the adjusted estimator ÂTEadj as

ÂTEadj = Ê(Y +) = Ê
((
Y obs − φ(Z)

)
· T−e(X)
e(X)·(1−e(X))

)
. (7)

And our adjusted estimator has following properties.
• Firstly, under assumptions 1-4, our adjusted estimator

ÂTEadj is unbiased, that is

E(Y +|X) = E(Y (1)− Y (0)|X). (8)

This property is obvious with the Pearl’s back-door cri-
terion (Pearl 2009). Since the conditioning set X blocks all
back door paths linking treatment T and outcome Y , while
not contains any descendants of T in our causal diagram.
• Secondly, the asymptotic variance of our adjusted esti-

mator ÂTEadj is no greater than IPW estimator ÂTEIPW .
Comparing the Eq. (5) and (7), we know that the IPW es-

timator only considered the confounders X when provided
all variables U, while our estimator utilized the adjustment
variables Z to make adjustments on outcome Y for reduc-
ing variance. The similar adjustments have been proved can
reduce the variance of ATE estimation in randomized exper-
iments by (Bloniarz et al. 2016).

Automated Variables Decomposition
D2VD Algorithm
With Eq. (8), we can get E(Y +) = E(Y (1) − Y (0)), and
obtain the estimated ATE by regressing our adjusted trans-
formed outcome Y + against the variables U and minimizing
the following objective function

minimize ‖Y + − h(U)‖2. (9)

Then we can estimate the ATE by Ê(h(U)) and get the con-
ditional ATE by h(U), or we can obtain the estimated ATE
by setting the h(U) as a constant in Eq. (9).

In practice, we specify φ(Z) and h(U) as linear functions
with coefficient vector α and γ, that is

φ(Z) = Zα, h(U) = Uγ, (10)

and adopt linear-logistic regression to evaluate the propen-
sity score e(X) with coefficient vector β:

e(X) = p(T = 1|X) = 1
1+exp(−Xβ) . (11)

In the specifications of Eq. (10, 11), we have assumed the
knowledge of the variables decomposition U = (X,Z, I).
Nevertheless, we don’t know the exact separation in prac-
tice. Hence we use the full set of observed variables U to re-
place X and Z instead, and propose a data-driven approach
to automatically separate confounders and adjustment vari-
ables. We update our objective function in Eq. (9) as:

minimize ‖(Y obs − Uα)�W (β)− Uγ‖22, (12)

s.t.

m∑
i=1

log(1 + exp((1− 2Ti) · Uiβ)) < τ,

‖α‖1 ≤ λ, ‖β‖1 ≤ δ, ‖γ‖1 ≤ η, ‖α� β‖22 = 0.

where W (β) := T−e(U)
e(U)·(1−e(U)) and

∑m
i=1 log(1 + exp((1−

2Ti) · Uiβ)) represents the loss function when estimating
the propensity score. And � refers to Hadamard product.
With the formula ‖α � β‖22 = 0, the coefficient vector α is
optimized for separating the adjustment variables Z and β is
for separating confounders X form variables U.

In particular, we employ an orthogonal regularizer on α
and β to ensure the separation of confounders and adjust-
ment variables. In addition, we add L1 penalties on α, β and
γ to eliminate irrelevant variables I to further reduce vari-
ance and address the sparseness problem of variables.

These lead to the following optimization problem, which
is to minimize J (α, β, γ).

J (α, β, γ) = f(α, β, γ) + g(α, β, γ), (13)
f(α, β, γ) = ‖(Y obs − Uα)�W (β)− Uγ‖22 + µ‖α� β‖22

+ τ
∑m
i=1 log(1 + exp((1− 2Ti) · Uiβ)),

g(α, β, γ) = λ‖α‖1 + δ‖β‖1 + η‖γ‖1.
With the operator splitting property of proximal gradient al-
gorithm (Parikh and Boyd 2013), we can get the optimized
parameter (i.e., α(t+1)) at the tth iteration by proximal op-
erator proxκ(t)g of function g(·) with the step size κ(t):

α(t+1) = proxκ(t)g

(
α(t) − κ(t) ∂f(·)∂α

)
(14)

where ∂f(·)
∂α refers to the gradient of function f(·) on the

variable α and

proxκ(t)g(x) =

 xi − κ(t) · λ xi ≥ κ(t) · λ
0 |xi| ≤ κ(t) · λ
xi + κ · λ xi ≤ −κ(t) · λ

(15)

The λ in Eq. (15) is the coefficient of parameter α in func-
tion g(·). If the optimized parameter is β, then it should be δ
and it should be η for optimizing parameter γ.

With the proximal gradient algorithm, we can minimize
the objective function in Eq. (13). That is, starting from
some random initialization on α, β, γ, we solve each them
alternatively with the other two parameters as fixed and step
by step until convergence. Our Data-Driven Variable De-
composition algorithm is described in Algorithm 1.

During each iteration in Algorithm 1, we update the pa-
rameters α, β and γ with OPTIMIZATION as described in
Algorithm 2, where the function f̂κ(·) is defined as:

f̂κ(x, y) = f(y) + (x− y)∂f(·)∂x

T
+ (1/(2κ))‖x− y‖22. (16)

And the gradients of the function f(α, β, γ) with the respect



Algorithm 1 Data-Driven Variable Decomposition (D2VD)

Require: Initialization J (0) = J (α(0), β(0), γ(0)).
Ensure: J (0) ≥ 0, J (t+1) < J (t)

1: for t = 0, 1, 2, · · · do
2: Calculate ∂f(·)

∂α , ∂f(·)∂β and ∂f(·)
∂γ

3: α(t+1) = OPTIMIZATION(α, t)
4: β(t+1) = OPTIMIZATION(β, t)
5: γ(t+1) = OPTIMIZATION(γ, t)
6: J (t+1) = J (α(t+1), β(t+1), γ(t+1))
7: end for

to the variables (α, β, γ) are:
∂f(·)
∂α

= −2(W (β) · 1T � U)T · R + 2µα� β � β,

∂f(·)
∂β

= 2

(
(Y − Uα) · 1T � ∂W (β)

∂β

)T

· R

+ UT (T − exp(Uβ)) + 2µα� β � α,
∂f(·)
∂γ

= −2UT · R.

where R =

(
(Y − Uα)�W (β)− Uγ

)
and ∂W (β)

∂β =

(2T − 1)� exp

(
(1− 2T )� Uβ

)
� (1− 2T ) · 1T � U.

With the optimized parameters α̂, β̂ and γ̂ by Algorithm 1,
we can separate the confounders as X = {Ui : β̂i 6= 0},
adjustment variables as Z = {Ui : α̂i 6= 0} and estimate the
ATE as ÂTED2V D = E(Uγ̂).

Our model can be applied in the real system to deal with
the causal inference problem in observational studies.

Complexity Analysis
The complexity of our D2VD algorithm is dominated by the
step of calculating the gradients of function f(α, β, γ) with
respect to the variables. The complexity of ∂f(·)

∂α , ∂f(·)∂β and
∂f(·)
∂γ are all O(mn), where m is the sample size and n is

the dimension of all observed variables. With considering
that only constant time operations is involved in the for-loop
and while-loop in our algorithms, therefore, the complexity
of our D2VD algorithm is O(mn).

Parameters Tuning
The main challenge of parameters tuning for ATE estimation
in observational studies is that there is no ground truth about
the true ATE in practice.

To address this challenge, we employed the matching
method to evaluate the ATE and set it as “approximal ground
truth” like (Athey and Imbens 2016) did. Specifically, for
each unit i, find its closest match among the units with op-
posite treatment status:

match(i) = argminj:Tj=1−Ti
‖Ui − Uj‖22. (17)

We drop unit i if match(i) > ε, that makes the matching
approximate to exactly matching. We can estimate ATE with
the matching estimator by comparing the average outcome
between the matched treated and control units sets, and set
it as “approximal ground truth”, denoted by ATEmatching .

Algorithm 2 OPTIMIZATION(o, t)

1: Set κ = 1
2: while 1 do
3: Let o(t+1) = proxκg

(
o(t) − κ∂f(·)∂o

)
4: break if f(o(t+1)) ≤ f̂κ(o(t+1), o(t))
5: Update κ = 1

2κ
6: end while
7: return ot+1

With the “approximal ground truth”, we can tune param-
eters of our algorithm with cross validation.

Experiments
We apply our algorithm on the synthetic dataset and real on-
line advertising dataset to estimate the ATE.

Baseline Estimators
We implement the following baseline estimators to evaluate
the ATE for comparison.
• Direct Estimator ÂTEdir: It evaluates the ATE by directly

comparing the average outcome between the treated and
control units. It ignores the confounding effect of con-
founders on treatment.

• IPW Estimator ÂTEIPW (Rosenbaum and Rubin 1983):
It evaluates the ATE via reweighting observations with in-
verse of propensity score. It treats all variables as con-
founders and ignores the adjustment variables.

• Doubly Robust Estimator ÂTEDR (Bang and Robin-
s 2005): It evaluates the ATE by combination of IPW
and regression methods. It ignores the separation of con-
founders and adjustment variables.

• Non-Separation Estimator ÂTED2V D(−): It’s a weakened
version of our D2V D estimator. It has no variables sepa-
ration step by setting coefficient µ = 0 in Eq. (13).
In this paper, we implemented ÂTEIPW and ÂTEDR with

lasso regression for variables selection. The difference be-
tween ÂTEDR and ÂTED2V D(−) is that the former estimates
ATE sequentially but the latter does with joint optimization.

Experiments on Synthetic Data
Dataset To generate the synthetic dataset, we set the sam-
ple size m = {1000, 5000} and the dimension of observed
variables n = {50, 100, 200}. We first generate the variables
U = (X,Z, I) = (x1, · · · , xnx , z1, · · · , znz , i1, · · · , ini)
with independent gaussian distributions as

x1, · · · , xnx , z1, · · · , znz , i1, · · · , ini

iid∼ N (0, 1),

where nx, nz and ni represent the dimension of confounders
X, adjustment variables Z and irrelevant variables I, respec-
tively. And nx = 0.2 ∗ n, nz = 0.2 ∗ n, ni = 0.6 ∗ n.

To test the robustness of all estimators, we generate the
binary treatment variable T from a logistic function (Tlogit)
and a misspecified function (Tmissp) as

Tlogit ∼ Bernoulli(1/(1 + exp(−
∑nx

i=1 xi))) and
Tmissp = 1 if

∑nx

i=1 xi > 0.5, Tmissp = 0 otherwise.
The outcome Y is generated as

Y =
∑nx

j=nx
2

xj · ωj +
∑nz

j=1 zk · ρk + T +N (0, 2),



Table 1: Results on synthetic dataset: the true ATE is 1. The Bias refers to the absolute error between the true and estimated
ATE, that is Bias = |ÂTE − ATE|. SD, MAE and RMSE represent the standard deviations, mean absolute errors and root
mean square errors of ÂTE after 50 times independently experiments, respectively.

n n = 50 n = 100 n = 200
T/m Estimator Bias SD MAE RMSE Bias SD MAE RMSE Bias SD MAE RMSE

ÂTEdir 0.418 0.409 0.479 0.582 0.302 0.490 0.472 0.571 0.405 0.628 0.574 0.720
ÂTEIPW + lasso 0.078 0.310 0.252 0.317 0.097 0.356 0.295 0.366 0.073 0.328 0.267 0.320

T = Tlogit ÂTEDR + lasso 0.060 0.181 0.152 0.189 0.067 0.190 0.155 0.199 0.081 0.181 0.169 0.190
m = 1000 ÂTED2VD(−) 0.053 0.138 0.124 0.146 0.064 0.130 0.117 0.144 0.018 0.170 0.128 0.162

ÂTED2VD 0.045 0.108 0.091 0.116 0.019 0.114 0.093 0.115 0.067 0.144 0.130 0.152
ÂTEdir 0.418 0.170 0.418 0.451 0.659 0.181 0.659 0.681 0.523 0.412 0.555 0.653

ÂTEIPW + lasso 0.036 0.201 0.163 0.202 0.034 0.222 0.194 0.213 0.032 0.341 0.274 0.325
T = Tlogit ÂTEDR + lasso 0.051 0.079 0.071 0.094 0.106 0.075 0.114 0.127 0.055 0.084 0.086 0.096
m = 5000 ÂTED2VD(−) 0.112 0.080 0.118 0.137 0.114 0.102 0.121 0.150 0.164 0.076 0.164 0.179

ÂTED2VD 0.033 0.072 0.061 0.078 0.023 0.073 0.061 0.073 0.042 0.068 0.062 0.076

ÂTEdir 0.664 0.387 0.670 0.766 0.273 0.445 0.436 0.518 0.380 0.766 0.691 0.848
ÂTEIPW + lasso 0.266 0.279 0.319 0.384 0.298 0.295 0.328 0.417 0.191 0.482 0.403 0.514

T = Tmissp ÂTEDR + lasso 0.138 0.187 0.174 0.231 0.253 0.197 0.269 0.320 0.050 0.218 0.170 0.222
m = 1000 ÂTED2VD(−) 0.269 0.162 0.270 0.313 0.129 0.162 0.170 0.206 0.175 0.207 0.236 0.269

ÂTED2VD 0.066 0.113 0.102 0.129 0.019 0.119 0.101 0.120 0.059 0.177 0.149 0.184
ÂTEdir 0.446 0.180 0.446 0.480 0.587 0.323 0.587 0.662 0.778 0.246 0.778 0.812

ÂTEIPW + lasso 0.148 0.133 0.161 0.198 0.172 0.167 0.199 0.239 0.142 0.224 0.206 0.263
T = Tmissp ÂTEDR + lasso 0.119 0.073 0.123 0.139 0.100 0.067 0.107 0.120 0.127 0.079 0.127 0.148
m = 5000 ÂTED2VD(−) 0.112 0.070 0.119 0.132 0.058 0.067 0.069 0.086 0.068 0.055 0.073 0.086

ÂTED2VD 0.033 0.055 0.052 0.063 0.039 0.068 0.066 0.075 0.032 0.047 0.049 0.055

In this dataset, the features (xnx
2
, xnx

2 +1, · · · , xnx) are cor-
related to the treatment and outcome, simulating a confound-
ing effect. The true treatment effect in this dataset is 1.

ATE Estimation To evaluate the performance of our pro-
posed method, we carry out the experiments 50 times in-
dependently. Based on our estimated ATE, we calculate the
Bias, SD, MAE and RMSE, and report the results in Tab.1,
where the smaller Bias, SD, MAE and RMSE are better.
From Tab.1, we have following observations.

First, the direct estimator is failed (with large Bias) un-
der different settings because it did not consider the con-
founding effect. Second, the IPW estimator can unbiasedly
(with small Bias) estimate the ATE when T = Tlogit, but
with a big Bias when propensity score model is misspeci-
fied by setting T = Tmissp. With combination of IPW and
regression models, DR estimator can get better performance
than IPW estimator, especially when T = Tmissp. Third,
our D2V D(−) estimator, which has no variables separation
step, can get the similar results with DR estimator. But with
considering the separation between confounders and adjust-
ment variables, our D2V D estimator can improve the accu-
racy (smaller Bias) and reduce the variance (smaller SD)
for ATE estimation from D2V D(−), DR and other baseline
estimators under different settings.

Variables Decomposition As we described before, with
the optimized α̂ and β̂, our algorithm can separate the con-
founders as X = {Ui : β̂i 6= 0} and adjustment variables
as Z = {Ui : α̂i 6= 0}. To demonstrate the performance
of automated variables decomposition of our algorithm, we
carry out the experiments 50 times independently and record
the true positive rate (TPR) and true negative rate (TNR) in
Tab. 2. The formulations of TPR and TNR for separated con-
founders X are defined as

TPR = #{β̂i 6=0,βi 6=0}
#{βi 6=0} ,TNR = #{β̂i=0,βi=0}

#{βi=0} . (18)

Table 2: Separation results of confounders X and adjustment
variables Z. The closer to 1 for TPR and TNR is better.

T = Tlogit

n = 50 n = 100 n = 200
m TPR TNR TPR TNR TPR TNR

m = 1000
X 1.000 0.917 0.977 0.948 0.966 0.906
Z 1.000 0.973 1.000 0.983 1.000 0.984

m = 5000
X 1.000 0.923 1.000 0.887 0.994 0.989
Z 1.000 0.975 1.000 0.987 1.000 0.994

T = Tmissp

m = 1000
X 1.000 0.844 0.997 0.866 0.867 0.977
Z 1.000 0.982 1.000 0.987 1.000 0.983

m = 5000
X 1.000 0.843 1.000 0.837 0.998 0.965
Z 1.000 0.986 1.000 0.990 1.000 0.994

In the same way, we calculate the TPR and TNR for sepa-
rated adjustment variables Z via Eq. (18) by using α.

Tab. 2 shows that our D2VD algorithm can separate the
confounders X more precisely when T = Tlogit, comparing
with T = Tmissp. This is because of the logistic assumption
of treatment assignment in our algorithm is correct. Even if
setting T = Tmissp, our algorithm can still precisely sepa-
rate the confounders and adjustment variables. This enables
us to estimate the ATE more accurately and with tighter con-
fidence intervals than the state-of-the-art methods.

Experiments on Real World data
Dataset The real online advertising dataset we used is col-
lected during Sep. 2015 from Tencent WeChat App2. In
WeChat, each user can share posts to his/her friends and re-
ceive posts from friends as like in the Twitter and Facebook.
The advertisers can push advertisements to users, by merg-
ing them into list of the user’s wallposts. There are two types
of feedback on the advertisements: “Like” and “Dislike”.

The online advertising campaign is about LONGCHAMP

2http://www.wechat.com/en/



Table 3: The top ranked features by their absolute ATE estimated with our D2VD estimator ÂTED2V D, comparing with the
baseline estimator ÂTEIPW and ÂTEDR. The ATEmatching is the “approximal ground truth” by matching method, “n/a”
means that we cannot obtain the ATE from matching method since the number of matching samples are not sufficient.

No. Features ÂTED2VD (SD) ÂTEIPW (SD) ÂTEDR (SD) ATEmatching
1 No. friends (> 166) 0.295 (0.018) 0.240 (0.026) 0.297(0.021) 0.276
2 Age (> 33) -0.284 (0.014) -0.235 (0.029) -0.302(0.068) -0.263
3 Share Album to Strangers 0.229 (0.030) 0.236 (0.030) -0.034(0.021) n/a
4 With Online Payment 0.226 (0.019) 0.260 (0.029) 0.244(0.028) n/a
5 With High-Definition Head Portrait 0.218 (0.028) 0.203 (0.032) 0.237(0.046) n/a
6 With WeChat Album 0.191 (0.014) 0.237 (0.021) 0.097(0.050) n/a
7 With Delicacy Plugin 0.124 (0.038) -0.253 (0.037) 0.067(0.051) 0.099
8 Device (iOS) 0.100 (0.024) 0.206 (0.012) 0.060(0.021) 0.085
9 Add friends by Drift Bottle -0.098 (0.012) 0.016 (0.019) -0.115(0.015) -0.032
10 Gender (Male) -0.073 (0.017) -0.240 (0.029) 0.065(0.055) -0.097

handbags for young ladies3. This campaign contains 14,891
user feedbacks with Like and 93,108 Dislikes. For each us-
er, we have 56 features including (1) demographic attributes,
such as age, gender, (2) number of friends, (3) device (iOS
or Android), and (4) the user settings on WeChat, for exam-
ple, whether allowing strangers to see his/her album (“Share
Album to Strangers”) and whether installing the online pay-
ment service (“With Online Payment”).

Experimental Settings In our experiments, we set the
feedback of users about the advertisement as outcome Y .
Specifically, we set the outcome Yi = 1 when the user i likes
the advertisement, and Yi = 0 if user i dislikes it. And we
alternatively set one of the features as the treatment T and
all other features as the variables U. So that we can evaluate
the ATE of each feature.

During the parameters tuning, we set the matching thresh-
old ε = 5, which make the matching estimator is close to the
exactly matching. The hyper-parameters of λ, δ, τ , η and µ
set as 30, 50, 90, 70 and 30 by using grid search.

ATE Estimation For each user feature, we employ our
D2VD algorithm to estimate its ATE on the outcome. Tab. 3
shows the top ranked features by their absolute ATE estimat-
ed with our D2VD estimator, comparing with baseline es-
timators and the “approximal ground truth” ATEmatching .
Note that the ATEmatching has very rigorous requirements
on the sample size with exactly matching. For some user fea-
tures, we do not have a sufficient number of samples thus we
cannot derive their ATEmatching .

From Tab. 3, we have following observations.
O1. Our D2VD estimator evaluate the ATE more accu-

rately than baseline estimators. With separated confounder-
s, the ATE estimated by our D2VD estimator is closer to the
“approximate ground truth” ATEmatching . While the IPW
and DR estimators, which treat all variables as confounder-
s, generate huge error in estimating ATE for some features,
even make wrong estimation of the ATE polarity (positive
of negative), such as feature WithDelicacyP lugin for IP-
W estimator and feature Gender for DR estimator.

O2. Our D2VD estimator can reduce the variance of es-
timated ATE from baseline estimators. With regression on
separated adjustment variables, our estimator obtain smaller
SD than IPW and DR estimators, where IPW estimator ig-
nores the adjustment variables and DR estimator makes re-
gression on all variables, ignoring the variables separation.

O3. Younger ladies are with higher probability to like
the advertisement about LONGCHAMP handbags. The ATE
of Age(> 33) is −0.284 and Gender(Male) is −0.073,

3http://en.longchamp.com/en/womens-bags

Table 4: Confounders and adjusted variables when we set
feature “Add friends by Shake” as treatment.

Confounders Adjustment Variables
Add friends by Drift Bottle No. friends
Add friends by People Nearby Age
Add friends by QQ Contacts With WeChat Album
Without Friends Confirmation Plugin Device

which indicate that the younger ladies have higher proba-
bility to like the advertisement. This is consistent with our
intuition since the LONGCHAMP advertisement is mainly
designed for young ladies as their potential customers.

Variables Decomposition Tab. 4 shows the separation re-
sults between confounders and adjusted variables when we
set feature “Add friends by Shake” as the treatment. Shake4

is a two way function where both people using this func-
tion at the same time can see each other and make friend-
s on WeChat. In Tab. 4, the confounders are many other
ways for adding friends on WeChat, indicating the separated
confounders have significant causal association with treat-
ment. While the adjustment variables, for example, the “No.
friends” and “Age”, are not associated with treatment but
have significant effect on outcome, as shown in Tab. 3, they
are the top ranked features.

The results demonstrate that our proposed D2V D algo-
rithm can precisely separate the confounders and adjustment
variables in practical. With the separated confounders, our
estimator can obtain an accurate ATE, and reduce the vari-
ance of estimated ATE by the adjustment variables.

Conclusion
In this paper, we focus on how to evaluate the average treat-
ment effect in a more precisely way with tighter confidence
intervals in observational studies. We argued that most pre-
vious causal methods based on propensity score is defi-
cient because they usually treat all variables as confounder-
s. Based on our causal diagram, we proposed to separate
the confounders and adjustment variables from all observed
variables. And we proposed a Data-Driven Variable Decom-
position (D2VD) algorithm to jointly optimize the variables
decomposition and ATE estimation. Experimental results on
synthetic data and real world data verify the practical use-
fulness of our model and the effectiveness of our D2VD al-
gorithm for ATE estimation in observational study.

4https://rumorscity.com/2014/07/25/how-to-add-friends-on-
wechat-7-ways/
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